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Abstract

Obtaining social media demographic informa-
tion using machine learning is important for ef-
ficient computational social science research.
Automatic age classification has been accom-
plished with relative success and allows for the
study of youth populations, but student clas-
sification—determining which users are cur-
rently attending an academic institution—has
not been thoroughly studied. Previous work
(He et al., 2016) proposes a model which
utilizes 3 tweet-content features to classify
users as students or non-students. This model
achieves an accuracy of 84%, but is restrictive
and time intensive because it requires access-
ing and processing many user tweets. In this
study, we propose classification models which
use 7 numerical features and 10 text-based fea-
tures drawn from simple profile information.
These profile-based features allow for faster,
more accessible data collection and enable the
classification of users without needing access
to their tweets. Compared to previous models,
our models identify students with greater ac-
curacy; our best model obtains an accuracy of
88.1% and an F1 score of .704. This improved
student identification tool has the potential to
facilitate research on topics ranging from pro-
fessional networking to the impact of educa-
tion on Twitter behaviors.

1 Introduction

In recent years, social media has become the focus
of more scientific research studies (Khang et al.,
2012), and is being used as a valuable means of
understanding human tendencies and social circles.
Due to rapid developments in technology, social
media has become a hub for scientific communica-
tion and research (Rowlands et al., 2011), a source
of entertainment and news, and a place for net-
working and socialization (Whiting and Williams,
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2013). Twitter is one of the most popular social
media platforms, especially among young people;
44% of young adults aged 18-24 and 31% of peo-
ple aged 25-29 use Twitter, with 25% using it daily
and 14% using it several times per day.1

The ability to group Twitter users by demo-
graphic information is crucial in understanding
the behaviors of certain subsets of the population.
Twitter provides limited information on user demo-
graphics, necessitating the development of machine
learning models to predict non-explicit user fea-
tures. Several studies have demonstrated that it is
possible to classify users by gender (Knowles et al.,
2016), age (Morgan-Lopez et al., 2017; Simaki
and Iosif Mporas, 2018; Smith and Gaur, 2018),
whether or not they are an organization (Wood-
Doughty et al., 2018), and more.

In this paper, we aim to classify Twitter users as
students or non-students. While many age classi-
fication models have been proposed, understand-
ing this subset of the age classification problem
may provide new insights into behavior on Twitter.
Grouping users into students and non-students has
applications ranging from professional network-
ing (He et al., 2016) to understanding these users’
role in the spread of misinformation, and by exten-
sion, the role that education plays in their online
behaviors (Chen et al., 2015). Previous studies of
students’ social media interactions have obtained
student samples using relatively low-yield, low-
accuracy, or low-coverage techniques such as sur-
veying individuals, analyzing geographic proximity
to educational institutions, or manually annotating
users one by one (Chen et al., 2015; Miller and
Melton, 2014; Moreno et al., 2016; Veletsianos and
Kimmons, 2016; Hanson et al., 2013). Research
into automatic demographic prediction of student
users could facilitate such student-based studies.

1https://www.pewresearch.org/fact-tank/2019/04/10.
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The most prominent application of an automatic
classification model to student demographic re-
search is described in He et al. (2016). This study
develops a machine learning model that uses user
tweet content to identify students on Twitter and
match them with professional mentors on LinkedIn.
Despite the model’s relatively high accuracy (84%),
its use of user tweet content is restrictive because
it is not always possible to obtain complete tweet
data. Protected accounts cannot be classified using
this model, and researchers without advanced Twit-
ter API access may not be able to obtain sufficient
tweet data.

Here, we propose new models for student clas-
sification on Twitter which achieve high accuracy
using only simple profile information. Our use of
profile-based features obviates the need for tweet
content, which allows for the classification of pro-
tected accounts and makes our model more accessi-
ble to researchers without access to advanced Twit-
ter APIs. In addition, user profile information can
be requested from the Twitter API at a faster rate
than a sample of user tweets. These novel student
identification models thus show potential for more
accurate, accessible, and efficient classifications in
demographic studies of social media users.2

1.1 Project Motivation

The development of this student identification clas-
sifier is part of a larger investigation into the way
that students interact with misinformation on Twit-
ter. Though the platform has implemented fact-
checking guidelines, it is still considered one of the
worst social media outlets in terms of spreading
false information.3 This spread of misinformation
has necessitated research into ways of detecting ru-
mors in tweets and predicting which kinds of users
are most susceptible to resharing it (Vosoughi et al.,
2018; Khan and Idris, 2018; Bodaghi et al., 2019;
Margolin et al., 2017). This work is especially im-
portant in the current pandemic, where false claims
on Twitter have pushed people to put themselves or
others at risk (Barua et al., 2020; Rosenberg et al.,
2020).

We hypothesize that users who are currently re-
ceiving education may behave differently on the

2Annotated datasets and student classifiers are publicly
available at https://github.com/christopherwun/twitter-student-
classifier

3https://www.washingtonpost.com/technology/2020/04/07/
twitter-almost-60-percent-false-claims-about-coronavirus-
remain-online-without-warning-label/

Sample Type S N-S Total
General stream 11 53 64
Hunter College 127 743 870

”Who to Follow” 86 8 94
Total 224 804 1028

Table 1: Dataset Distribution, Sample Types are de-
fined in §2.1-2.3. S denotes student, while N-S denotes
non-student.

platform due to a recent emphasis placed on fact
checking at academic institutions.4 Understand-
ing if students play a different role in the spread
of false information is relevant when determining
what kinds of education can be implemented to pre-
vent the spread of misinformation and how certain
users could be targeted with that education.

1.2 Ethical Considerations

With the creation of a student classification model
comes potential for misuse. Being able to deter-
mine whether or not a user is a student, even if
their tweets are not public, could enable people to
target student users with spam or other harmful con-
tent. As previously noted, students are generally a
younger population who may be more vulnerable
to online predators or scammers who are using this
tool.

2 Data

Creating the dataset used to train the student
identification model required obtaining a set of
Twitter users who could be labeled as student or
non-student and then manually labeling each user.
These users were obtained from a combination of
a general sample of Twitter users, a sample of the
followers of a university Twitter account, and Twit-
ter’s “Who to Follow” feature. Ultimately, 1,037
users were labeled, with 225 students and 812 non-
students. The distribution of the sample is shown in
Table 1, with “S” representing students and “N-S”
representing non-students. Users were manually
labeled based on their Twitter bios, tweet content,
or other online profiles (e.g. LinkedIn, Instagram).

A user was labeled as a student if their accounts
indicated that they were in high school, undergrad-
uate school, or graduate school in the spring of
2020. General examples of labeled students in-
cluded users that provided a future graduation year

4https://www.nytimes.com/2020/02/20/education/learning/
news-literacy-2016-election.html
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in their bio; listed a current school in an associ-
ated LinkedIn account; or discussed homework,
test scores, and/or their school’s policies in their
tweets.

A user was labeled as a non-student if their on-
line profile showed that they had graduated from
a higher institution, listed a full-time job, or were
organizations or spam bots. General examples in-
cluded noting a past graduation date or degree in
their Twitter bio or listing jobs or graduation dates
on an associated LinkedIn profile.

Labeling was conducted by the listed authors,
and inter-annotator agreement was measured on
a representative subset of 435 users. The subset
demonstrated substantial agreement as shown by
a Cohen’s Kappa of 0.73 (McHugh, 2012). In the
case of a disagreement, the first ascribed label was
used in the final dataset. To avoid annotator bias in
assigning these labels, each annotator labeled half
of the dataset then reviewed the other annotator’s
labels blind.

2.1 General Twitter Stream
In order to get a sample of the overall Twitter popu-
lation, we collected tweets written in English from
the Twitter stream for ten minutes. This general
stream was used to obtain a variety of users across
Twitter for labeling. However, the proportion of
identifiable students within this set was low, neces-
sitating other sampling to increase the number of
student examples.

2.2 College Followers
In order to increase the number of students in the
dataset, followers of @Hunter College (the verified
account of a prominent NYC college) were sam-
pled directly and manually labeled. This sample
was taken under the assumption that the pool of
followers of this school account would contain an
increased proportion of students.

2.3 “Who to Follow”: Similar Users
Finally, to further increase the number of students
in the set, Twitter’s “Who to Follow” feature was
applied to students that had been identified through
the general stream and Hunter College followers.
The “Who to Follow” feature identifies users simi-
lar to a given user. When applied to previously la-
beled students, it often identified potential students
with similar roles in the social network. These
potential students were then labeled based on the
same criteria as the previous two samples.

2.4 Limitations
Approximately 50% of sampled users could not
be identified with certainty as a student or a non-
student, and such users were not labeled and not
included in the dataset.

Another potential issue with the dataset is its rel-
atively small size, due to the time-intensive manual
labeling process. In addition, the methods used to
upsample students led to an uneven distribution of
student users across data sources (Table 1). It is
important to keep these limitations in mind when
considering the results of our model.

3 Methods

3.1 Feature Extraction
A combination of metadata-based features and
custom text-based features was used to train the
models (Table 2). For users without descriptions
(approximately 7.4% of the dataset), zeros were
recorded for all description-based features. This in-
cludes both explicitly student-leaning features like
“Student?” and “Year?” as well as explicitly non-
student-leaning features like “Alum?” and “Occu-
pation?”. Features were scaled to similar ranges us-
ing scikit-learn’s StandardScaler (Pedregosa et al.,
2011) in order to improve model performance.

Unlike other student-identifying models, only
profile information was incorporated into this
model (i.e., no tweet data or other user data was
considered). User features were extracted through
the Twitter API in batches of 100 user IDs. The
Twitter API limits requests to 900 per 15 minutes,
meaning that our method allows 90,000 users to
be extracted per 15 minutes.5 A tweet-content-
based approach such as the one used in He et al.
(2016) must acquire user features by accessing their
tweets, and requests for tweets from different users’
timelines cannot be batched. Therefore, a tweet-
based method allows the features of only 900 indi-
vidual users to be extracted per 15 minutes.

3.2 Feature Selection
Twenty original features were extracted from each
user, and three were removed due to low impor-
tance to the machine learning models (See Table 2).
Importance was assessed via logistic regression im-
portance rankings, decision tree rankings, random
forest rankings, and LASSO rankings. This feature
removal was verified via an ablation study, which

5https://developer.twitter.com/en/docs/twitter-api/rate-
limits



33

Feature Name Value Type Feature Description
Student? Binary Has “student”, “estudiante”, or “studying” in descrip-

tion. Not “students”.
Friends Continuous Numerical Number of users followed by the account.

Occupation? Binary Has an occupation in description in occupation
dataset.6 Not “aspiring” or “future”.

Emojis Continuous Numerical Number of emojis in user description squared.
Liked Posts Continuous Numerical Number of posts the account has ’liked’.

Parent? Binary Has “mom”, “mama”, “mother”, “dad”, “papa”, or
“father” in description.

Consecutive Upper Continuous Numerical Number of cons. uppercase letters in screen name.
Name Emojis Continuous Numerical Number of emojis in screen name.
Name Title Binary Has “mr.”, “ms.”, “mrs.”, “ph.d”, “ph. d”, “phd”,

“m.d”, “m. d”, “doctor”, or “dr.” in screen name.
Link? Binary Has an associated link.

Tweet Rate Continuous Numerical Tweets posted per year by this account.
Tweet Count Continuous Numerical Total number of tweets (including retweets) posted

by this account.
Year? Binary Has “ ‘2 ”, “ 2 ’ ”, “class of 202x”, “freshman”, or

“sophomore” in description.
Followers Continuous Numerical Number of users following the account.

Alum? Binary Has “alum” in description.
Views My Own? Binary Has “(views)/(opinions) (mine)/(my own)” or “rts

not endorsements” in description.
Verified? Binary Has been verified.

Created At* Continuous Numerical Timestamp for creation time of account.
Account Age* Continuous Numerical Time (in years) since creation time of account.

Last Tweet Time* Continuous Numerical Time (in years) since the account’s last tweet.

Table 2: Profile-Based Features (ordered by importance)
*Indicates feature was removed from the final model

showed that all remaining features had a positive
importance averaged across all six models (Fig. 1).

3.3 Model Selection

We looked into six different machine learning mod-
els implemented in scikit-learn (Pedregosa et al.,
2011) to create our student identification classifier:
1) Logistic Regression, 2) Random Forest, 3) SVM,
4) K-Nearest Neighbors, 5) AdaBoost (a Random
Forest model retrained multiple times, each time
increasing the weight of previously misclassified
users), and 6) a Stacked Classifier (a Logistic Re-
gression model using the outputs of models 1-4
as inputs). We performed a grid search of model
hyperparameters with 10-fold cross-validation to
optimize each model for the highest F1 score.

After noticing that models placed a heavy em-
phasis on the “Student?” feature (Fig. 1), a simple

6https://gist.github.com/wsc/1083459

Figure 1: Relative Importance of User Features (ex-
cluding removed features)
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“if-statement classifier” was created to determine
whether or not the machine learning models were
adding anything to the classification. It labeled a
user as a student if the “Student?” feature was equal
to 1. We also created a tweet-content-based SVM
model to use as a baseline (described in §4.1).

3.4 Model Tuning

After selecting the top three model types based on
F1 score and AUROC (defined in §4), we further
improved our results by adding regions within our
prediction probabilities, which we call “gray areas,”
where our models would classify a user as “uncer-
tain.” These regions were identified by testing 39
candidates with 10-fold cross-validation. Two gray
area candidates were selected based on accuracy
and F1 score for each of the three model types.

4 Results

Table 3 reports the results from running the six dif-
ferent classifiers and two baseline models without
implementing a gray area. The test set reflected the
distribution of the overall dataset, with a ratio of
students to non-students of around 1:4. We report
the accuracy (percent of correctly predicted stu-
dents or non-students over the total), F1 score (the
harmonic mean of precision and recall), and area
under the Receiver Operator Characteristic curve
(AUROC; an ROC curve plots the true positive
rate against false positive rate at different decision
boundaries).

Before considering gray area, the Stacked Clas-
sifier outperformed all other classifiers in accuracy,
F1, and AUROC. Every model outperformed the
“if-statement classifier” in both accuracy and F1
score, indicating that the additional complexity and
extra features considered in the machine learning
models contributed to their success.

Table 4 reports the results from running the top
three classifiers (Stacked Classifier, Logistic Re-
gression, and Random Forest) using two gray area
boundaries that were identified through 10-fold
cross validation as described in §3.3. AUROC is
not reported here as it is the same in Table 3. In-
stead, we report coverage, which is the percentage
of test examples that the gray area model labeled.
The thresholds for the gray area are reported in the
table as (lower bound, upper bound). Of these gray
area models, the Stacked Classifier with thresholds
at (0.25, 0.55) outperformed the rest, with an accu-
racy of 90.3% and an F1 of .761. The model also

Accuracy F1 AUROC
Logistic 87.4 .678 .896
Regression
Random Forest 86.7 .677 .910
SVM 86.8 .643 .898
KNN 81.6 .601 .750
AdaBoost 87.1 .683 .785
Stacked Classi-
fier

88.1 .704 .917

If-Statement 80.0 .340 -
Tweet-based
SVM

77.1 .222 .646

Table 3: Model Comparison

retained a relatively high coverage, labeling nearly
90% of the test examples.

It is important to note that, while the gray area
models outperform the normal models in both ac-
curacy and F1, much of that can be attributed to the
fact that certain false negative examples are being
ignored. Depending on the intended use, a higher
accuracy version of the Stacked Classifier may be
used sacrificing coverage, or vice versa.

Accuracy F1 Coverage
Logistic Regres-
sion (0.3, 0.4)

89.6 .760 89.7

Logistic Regres-
sion (0.35, 0.45)

89.8 .748 91.3

Random Forest
(0.3, 0.5)

89.4 .749 88.4

Random Forest
(0.35, 0.45)

87.4 .713 94.5

Stacked Classi-
fier (0.25, 0.55)

90.3 .761 89.7

Stacked Classi-
fier (0.35, 0.55)

89.3 .735 93.2

Table 4: Gray Area Model Comparison

4.1 Comparison to Previous Models

In order to better understand how our model com-
pares to previous student identification attempts,
we recreated the tweet content classification model
described in He et al. (2016). They used the relative
frequency of three expressions—“HAHA”/“LOL”,
emojis, and hashtags—among the 200 most recent
user tweets as features in their LIBSVM model.
We trained and tested this model on our labeled
dataset, then optimized the model’s hyperparame-
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ters as described in §3.3. The tuned model achieved
an accuracy of 77.1%, an F1 score of 0.222 and
an AUC of 0.646 (Table 3). The accuracy of this
model was lower than the reported 84% in He et al.
(2016). The F1 and AUC scores cannot be com-
pared since they were not reported in the original
paper.

A likely explanation for the inconsistency in ac-
curacy lies in dataset construction. He et al. (2016)
partially automated their data annotation by using
regular expressions from tweets to identify student
candidates before manually labeling these users.
This technique may have increased the proportion
of high-tweeting users in their dataset and made
their tweet-based approach to classification more
effective. In contrast, our manual annotations did
not rely on vast amounts of tweet content to assign
a label. Thus, our model is more reliable when
analyzing users with lower tweet counts.

Our profile-based student classifier outper-
formed the tweet-content classifier in accuracy, F1
score, and AUROC when applied to our dataset.
Therefore, this model improves upon existing mod-
els and can be used as a tool in future student de-
mographic research.

4.2 Error Analysis

Organizations that are tailored towards students
and university accounts commonly appear among
the misclassified users. In order to mitigate this
misclassification, our student classifier could be
used in conjunction with an individual versus orga-
nization classifier similar to the one presented in
Wood-Doughty et al. (2018). Organizations could
be filtered out before applying the student classi-
fier, and the model’s false positive rate would likely
decrease.

Among the 24 users without descriptions (7.7%
of the test set), only 2 of them were misclassified:
one student, and one non-student. The model’s
accuracy is thus comparable between users without
descriptions (accuracy = 91.7%) and the general
test set (accuracy = 88.1%). As the sample size
is small, we cannot conclude that users without
descriptions are labeled more accurately than the
general set; however, this result does indicate that
users without descriptions can still be accurately
classified by our model.

5 Conclusions

In this paper, we introduce a metadata-based ma-
chine learning model to accurately predict student
Twitter users. We also introduce a gray-area model
that achieves 90.3% accuracy without leaving many
users unlabeled. Our models improve upon past re-
search by providing more accurate, more efficient,
and faster classifications due to their use of only
simple profile information.

Currently, we are working to apply this student
classifier in a preliminary study of student interac-
tions with COVID-19 related misinformation on
Twitter.
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