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Abstract

This paper presents a deep neural architecture
which applies the Siamese Convolutional
Neural Network sharing model parameters for
learning a semantic similarity metric between
two sentences. In addition, two different
similarity metrics (i.e., the Cosine Similarity
and Manhattan similarity) are compared based
on this architecture. Our experiments in
binary similarity classification for Chinese
sentence pairs show that the proposed Siamese
convolutional architecture with Manhattan
similarity outperforms the baselines (i.e.,
the Siamese Long Short-Term Memory
architecture and the Siamese Bidirectional
Long Short-Term Memory architecture) by
8.7 points in accuracy.

1 Introduction

Measuing the similarity between words, sentences,
paragraphs and documents is an important compo-
nent in various tasks such as information retrieval,
document clustering, word-sense disambiguation,
automatic essay scoring, short answer grading, ma-
chine translation and text summarization. Tradi-
tional sentence similarity measurement is based on
the edit distance, Jaccard index, and the bag-of-
words models such as TF-IDF. These methods of
learning sentence similarity are in fact based on the
word level, which may not be sufficient. For exam-
ple, there are two Chinese sentences as shown in
Figure 1. The corresponding English translations
are “How to buy LCD TVs.” and “What kind of
LCD TVs is good?”. From the word level (i.e.,
character level in Chinese), the two sentences look
the same, but they have totally different meaning at
the sentence level. That is, we need sentence-level
methods to capture the semantics of the sentences
for sentence similarity measurement.

With the rapid development of machine learn-
ing, using neural network to learn representations
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of sentence-level meanings has been widely ver-
ified to be effective. The beginning of using
neural network to learn sentence-level representa-
tions may be the Word2 Vec from Google (Mikolov
et al., 2013), which used a shallow structure to
learn the vector-based representations of sentence
level. However, using one neural architecture to
learn two sentences in two steps may cause in-
consistent representations. Hence, Siamese struc-
tures, which can learn two sentences at a time, are
attractive alternatives. The Siamese architecture
that can achieve state-of-the-art accuracy results
in learning English sentence similarity is a Bidi-
rectional Long Short-Term Memory (Bi-LSTM)
based Siamese recurrent architecture (Neculoiu
etal., 2016).

In our preliminary study, we tested the effec-
tiveness of a Siamese recurrent architecture for
learning Chinese sentence similarities. However,
this did not perform as well as what is reported
in (Neculoiu et al., 2016). Therefore, we borrowed
a Siamese convolutional architecure from the im-
age processing field (Koch et al., 2015) to imple-
ment Chinese sentence similarity learning. The
results in binary similarity classification for Chi-
nese sentence pairs show that Siamese convolu-
tional architecture outperforms the Siamese recur-
rent architecture in learning accuracy. In addition,
we consider two similarity metrics in the Siamese
convolutional architecture, namely, the Manhattan
similarity and the Cosine similarity. The results
show that the Siamese convolutional architecture
plus the Manhattan similarity performs better than
other baselines for learning the similarity between
two Chinese sentences. Our contributions are as
follows: (1) we verified that Siamese convolu-
tional architecture is effective in learning Chinese
sentence semantic similarity; (2) we verified that
the Manhattan similarity can achieve better perfor-
mance than other similarity metrics regardless of
the learning architectures.
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Figure 1: Siamese convolutional architecture.

2 Related Work

The Siamese network (Bromley et al., 1993) is
firstly proposed for non-linear metric learning with
similarity information. It naturally learns repre-
sentations that embody the invariance and selectiv-
ity desiderata through explicit information about
similarity between pairs of objects. The Siamese
architecture has since been widely used in vision
applications. Specifically, the Siamese convolu-
tional networks were used to learn complex sim-
ilarity metrics for face verification (Chopra et al.,
2005) and dimensionality reduction on image fea-
tures (Hadsell et al., 2006). While in the natu-
ral language processing (NLP) field, the Convolu-
tional Neural Network (CNN) has attracted more
attentions since the successes in using CNN to do
the traditional NLP tasks (Collobert et al., 1993),
and the availability of high-quality semantic word
representations has been verified when using the
CNN (Mikolov et al., 2013).

Recently, CNNs have been applied to match-
ing sentences (Hu et al., 2014). Although the
work (Hu et al., 2014) has used the CNN to learn
representations of two sentences, this is not a
Siamese CNN architecture. Following this, the
Siamese Long Short-Term Memory (LSTM) ar-
chitecture was proposed for sentence similarity
task using token level embedding (Mueller and
Thyagarajan, 2016). Subsequently, a Siamese Bi-
LSTM structure was proposed in order to improve
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the result of sentence similarity (Neculoiu et al.,
2016). A Siamese CNN combines Bi-LSTM struc-
ture has been proposed for learning sentence sim-
ilarity (Pontes et al., 2018). However, this archi-
tecture achieves lower accuracy than the indepen-
dent Bi-LSTM structure. Also, the paper (Pontes
etal., 2018) did not give any comparisons between
Siamese CNN architecture and Siamese Bi-LSTM
architecture. Later, Siamese LSTM and Siamese
Bi-LSTM were compared based on an English
dataset (Ranasinghe et al., 2019).

3 Siamese Convolutional Architecture

The proposed Siamese convolutional architecture
is depicted in Figure 1. In the architecture, there
are two exactly alike convolutional structures that
are used. The inputs of each convolutional struc-
ture are the character-level embeddings of a sen-
tence, and the outputs of each convolutional struc-
ture are the sentence level representations. Then, a
similarity metric is used to compare the outputs of
the two convolutional structures. The calculated
similarity is the final output of the Siamese convo-
lutional architecture.

Within each convolutional architecture, there
are one fully connected layer after three repeated
convolutional layers and max pooling layers. We
have also tested the six repeated structure, but the
accuracy did not show a significant improvement.
The kernel size of each convolutional layer is dif-
ferent. A higher convolutional layer is equipped
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Figure 2: The format of the LCQMC.

with a larger kernel size. The fully connected layer
then reduces the dimension of the learned represen-
tations from pooling layer. The learned output vec-
tor from the fully connected layer will be used to
calculate the similarity then.

The similarity depicted in Figure 1 is the expo-
nential negative norm of two learned representa-
tion vectors, which is defined as:
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where in equation (1) f(®) and f®) are the repre-
sentations of the two sentences from the two con-
volutional structures. If n = 1, the similarity is the
Manhattan distance-based similarity or the Man-
hattan similarity for short. If n = 2, the sim-
ilarity is then the Euclidean distance-based simi-
larity or the Euclidean similarity for short. We
have also tested the performance of the Siamese
network with Euclidean similarity. The accuracy
1s around 50%, which means the Euclidean simi-
larity does not work well with the Siamese archi-
tecture. Therefore, this result is not shown in Sec-
tion 4. The similarity can also be replaced by the
Cosine similarity.

(f(a) . f(b))
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After calculating the similarity, we then use the
mean-square error (MSE) of the similarity and the
label as the loss function. The gradients of the
loss will be fed back to both convolutional struc-
tures. In this way, the two convolutional structures
will share the same parameters, and then they can
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learn the representations of the two sentences with
the same distribution. Based on a threshold of the
similarity, we can then evaluate the accuracy after
learning.

4 Experiments

Our experiments are the binary similarity classifi-
cation tasks for Chinese sentence pairs. Although
obtaining a Chinese sentence similarity dataset is
difficult, we found a dataset named LCQMC with
even distribution of the labels (i.e., similar sen-
tence pairs and dissimilarity sentence pairs occupy
50% and 50% of all dataset respectively) from
Baidu. The format of the dataset is shown in Fig-
ure 2. Punctuations of some sentences are omitted
in the original data. This dataset consists 283,000
datarecords. We have chosen 250,000 data records
as the training data, and 12,500 data records as the
test data. A data record is like <sentence 1, sen-
tence 2, similarity> (i.e., 1 represents that the two
sentences are similar and O represents that two sen-
tences are dissimilar). We also used the English
dataset PAWS-X (Yang et al., 2019) to train and
test the different saimese architecture as the com-
parisons. In the PAWS-X, the data format is the
same with LCQMC, and the task is also to learn
the semantic similarity between two sentences. We
used 49,401 data records in PAWS-X to train mod-
els and 2,000 to test.

From the aforementioned related works, (Necu-
loiu et al., 2016) and (Ranasinghe et al., 2019), we
have chosen two baselines: the Siamese Bi-LSTM
architecture and the Siamese LSTM architecture.
Moreover, we also evaluated the two baslines and
the Siamese convolutional architecture with two
different loss functions (i.e., the Manhattan simi-
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Figure 3: The convergences and the losses of the
Siamese convolutional architectures and the baselines.

larity based MSE and the Cosine distance based
MSE).

As for the Siamese convolutional architecture,
the kernel sizes of the three repeated convolutional
layers are set as 3, 4 and 5. We ran a total of 100
epochs and the batch size of each epoch is 128. The
Adam optimizer is used. During the optimization,
we set the learning rate to be 0.001. Following pre-
vious work (Neculoiu et al., 2016), we used accu-
racy as the evaluation metric. We then set the sim-
ilarity threshold as 0.5. That is to say, if the calcu-
lated similarity is more than 0.5, the prediction is
that the two sentences are similar. Conversely, the
similarity less than 0.5 is decided as dissimilar.If
the similarity is exactly 0.5, the result is excluded
for calculating accuracy.

In Figure 3, we compared the convergence
speeds and losses of all combinations of the
Siamese architectures and the two loss functions.
The lines in different colors represent different
Siamese architectures. The full lines are the losses
using the Manhattan similarity, and the dotted
lines are the losses using the Cosine similarity. It
can be observed that no matter what kind of the
Siamese architecture is used, the Manhattan sim-
ilarity based Siamese architectures converge fast.
As for the loss, the Siamese convolutional archi-
tectures always achieve lower losses than the base-
lines. In the Siamese convolutional architectures,
the Manhattan similarity based Siamese architec-
ture always gets a lower loss. As a result, the
Siamese convolutional architecture with the Man-
hattan similarity metric achieves the lowest loss.
Regardless of the choice the similarity metric, the
losses of the Siamese LSTM architecture and the
Siamese Bi-LSTM architecture are similar.

Next, we evaluated the accuracy of all the com-
binations of the Siamese architectures and the two
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Figure 4: The accuracies of the Siamese convolutional
architectures and the baselines.

loss functions. The representation formats of dif-
ferent combinations are the same with Figure 3. As
shown in Figure 4, it can be seen that the Siamese
convolutional architectures always achieve higher
accuracy. In the Siamese convolutional architec-
tures, the one with the Manhattan similarity metric
always achieves higher accuracy. In summary, the
Siamese convolutional architecture with the Man-
hattan similarity metric can obtain the highest ac-
curacy. The performances of the two baselines are
not substantially different regardless of the simi-
larity metric. The Siamese Bi-LSTM architecture
shows a slight improvement of the accuracy com-
paring to the Siamese LSTM architecture.

We listed all the experimental results in the Ta-
ble 1, including using LCQMC dataset and PAWS-
X dataset. It can be observed that when us-
ing LCQMC dataset, both Siamese convolutional
architecture with the Manhattan similarity met-
ric and with the Cosine similarity metric outper-
form the Siamese Bi-LSTM architecture and the
Siamese LSTM architecture. Specifically, our
Siamese convolutional architecture with Manhat-
tan similarity metric outperforms the Siamese Bi-
LSTM architecture with Manhattan similarity by
8.67 points and the Siamese LSTM architecture
by 8.68 points respectively. In addition, our
Siamese convolutional architecture with Cosine
similarity metric also outperforms the Siamese Bi-
LSTM architecture with the same similarity met-
ric by 16.50 points and the Siamese LSTM archi-
tecture with the same similarity metric by 17.03
points respectively. However, when using PAWS-
X, the English dataset, the Siamese LSTM archi-
tecture and Siamese Bi-LSTM architecture outper-
form Siamese convolutional architecture. In the
experiments of learning English dataset, to im-
prove the performance of the Siamese LSTM and



Dataset  Architecture Manhattan Similarity Cosine Similarity
Siamese convolutional architecture 77.31 77.05

LCQMC Siamese Bi-LSTM architecture 68.64 60.55
Siamese LSTM architecture 68.63 60.02
Siamese convolutional architecture 57.80 56.41

PAWS-X Siamese Bi-LSTM architecture 67.75 69.20
Siamese LSTM architecture 68.14 67.45

Table 1: Accuracy comparison for different architectures with Manhattan and Cosine similarities.

Bi-LSTM architectures, introducing Glove (Pen-
nington et al., 2014) may be effective. The perfor-
mance discrepancy of the Siamese convolutional
architecture between Chinese and English may be-
cause that part of the CNN can do character-level
encoding for Chinese. This is also why in some
Chinese language tasks such as (Dai and Cai, 2017)
and (Su and Lee, 2017), a CNN-based character-
level encoder is added before the word-level or
sentence-level encoding

5 Conclusion and Future Work

We proposed a Siamese convolutional archi-
tecture for Chinese sentence similarity learn-
ing. The experimental results have verified
that the Siamese convolutional architecture out-
performs the Siamese Bi-LSTM architecture and
the Siamese LSTM architecture in terms of ac-
curacy. Moreover, with the proposed architec-
ture, we learned that for Chinese sentence simi-
larity task, Manhattan similarity metric can help
to achieve faster convergence and higher accuracy
than any other similarity metric. Our results also
suggest that the Siamese architectures which are ef-
fective in English NLP tasks may not necessarily
work well in Chinese NLP tasks.

In the future, we will try to build and conduct
experiments on Siamese Transformer (Vaswani
et al., 2017) architecture. In addition, we will use
BERT (Devlin et al., 2018) to obtain word embed-
dings as the inputs of the Siamese architecture to
test performances.
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