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Abstract
The reader of a choose your own adventure
novel and the user of a modern virtual assis-
tant have a subtle similarity; both may, through
the right lens, be viewed as engaging with a
work of Interactive Fiction. This literary form
emerged in the 1970s and has grown like a vine
along the branch of modern technology, one
guided by the advances of the other. In this
work we weave together threads from the Inter-
active Fiction community and neural semantic
parsing for dialog systems, defining the data
model and necessary algorithms for a novel
type of Interactive Fiction and open sourcing
its accompanying authoring tool. Specifically,
our work integrates retrieval based semantic
parsing predicates into the branching story
structures well known to the Interactive Fic-
tion community, relaxing the relatively strict
lexical options of preexisting systems.

1 Introduction

Interactive Fiction (IF) is a diverse genre of art
and entertainment that is most well known in the
context of video games, from text adventures (e.g.
Zork), to classic point and click adventures such
as Monkey Island to award winning modern games
like 80 Days (Time Magazine Game of the Year
2014). Less familiar to the general public is the lit-
erary tradition that recognizes IF as high art on par
with the novel and poem, and produces compelling
work collected in ever-growing online repositories1.
The signature techniques of IF include branching
story structure, multiple endings, and the use of
lamps to solve complex problems.

IF was born, they say, in 1979 as ADVENT, a
text based cave exploration game written by a fa-
ther to amuse and delight his daughters (Niesz and
Holland, 1984). Over the last 40 years, the inter-
active affordances of technology have grown from

∗∗ equal contribution
1https://www.ifarchive.org

text in a terminal to include modern marvels such
as graphics, audio, touchscreens, virtual reality, and
speech recognition, and with their added complex-
ity has come the creation of authorship software
that allows nontechnical authors to harness these
media. This is exemplified in Inform2, a compiled
programming language whose lines of code are
themselves grammatical English sentences.

Authorship tools for IF define some structure of
a story and provide suggested algorithms or soft-
ware itself to realize this structure in a form that a
reader can digest, which taken together we will call
a model specification. Our particular model specifi-
cation is inspired by recent work in neural dialog
systems for virtual assistants. While ADVENT
and Alexa may seem to have little in common, they
are both clearly a turn taking interaction between
a system and a reader3. Their internal workings
are also similar, as it is no coincidence that the
sub-genre of parser games like Zork shares a to-
ken in its name with the semantic parsers used in a
dialog agents; they share the common ancestor of
tree-structure parsers from the early days of com-
putational linguistics (Woods, 1973).

We make use of retrieval based semantic parsing
(Yao et al., 2019), a variant of nearest neighbor
classification using inverse semantic similarity as
its distance metric. One particular strength of this
method is that the semantic similarity metric, or
semantic kernel (Altınel et al., 2015), can be pre-
trained on general domain text pairs. Instantiating
a domain specific semantic parser is tantamount
to the definition of exemplars, strings paired with
class labels that indicate their known semantics.
Crucially, this is a task that can be done with no
machine learning or programming background. It

2http://inform7.com
3We avoid the term “user” in this work in order to differen-

tiate between users of the authoring tool (authors) and users
of the resulting literary work (readers).
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also avoids explicit formal semantic representations
such as FrameNet (Baker et al., 1998), eliminating
the learning curve required to bootstrap supervised
discriminative semantic parsing systems such as
Wang et al. (2015).

Our model grants the reader a more freeform
mode of interaction compared to many other ex-
amples of IF; as long as the author can guide and
anticipate the readers’ inputs into close neighbor-
hoods of their exemplars, the reader can both de-
cide what to say and how to say it. For the author,
we optimize for efficiency with features that col-
lapse common patterns observed in user testing
and components designed for the iterative tuning
of the semantic parser exemplars. We also consider
a third user type, the programmer who wishes to
extend our open source library, by implementing
our tool in Angular with extensive modularity via
dependency injection. The general tool architecture
is as an AppEngine hosted website, with Firebase
for persistance.

2 Interactive Fiction

2.1 Overview

In its broadest sense, IF is an entertainment ex-
perience in which the reader is not a passive ob-
server, or equivalently a sequence of reader turns
and system turns. The reader turns need not be self-
composed, as in the Choose Your Own Adventure
novel where the system turns are the book chapters
and the reader turns are selected from pre-written
choices. While the system turns need not be simple
text and often include audiovisual components, for
clarity we restrict the scope of our discussion of
IF in this work to the class in which our model
lies where both user and system turns are purely
textual.

Of the many members of this class, the two that
we keep top of mind in our model design are parser
games and dialogues. In parser games (Zorklikes),
the reader commonly plays as the protagonist and
system turns describe the reader’s current observa-
tions of the world around them. The reader has a
semantically rich but linguistically constrained set
of options supplied by a semantic parser that rec-
ognizes combinatoric verb / object pairings. Our
second focus is on dialogues, where the system
and reader turns are both conversational utterances.
This is motivated by the emergence of virtual as-
sistants as a potential delivery mechanism for IF
and the existing use of branching dialogues in story

rich video games.

2.2 History, Abridged

While IF has rarely gained recognition in the main-
stream media outside video games, it has been an
area of literary and academic interest for several
decades. Ziegfeld (1989) is especially prescient; in
their discussion of the then nascent intersection of
computer technology and storytelling, they explore
possibilities for the use of branching that both in-
clude and expand on some of our own ideas, as
well as raise thoughtful questions that remain unan-
swered today as to the eventual place of IF in art
history.

The first documented piece of IF was ADVENT,
written in the late seventies. Ziegfeld (1989) de-
scribes some other early IF work done in collab-
oration with well-known authors such as Michael
Crichton, Ray Bradbury, and Arthur C Clarke.
This early notoriety has faded, but the community
of writers has remained continuously productive;
Montfort (2005) provides a tour of the first two and
a half decades of IF, and the conference Narras-
cope4 is a hub for modern authors.

Many authorship tools have been created for IF,
often with general purpose features that have en-
abled unanticipated expressions of their models’
underlying mechanisms. Of particular importance
is the authorship tool Twine5, whose easy to use
interface has inspired a surge of IF work.

Outside of pure entertainment, IF has proven
potential in education(Squire, 2003), specifically as
a language learning tool(Baltra, 1990). One recent
example that uses a state based model specification
similar to our own is Ramanarayanan and LaMar
(2018), in which IF is used an assessment tool and
a correlation is demonstrated between proficiency
level and a learned student specific MDP parameter.

3 Related Work

In NLP literature, perhaps the closest touchpoint
to this work is Jonell et al. (2018), where a open
domain chatbot is constructed by crowdsourcing ap-
propriate responses for known chat histories. They
describe a nightly iteration process in which the
day’s user utterances are clustered using a simi-
larity function into paraphrase clusters and then
passed to crowdworkers to provide appropriate fol-
lowup system turns. They incrementally grow a

4https://narrascope.org/
5http://twinery.org
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directed graph based chatbot model of a similar
structure to our own, but approach the authorship
process in a drastically different manner and target
only the desiderata of chitchat dialog as opposed to
the general class of IF.

(Koller et al., 2018) also creates a directed graph
editing tool for dialogs, with API hooks allowing
the control of Lego Mindstorms robots. While
this application would at first glance seem quite
different, the data model is similar. The visual
similarity of our tools alone demonstrates their near
isomorphism; in both cases the authorship process
is tantamount to the definition of a graph topology
and the filling of schema for graph components.
The major difference arises instead from our use of
retrieval based semantic matching and focus on IF.

Our use of retrieval based (or paraphrase based)
methods draws from recent work in semantic pars-
ing (Berant and Liang, 2014) (Fader et al., 2013)
and one-shot classification (Koch et al., 2015) pow-
ered by the growing availability of general domain
semantic similarity training data (Yang et al., 2018)
(Cer et al., 2018). One notable addition in our
work is the introduction of anti-examples for tun-
ing parser quality.

4 Model Specification

Our model can be considered a marriage between
the intuitive design principles of Twine and mod-
ern methods in dialog systems. A typical dialog
system design consists of components responsible
for Language Understanding, Dialog Management,
and Language Generation (Bohus and Rudnicky,
2009) (Shum et al., 2018).

4.1 Language Understanding

We employ retrieval based semantic matching for
Language Understanding (LU), a close variant of
nearest neighbor classification. We assume a finite
set of unique semantic intents that our LU system
can recognize. Formally, this method requires

U : a set of exemplar strings

A: a set of anti-exemplar strings

E : a set of semantic intents

M : ∪{U ,A} → E : a mapping to semantic intents

D(x, y)→ R: a string similarity function

and semantic parsing is done with Nearest Neigh-
bor (NN) classification using 1

D as the distance
metric. The classifier has an additional rejection

option, triggered when no member of U produces
a similarity with the user utterance that exceeds
some author determined τ .

We augment the traditional NN classification
algorithm with anti-examples, letting A be a set of
anti-example strings. Their specific functionality
is outlined below in Algorithm 1, which shows the
full semantic parsing algorithm for an input x.

Algorithm 1: Semantic Parsing of input x
Result: Semantic intent e ∈ E or REJECT

S ← ∪{U ,A};
while S 6= ∅ do

z∗ ← argmaxz∈S D(x, z);
if D(x, z∗) ≥ τ then

if z∗ ∈ A then
forall w ∈ S | M(w) =M(z∗)

do
S ← S − w

end
else

returnM(z)
end

else
return REJECT

end
end
return REJECT

4.2 Dialogue Management
Our Dialogue Management (DM) system is based
on a directed graph, representing the definition and
evolution of dialog state by enumerating the finite
set of all possible states (the graph nodes), and the
allowed transitions between them (the graph edges).
We assume a unique global start node and allow
multiple end nodes. A node’s outgoing edges are ei-
ther directly associated with a semantic enum index
as described above or marked as a RepeatedFail
edge. The DM traverses the former when its out-
bound edge is returned by the semantic parser and
the latter when the semantic parser has returned
REJECT n times in a row, for some author con-
trolled n.

The fundamental task of the DM is to determine
U and A to be used in Algorithm 1, and a Markov-
like memoryless model that returns all outgoing
edges of the current node is sufficient for simple
dialogues. However, to enable more complex sto-
rytelling opportunities we add a global state which
we call the World.
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The World is implemented as a string to string
map, and each edge may assigned a Condition and
Mutation. A Condition is any boolean predicate
on the World, which allows its edge as a candi-
date only if it is satisfied. A full Condition is the
conjunction of boolean subconditions, where each
subcondition is the presence or absence of a spe-
cific key or key/value pair in the World. A Mutation
is a list of operations to be performed on the World,
and is executed upon its edge’s traversal. We per-
mit the use of mutations that set key value pairs or
delete keys from the World.

We add one further augmentation: a boolean
AutoAdvance property on a node that, if enabled,
immediately randomly traverses an outgoing edge
instead of waiting for the reader turn. This simple
feature provides flexibility in graph design, allow-
ing patterns we observed a desire for in user testing.

4.3 Language Generation

Language Generation is simplified nearly to its
limit in our specification; each node is directly as-
sociated with a system turn, its Prompt, produced
when the node is visited. To allow for more for-
giving reader experiences we add two additional
optional sources of system text. The first is a Re-
prompt, shown in response to a REJECT from the
semantic parser, allowing the author to guide the
reader towards a sucessfully parseable utterance.
The second source of system text is an optional
message attached to RepeatedFail edges, to allow
acknowledgement of the perhaps unexpected tran-
sition.

5 Authoring Tool

Authoring under our model specification requires
both defining the topology of a directed graph
and filling the schema of node and edge proper-
ties (Figure 1). Some schema fields have complex
types, which have multiple isomorphic data mod-
els of negligible difference provided they fulfill
their functional purpose. MUTATIONS specifies a
set of string to string map mutations and CONDI-
TIONS a set of simple boolean key/value lookups,
while MATCHCANDIDATES are tuples of exemplar
strings and booleans indicating if they are anti-
examples.

5.1 Main Authoring Tool

The home screen of the tool (Figure 2) consists of
two panels. On the left is the graph editor, which vi-

• Node

– PROMPT : STRING

– REPROMPT : STRING

– AUTOADVANCE? : BOOLEAN

• Edge

– MUTATIONS : �
– CONDITIONS : �
– EITHER

∗ MATCHCANDIDATES : �
– OR

∗ REPEATEDFAILMESSAGE : STRING

∗ REPEATEDFAILN : NUMBER

Figure 1: Schema for graph specification, omitting stan-
dard graph topology information for a single source
directed graph. Fields with complex types � are dis-
cussed in Section 5.

sualizes and provides editing options for the graph
topology. On the right is the the graph inspector,
which allows the editing of the schema data out-
lined in Figure 1.

The graph inspector has a focus that determines
the schema editing options that it displays. Click-
ing on a node or edge in the graph editor will focus
it on that node or edge, while clicking on the back-
ground will focus the inspector on an editor for
global hyperparameters such as the project name
and persistence filename. Both node and edge edi-
tors contain buttons that delete them from the graph,
a sole exception to topology being the domain of
the graph editor alone.

The graph editor has its own toolbar containing
the following actions: Save, CopyToClipboard, Au-
toZoom, AutoLayout. We consider all of these to
be self-documenting with the exception of Auto-
Layout, whose intention is to produce a well packed
organization of the graph through the following
process.

Our AutoLayout algorithm first topologically
sorts the graph and checks it for cycles. If no cycles
exist then for each node n we calculate l(n), the
length of the longest path from the start node. The
nodes are then arranged in rows of regular spacing
such that each n appears in row l(n). A best effort
is made to choose a relative ordering of nodes in
each row that minimizes visually tangled webs of
edges, and we allow and rely on manual adjustment
to achieve the author’s ideal visual organization.
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Figure 2: The main editor window, showing a story with start node A. The node B is selected, and so its details
appear in the inspector on the right. Note that its display name is distinct from the richer game text (C). The results
of using the Node Tester on the potential input “battle the beast” are shown in (D). They demonstrate that this
utterance would cause a transition to node E, an AutoAdvance node that would immediately transition to one of
two end states depending on the player’s previous choices.

5.2 Node Tester

The authorship process is by nature iterative, and
we recognize the importance of facilitating the edit-
ing of existing content. In particular, we anticipate
a feedback loop in which the author observes or
imagines reader turns and wishes to test them and
tune the semantic matching model based on the re-
sults. For example, an author might want to verify
that some reader turn matches, or does not match,
a particular edge and add it to that edge as either a
positive or anti-example if the desired behavior is
not observed.

In aid of this use case, we provide an interactive
node tester, found in the graph inspector when fo-
cused on a node (lower right in Figure 2). This tool
allows the author to probe with a potential utter-
ance and view the most similar exemplar from each
possible edge and their similarity scores. With one
click, the author can then add their probe utterance
to an existing edge as a positive or anti-example, or
create a new edge and target node with the probe
utterance as a positive exemplar on the new edge.

5.3 Preview Mode

We follow the footsteps of Twine in the integration
of a modest implementation of a reading program
in the authoring tool, and allow the author to trigger

this “Preview Mode” starting from any node in the
graph. While we intend the debugging of semantic
matches to be more easily performed using the
Node Tester, Preview Mode is useful for authors to
get early feedback on their work without investing
in bespoke reader software.

As an alternative, we also add a toggle for Inter-
active Mode to the Node Tester described above; in
this mode if the probe user utterance would match
an edge, the editor selection and inspector focus au-
tomatically move to that edge’s target node. This is
functionally equivalent to (although certainly less
immersive than) the full Preview Mode and allows
the authors to maintain their cognitive connection
with the graph editor and inspector while testing
the boundaries of the semantic parser.

5.4 Implementation Considerations

We implement our tool in Angular, a web applica-
tion platform that supports dependency injection.
This not only facilitates the introduction of custom
node metadata and UI, but also enables modularity
in the services that drive the editor. Two key ser-
vices, the persistence (save/load) mechanism, and
the semantic similarity function D, are injected
and as such easy to override with custom code. We
hope that allowing flexibility in the storage medium
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Figure 3: Preview Mode, displaying two successive screenshots of a reading of the story shown in Figure 2. Note
that in the second panel the reader response “reason with it” is rejected, leading to the use of the retry prompt.

will allow for easier integration with custom reader
software and injection of D is in anticipation of
future superior models, some options for which are
discussed below.

We provide one instantiation of each service.
Our persistence service implementation uses Fire-
base, a popular cloud database, with instructions on
how to configure Firebase credentials when launch-
ing a server in the repository’s README. For D,
our implementation uses the open source Universal
Sentence Encoder of Cer et al. (2018).

We note that significantly better similarity mod-
els are easily attainable as Cer et al. (2018) pre-
dates recent breakthrough techniques in pretraining
(Devlin et al., 2018) (Yang et al., 2019). Further-
more, the dataset of paraphrase pairs used to train
the encoder of Cer et al. (2018) is drawn from
the SNLI corpus (Bowman et al., 2015) with addi-
tional unsupervised multi-task training data taken
from sources such as Wikipedia and web news; this
broad coverage will likely give reasonable results
for any domain, but the specific flavor of IF or its
subtypes (e.g. dialouge) would likely benefit from
domain specific fine-tuning.

6 Discussion

We present a flexible model specification for a
new flavor of Interactive Fiction inspired by re-
cent trends in retrieval based dialog systems, and
provide an accompanying authorship tool. Our tool
is deployed as an AppEngine app, is written in
Angular, and is open source 6.

Our model specification makes use of semantic
matching based predicates to traverse a directed

6http://borismus.github.io/usnea

graph, tracing out a “reading” of the piece. The use
of semantic matching allows active reader ideation
of their role while remaining within guard rails
that maintain narrative cohesion. Furthermore, its
use of text based exemplars in a non-parametric
model with a pretrained semantic kernel permits
the iterative tuning of the semantic parsing system
by an author with no programming or machine
learning background.

Interactive Fiction is an art form with an uncer-
tain future that is connected in no small way to its
proximity to games and the social norms separating
games and fine art. Ziegfeld (1989) muses that IF
may either be like American poetry waiting for its
Walt Whitman, or like the cutup poetry fad of the
beat poets, bound for obscurity. They perhaps did
not expect that the question would remain unan-
swered for thirty years. We hope foremost that
authors will enjoy using our tool to create some-
thing they care about, and that readers will enjoy
their creations.
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