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Abstract

As part of the NLP Scholar project, we cre-
ated a single unified dataset of NLP papers
and their meta-information (including citation
numbers), by extracting and aligning infor-
mation from the ACL Anthology and Google
Scholar. In this paper, we describe several
interconnected interactive visualizations (dash-
boards) that present various aspects of the data.
Clicking on an item within a visualization or
entering query terms in the search boxes fil-
ters the data in all visualizations in the dash-
board. This allows users to search for papers
in the area of their interest, published within
specific time periods, published by specified
authors, etc. The interactive visualizations pre-
sented here, and the associated dataset of pa-
pers mapped to citations, have additional uses
as well including understanding how the field
is growing (both overall and across sub-areas),
as well as quantifying the impact of different
types of papers on subsequent publications.

1 Introduction

NLP is a broad interdisciplinary field that draws
knowledge from Computer Science, Linguistics,
Information Science, Psychology, Social Sciences,
and more.! Over the years, scientific publications
in NLP have grown in number and diversity; we
now see papers published on a vast array of re-
search questions and applications in a growing list
of venues—in journals such as CL and TACL, in
large conferences such as ACL and EMNLP, as
well as a number of small area-focused workshops.

The ACL Anthology (AA) is a digital repository
of public domain, free to access, articles on NLP.
It includes papers published in the family of ACL
conferences as well as in other NLP conferences

'One can make a distinction between NLP and Compu-
tational Linguistics; however, for this work we will consider

them to be synonymous.
“https://www.aclweb.org/anthology/

such as LREC and RANLP. As of June 2019, it
provided access to the full text and metadata for
close to 50K articles published since 1965.° It
is the largest single source of scientific literature
on NLP. However, the meta-data does not include
citation statistics.

Citation statistics are the most commonly used
metrics of research impact. They include: num-
ber of citations, average citations, h-index, relative
citation ratio, and impact factor. Note, however,
that the number of citations is not always a re-
flection of the quality or importance of a piece of
work. Furthermore, the citation process can be
abused, for example, by egregious self-citations
(Ioannidis et al., 2019). Nonetheless, given the im-
mense volume of scientific literature, the relative
ease with which one can track citations using ser-
vices such as Google Scholar (GS), and given the
lack of other easily applicable and effective metrics,
citation analysis is an imperfect but useful window
into research impact.

Google Scholar is a free web search engine for
academic literature.* Through it, users can access
the metadata associated with an article such as the
number of citations it has received. Google Scholar
does not provide information on how many articles
are included in its database. However, sciento-
metric researchers estimated that it included about
389 million documents in January 2018 (Gusen-
bauer, 2019)—making it the world’s largest source
of academic information. Thus, it is not surprising
that there is growing interest in the use of Google
Scholar information to draw inferences about schol-
arly research in general (Martin-Martin et al., 2018;
Mingers and Leydesdorff, 2015; Ordufia-Malea
et al., 2014; Khabsa and Giles, 2014; Howland,
2010) and on scholarly impact in particular (Bos

3ACL licenses its papers with a Creative Commons Attri-
bution 4.0 International License.
*https://scholar.google.com
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and Nitza, 2019; Ioannidis et al., 2019; Ravenscroft
et al., 2017; Bulaitis, 2017; Yogatama et al., 2011;
Priem and Hemminger, 2010).

Services such as Google Scholar and Semantic
Scholar cover a wide variety of academic disci-
plines. Wile there are benefits to this, the lack of
focus on NLP literature has some drawbacks as
well: e.g, the potential for too many search results
that include many irrelevant papers. For example,
if one is interested in NLP papers on emotion and
privacy, searching for them on Google Scholar is
less efficient than searching for them on a platform
dedicated to NLP papers. Further, services such
as Google Scholar provide minimal interactive vi-
sualizations. NLP Scholar with its focus on AA
data, is not meant to replace these tools, but act as
a complementary tool for dedicated visual search
of NLP literature.

ACL 2020 has a special theme asking re-
searchers to reflect on the state of NLP. In the spirit
of that theme, and as part of a broader project on an-
alyzing NLP Literature, we extracted and aligned
information from the ACL Anthology (AA) and
Google Scholar to create a dataset of tens of thou-
sands of NLP papers and their citations (Moham-
mad, 2020c, 2019). In separate work, we have used
the data to explores questions such as: how well
cited are papers of different types (journal articles,
conference papers, demo papers, etc.)? how well
cited are papers published in different time spans?
how well cited are papers from different areas of
research within NLP? etc. (Mohammad, 2020a).
We also explored gender gaps in Natural Language
Processing research, in terms of authorship and
citations (Mohammad, 2020b). In this paper we
describe how we built an interactive visual explorer
for this unified data, which we refer to as NLP
Scholar. Some notable uses of NLP Scholar are
listed below:

e Search for relevant related work in various
areas within NLP.

o Identify the highly cited articles on an interac-
tive timeline.

o Identify past papers published in a venue of
interest (such as ACL or LREC).

o Identify papers from the past (say ten years
back) published in a venue of interest (say
ACL or LREC) that have made substantial
impact through citations.
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e Examine changes in number of articles and
number of citations in a chosen area of interest
over time.

o Identify citation impact of different types of
papers—e.g., short papers, shared task papers,
demo papers, etc.

Even beyond the dedicated interactive visualizer
described here, the underlying data with its align-
ment between AA and GS has potential uses in:

e Creating a web browser extension that allows
users of GS to look up the aligned AA infor-
mation (the full ACL BibTeX, poster, slides,
access to proceedings from the same venue,
etc.).

e Similarly, in the reverse direction, allowing
access from AA to the GS information on the
aligned paper. This could include number of
citations, lists of papers citing the paper, etc.

Perhaps most importantly, though, NLP Scholar
serves as a visual record of the state of NLP liter-
ature in terms of citations. We note again though,
that even though this work seeks to make citation
metrics more accessible for ACL Anthology papers,
citation metrics are not always accurate reflections
of the quality, importance, or impact of individual
papers.

All of the data and interactive visualizations as-
sociated with this work are freely available through
the project homepage.’

2 Background and Related Work

Much of the work in visualizing scientific litera-
ture has focused on showing topics of research (Wu
et al., 2019; Heimerl et al., 2012; Lee et al., 2005).
There is also notable work on visualizing communi-
ties through citation networks (Heimerl et al., 2015;
Radev et al., 2016).

Various subsets of AA have been used in the
past for a number of tasks, including: to study
citation patterns and intent (Radev et al., 2016;
Zhu et al., 2015; Nanba et al., 2011; Mohammad
et al., 2009; Teufel et al., 2006; Aya et al., 2005;
Pham and Hoffmann, 2003), to generate summaries
of scientific articles (Qazvinian et al., 2013), to
study gender disparities in NLP (Schluter, 2018),
to study subtopics within NLP (Anderson et al.,

Shttp://saifmohammad.com/WebPages/nlpscholar.html



2012), and to create corpora of scientific articles
(Mariani et al., 2018; Bird et al., 2008).

However, none of these works provide an in-
teractive visualization for users to explore NLP
literature and their citations.

3 Data

We now briefly describe how we extracted informa-
tion from the ACL Anthology and Google Scholar.
(Further details about the dataset, as well as an
analysis of the volume of research in NLP over the
years, are available in Mohammad (2020c).)

3.1 ACL Anthology Data

The ACL Anthology provides access to its data
through its website and a github repository (Gildea
etal., 2018).5 We extracted paper title, names of au-
thors, year of publication, and venue of publication
from the repository.’

As of June 2019, AA had ~50K entries; how-
ever, this includes forewords, schedules, etc. that
are not truly research publications. After discard-
ing them we are left with a set of 44,895 papers.

3.2 Google Scholar Data

Google Scholar does not provide an API to extract
information about the papers. This is likely because
of its agreement with publishing companies that
have scientific literature behind paywalls (Martin-
Martin et al., 2018). We extracted citation infor-
mation from Google Scholar profiles of authors
who published at least three papers in the ACL An-
thology. (This is explicitly allowed by GS’s robots
exclusion standard. This is also how past work has
studied Google Scholar (Khabsa and Giles, 2014;
Orduiia-Malea et al., 2014; Martin-Martin et al.,
2018).) This yielded citation information for 1.1
million papers in total. We will refer to this dataset
as GS-NLP. Note that GS-NLP includes citation
counts not just for NLP papers, but also for non-
NLP papers published by the authors.

GS-NLP includes 32,985 of the 44,895 papers in
AA (about 74%). We will refer to this subset of the

Shttps://www.aclweb.org/anthology/
https://github.com/acl-org/acl-anthology

"Multiple authors can have the same name and the same
authors may use multiple variants of their names in papers.
The AA volunteer team handles such ambiguities using both
semi-automatic and manual approaches (fixing some instances
on a case-by-case basis). Additionally, the AA repository in-
cludes a file that has canonical forms of author names. Authors
can provide AA with their aliases, change-of-name informa-
tion, and preferred canonical name, which is then eventually
recorded in the canonical-name file.

ACL Anthology papers as AA’. The citation anal-
yses presented in this paper are on AA’. (Future
work will explore visualizations on GS-NLP.)

Entries across AA and GS are aligned by match-
ing the paper title, year of publication, and first
author last name.®

4 Building an Interactive Visualization to
Explore Scientific Literature

We now describe how we created an interac-
tive visualization—NLP Scholar—that allows one
to visually explore the data from the ACL An-
thology along with citation information from
Google Scholar. We first created a relational
database (involving multiple tables) that stores
the AA and GS data (§4.1). We then loaded the
database in Tableau—an interactive data visualiza-
tion software—to build the visualizations (§4.2).9

4.1 NLP Scholar Relational Database

Data from AA and GS is stored in four tables (tsv
files): papers, authors, title-unigrams, and title-
bigrams. They contain the following information:

papers: Each row corresponds to a unique paper.
The columns include: paper title, year of publica-
tion, list of authors, venue of publication, number
of citations at the time of data collection (June
2019), NLP Scholar paper id, ACL paper id, and
some other meta-data associated with the paper.

The NLP Scholar paper id is a concatenation of
the paper title, year of publication, and first author
last name. (This id was also used to align entries
across AA and GS).

authors: Each row corresponds to a paper—author
combination. The columns include: NLP Scholar
paper id, author first name, and author last name.
A paper with three authors contributes three rows
to the table (all three have the same paper id, but
different author names).

title-unigrams: Each row corresponds to a paper
title and unigram combination. The columns
include: NLP Scholar paper id and paper title
unigram (a word that occurs in the title of the
paper). A paper with five unique words in the title

8There were marked variations in how the same venue was
described in the meta-information across AA and GS; thus,
venue information was not used for alignment.

“Tableau: https://www.tableau.com
Even though there are paid versions of Tableau, the visualiza-
tions built with Tableau can be freely shared with others on
the world wide web. Users do not require any special software
to interact with these visualization on the web.
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contributes five rows to the table (all five have the
same paper id, but different words).
title-bigrams: Each row corresponds to a paper
title and bigram combination. The columns
include: NLP Scholar paper id and paper title
bigram (a two-word sequence that occurs in the
title of the paper). A paper with four unique
bigrams in the title contributes four rows to the
table (all four have the same paper id, but different
bigrams).

Once the tables are loaded in Tableau, the fol-
lowing pairs of tables are each joined (inner join)
using the NLP Scholar paper id:'° papers—authors,
papers—title-unigrams, and papers—title-bigrams.

4.2 NLP Scholar Interactive Visualization

We developed multiple visualizations to explore
various aspects of the data. We group and connect
several individual visualizations in dashboards that
allow one to explore several aspects of the data
together. Clicking on data attributes such as year
of publication or venue of publication in one visu-
alization, filters the data in all visualizations within
a dashboard to show only the relevant data.

Figure 1 shows a screenshot of the main dash-
board. At the top are the number of papers—total
(A1) and by year of publication (A2). This allows
one to see the growth/decline of the papers over the
years.

Below it, we see the number of citations—total
(B1) and by year of publication (B2). For a given
year, the bar is partitioned into segments corre-
sponding to individual papers. Each segment (pa-
per) has a height that is proportional to the number
of citations it has received and assigned a colour
at random. This allows one to quickly identify
high-citation papers.!!

Hovering over individual papers in B2 pops open
an information box showing the paper title, authors,
year of publication, publication venue, and #cita-
tions. Figure 6 in the Appendix shows a blow up
of B2 along with examples of the hover informa-
tion box. Similarly, hovering over other parts of
the dashboard shows corresponding information.
(This is especially helpful, when parts of the text

An inner join selects all rows from both participating
tables whose join column values match across the two tables.

""Note that since the number of colours is smaller than the
number of papers, multiple papers may have the same color;
however, the probability of adjacent papers receiving the same
colour is small—even then, the system will provide visual
clues distinguishing each segment when hovering over the
area.
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are truncated or otherwise not visible due to space
constraints.)

Further below, we see lists of papers (C) and
authors (D)—both are ordered by number of cita-
tions. Search boxes in the bottom right (E) allow
searching for papers that have particular terms in
the title or searching for papers by author name.
One can also restrict the search to a span of years
using the slider.

Four other dashboards are also created that have
the same five elements as the main dashboard (A
through E), and additionally include a six element
F to provide a focused search facility. This sixth
element is a treemap that shows the most common:
venues and paper types (F1), title unigrams (F2),
title bigrams (F3), or language mentions in the title
(F4). (We only show one of the four treemaps at
a time to prevent overwhelming the user.) The
treemaps are shown in Figures 2 to 5, respectively.

5 Data Explorations with NLP Scholar

Figure 1 A1l shows that the dataset includes 44,895
papers. A2 shows that the volume of papers pub-
lished was considerably lower in the early years
(1965 to 1989); there was a spurt in the 1990s;
and substantial numbers since the year 2000. Also,
note that the number of publications is considerably
higher in alternate years. This is due to certain bi-
ennial conferences. Since 1998 the largest of such
conferences has been LREC (In 2018 alone LREC
had over 700 main conferences papers and addi-
tional papers from its 29 workshops). COLING,
another biennial conference (also occurring in the
even years) has about 45% of the number of main
conference papers as LREC.

B1 shows that AA’ papers have received ~1.2
million citations (as of June 2019). The timeline
graph in B2 shows that, with time, not only have
the number of papers grown, but also the number
of high-citation papers. We see a marked jump in
the 1990s over the previous decades, but the 2000s
are the most notable in terms of the high number
of citations. The 2010s papers will likely surpass
the 2000s papers in the years to come.

The most cited papers list (C) shows influential
papers from machine translation, sentiment analy-
sis, word embeddings, syntax, and semantics.

Among the authors (D), observe that Christopher
Manning has not only received the most number of
citations, he has also received almost three times
as many citations as the next person in the list.
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Figure 1: A screenshot of NLP Scholar’s principle dashboard.

Search: NLP Scholar allows for search in a num-
ber of ways. Suppose we are interested in the topic
of sentiment analysis. Then we can enter the rel-
evant keywords in the search box: sentiment, va-
lence, emotion, emotions, affect, etc. Then the
visualizations are filtered to present details of only
those papers that have at least one of these key-
words in the title. (Future work will allow for
search in the abstract and the whole text.)

Figure 7 in the Appendix shows the filtered re-
sult. The system identified 1,481 papers that each
have at least one of the query terms in the title.
They have received more than 85K citations. The
citations timeline (B2 in Figure 7) shows that there
were just a few scattered papers in early years
(1987-2000) that received a small number of ci-
tations. However, two papers in 2002 received
a massive number of citations, and likely led to
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Figure 2: A treemap of popular NLP venues and paper types. Darker shades of green: higher volumes of papers.
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Figure 3: A treemap of the most common unigrams in paper titles. Darker shades of green: higher frequencies.
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Figure 4: A treemap of the most common bigrams in paper titles. Darker shades of green: higher frequencies.
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Figure 5: A treemap of the most common language terms in titles. Darker shades of green: higher frequencies.
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the substantially increased interest in the field. The
number of papers has steadily increased since 2002,
with close to 250 papers in 2018, showing that the
area continues to enjoy considerable attention.

One can also fine tune the search as desired. Say
we are interested not in the broad area of sentiment
analysis, but specifically in the work on emotions
and affect. Then they can enter only emotion- and
affect-related keywords. A disadvantage of using
terms for search is that some terms are ambiguous
and they can pull in irrelevant articles; also if a
paper is about the topic of interest but its title does
not have one of the standard keywords associated
with the topic, then it might be left out. That said,
if one does come across a paper that has the query
term but is not in the topic of interest, they can right
click and exclude that paper from the visualization;
and as mentioned before, future work will allow
for searches in the abstract and full text as well.
We are also currently working on clustering papers
using the words in the articles as features.!?

Below are some more examples of interactions
with NLP Scholar (Figures are in the Appendix
after references):

e Figure 8 shows the state of the visualization
when one clicks the year 2016 in A1l.

e Figures 9 and 10 show examples of author
search by clicking on the authors list (D)
(Christopher Manning and Lillian Lee).

e Figures 11 and 12 show the dashboard when
one clicks on the Venue and Paper Type
treemap (F1): ACL main conference papers
and Workshop papers, respectively.

e Figures 13, 14 and 15 in the Appendix also
show examples of search for the terms parsing,
statistical and neural, respectively (accessed
by clicking on the title unigrams treemap
(F2)).

e Figures 16, 17, and 18 show the dashboard
when one clicks on the Title Bigrams treemap
(F3): machine translation, question answer-
ing, and word embeddings, respectively.

e Figures 19 and 20 show the dashboard when
one clicks on the Languages treemap (F4):
Chinese and Swahili, respectively.

”Note that clustering approaches also have limitations,
such as differing results depending on the parameters used.
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Once the system goes live, we hope to collect fur-
ther usage scenarios from the users at large.

For this work, we chose not to stem the terms
in the titles before applying the search. This is
because in some search scenarios, it is beneficial
to distinguish the different morphological forms
of a word. For example, papers with emotions in
the titles are more likely to be dealing with mul-
tiple emotions than papers with the term emotion.
When such distinctions do not need to be made, it
is easy for users to include morphological variants
as additional query terms.

6 Conclusions and Future Work

We presented NLP Scholar—an interactive visual
explorer for the ACL Anthology. Notably, the tool
also has access to citation information from Google
Scholar. It includes several interconnected interac-
tive visualizations (dashboards) that allow users to
quickly and efficiently search for relevant related
work by clicking on items within a visualization
or through search boxes. All of the data and inter-
active visualizations associated with this work are
freely available through the project homepage.'?

Future work will provide additional functionali-
ties such as search within abstracts and whole texts,
document clustering, and automatically identifying
related papers. We see NLP Scholar, with its dedi-
cated visual search capabilities for NLP papers, as
a useful complementary tool to existing resources
such as Google Scholar. We also note that the ap-
proach presented here is not required to be applied
only to the ACL Anthology or NLP papers; it can
be used to display papers from other sources too
such as pre-print archives and anthologies of papers
from other fields of study.
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Figure 13: NLP Scholar: After clicking on ‘parsing’ in the unigrams treemap (F2).
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Figure 14: NLP Scholar: After clicking on ‘statistical’ in the unigrams treemap (F2).
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Figure 15: NLP Scholar: After clicking on ‘neural’ in the unigrams treemap (F2).
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Figure 16: NLP Scholar: After clicking on ‘machine translation’ in the bigrams treemap (F3).
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Figure 17: NLP Scholar: After clicking on ‘question answering’ in the bigrams treemap (F3).
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Figure 18: NLP Scholar: After clicking on ‘word embeddings’ in the bigrams treemap (F3).
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NLP Scholar: After clicking on ‘Chinese’ in the languages treemap (F4).
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Figure 20: NLP Scholar: After clicking on ‘Swahili’ in the languages treemap (F4).




