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Abstract

Models developed for Machine Reading Com-
prehension (MRC) are asked to predict an
answer from a question and its related con-
text. However, there exist cases that can be
correctly answered by an MRC model using
BERT, where only the context is provided
without including the question. In this pa-
per, these types of examples are referred to as
“easy to answer”, while others are as “hard to
answer”, i.e., unanswerable by an MRC model
using BERT without being provided the ques-
tion. Based on classifying examples as an-
swerable or unanswerable by BERT without
the given question, we propose a method based
on BERT that splits the training examples from
the MRC dataset SQuAD1.1 into those that are
“easy to answer” or “hard to answer”. Exper-
imental evaluation from a comparison of two
models, one trained only with “easy to an-
swer” examples and the other with “hard to
answer” examples demonstrates that the latter
outperforms the former.

1 Introduction

The Machine Reading Comprehension (MRC)
task locates the best corresponding natural lan-
guage answer when provided a question and
its related context. In recent years, MRC
models using neural networks have been pro-
posed for SQuAD (Pranav et al., 2016, 2018),
which is a large-scale, high-quality English MRC
dataset. Most recent neural network based
MRC models have outperformed human perfor-
mance (Devlin et al., 2019).

Among those existing work, to analyze
the difficulty of several popular MRC bench-
marks such as bAbI (Weston et al., 2016),
SQuAD (Pranav et al., 2016), CBT (Hill et al.,
2016), CNN (Hermann et al., 2015) and Who-did-
What (Onishi et al., 2016), Kaushik and Lipton
(2018) established sensible baselines for these

datasets, and found that question-only and
context-only (which is called passage-only in
Kaushik and Lipton (2018)) models often per-
forms surprisingly well. In particular, context-
only models achieve over 50% accuracy on 14 out
of 20 bAbI tasks, and as for CBT, only the last
one of the 20 sentences provided as a context is
necessary to achieve a comparable accuracy. They
also indicated that SQuAD is designed more care-
fully than other datasets and achieved F1 scores
of only 4% and 14.8% respectively on question-
only and context-only models, which are relatively
lower. Kaushik and Lipton (2018) demonstrated
that published MRC datasets should characterize
the level of difficulty, and specifically, the extent to
which questions and contexts are essential. More-
over, Kaushik and Lipton (2018) also claimed that
follow-up papers reporting improvements ought to
report performance both on the full task and vari-
ations omitting questions and contexts. In view
of the point demonstrated in Kaushik and Lipton
(2018), we concentrate more on the difficulty of
every single MRC example, and aim to split the
examples into easy ones and hard ones.

Given the MRC dataset SQuAD1.1 (where each
MRC example denoted as the tuple ⟨Q,C,A⟩
of the question Q, the context C, and the an-
swer A) and the fine-tuned MRC model using
BERT (Devlin et al., 2019), there exist context-
only examples that can be correctly answered,
where only the context is provided without includ-
ing the question. By focusing on this fact, this
paper proposes a method that splits the MRC ex-
amples into binary classes of “easy to answer”
or “hard to answer”. A 10-fold cross-validation
was applied on approximately 87,600 SQuAD1.1
training examples comprised of 12,500 “easy to
answer” and 75,000 “hard to answer” classes.
From the comparison of the two classes, the fol-
lowings are two significant findings. (1) Based
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Figure 1: An MRC Model using Neural Networks

on the performance of training the BERT MRC
models with 12,500 “easy to answer” and “hard
to answer” examples each, the model trained
with “hard to answer” examples outperformed the
other. (2) An analysis of the position distribution
of answers A within the context C, answers from
the “easy to answer” MRC example class tend to
be located around the beginning of the context
compared with those from the “hard to answer”
MRC example class.

2 Machine Reading Comprehension
using Neural Networks

Figure 1 shows the framework of MRC models
that use neural networks. In the MRC model,
when a question and context are input, the starting
and ending positions of the answer with respect to
the question within the context are predicted.

Let ts be a set of test examples with each exam-
ple denoted as s(∈ ts). Here, s is represented as
s = ⟨Q,C,A⟩. Also, if a set of examples for train-
ing MRC models is denoted as tr, then the corre-
sponding model is represented as m(tr). Then, the
answer Â predicted from an input test example s
with the trained MRC model m(tr) is denoted as

Â = answer
(
m(tr), s

)
A Boolean predicate answerable classifies if the
given test example s is “answerable” or “unan-
swerable” by the trained MRC model m(tr), and
is defined according to if the predicted answer Â
is the same as the reference answer A as

answerable
(
m(tr), s

)
=

{
1 (Â = A)

0 (Â ̸= A)

Figure 2: Detecting MRC Examples as Answerable
without an Input Question

3 Machine Reading Comprehension
using BERT

As described above, the MRC models are trained
and tested with 87,600 training examples from the
MRC dataset SQuAD1.1. The fine-tuning mod-
ule for machine reading comprehension1 was ap-
plied to the pre-trained Multilingual Cased model2

of BERT.3

4 MRC Examples Answerable without a
Question

First, we evaluate the BERT MRC model trained
with the 87,600 training examples against 10,570
development examples from of SQuAD1.1. As
shown in Figure 2, we compare the two cases
of with or without the question for each of these
development examples. Let s denote one of
the 10,570 development examples represented as
s = ⟨Q,C,A⟩, as before, which are each eval-
uated with the BERT MRC model trained with
the 87,600 examples. From these results, 82% are
correctly answered and classified as “answerable”
with the remaining 18% incorrectly answered and
classified as “unanswerable.” Next, let s′ denote
an MRC example obtained by replacing the ques-
tion Q from each example s of the development
examples with an empty question Q′ = ∅ repre-
sented as s′ = ⟨Q′ = ∅, C,A⟩. After evaluating
the trained BERT MRC model with each example
s′, as shown on the right of Figure 2, 6.1% are

1run_squad.py, with the number of epochs as 2, batch
size as 8, learning rate as 0.00003, and the maximum se-
quence length as 320.

2Trained with 104 languages, available from
https://github.com/google-research/bert/
blob/master/multilingual.md.

3The TensorFlow version of BERT
(https://github.com/google-research/bert)
is used．
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Training set
Questions used tri Questions not used tri

Q=∅

Test
set

questions
used
s (∈ tsi)

Answerable examples Answerable examples
a1(tsi) a2(tsi)

Unanswerable examples Unanswerable examples
ua1(tsi) ua2(tsi)

|a1| = 60, 668 |a2| = 11, 498
|ua1| = 26, 931 |ua2| = 76, 101

questions
not used
sQ=∅

(s ∈ tsi)

Answerable examples Answerable examples
a3(tsi) a4(tsi)

Unanswerable examples Unanswerable examples
ua3(tsi) ua4(tsi)

|a3| = 3, 682 |a4| = 10, 008
|ua3| = 83, 917 |ua4| = 77, 591

Table 1: Splitting the MRC Examples into “Answer-
able” and “Unanswerable” Examples with the Corre-
sponding Statistics

correctly answered and classified as “answerable”
even without being provided an appropriate ques-
tion, while the remaining 93.9% are incorrectly
answered and classified as “unanswerable.”

5 Splitting MRC Examples into “Easy to
Answer” and “Hard to Answer”
Classes

Following the procedure for detecting MRC ex-
amples as answerable without a question demon-
straed in the previous section, we similarly split
the 87,600 SQuAD1.1 training examples into
“easy to answer” and “hard to answer” classes. As
illustrated in Figure 3, the process designates 10%
of the examples as “easy to answer” and “hard to
answer” classes for testing through one fold of 10-
fold cross-validation, which is repeated ten times,
resulting in 12,500 “easy to answer” and 75,100
“hard to answer” classes. From this, we obtain the
following three types of evaluation results.

(i) The MRC model is trained with the training
examples that include questions used as they
are, while the trained MRC model is evalu-
ated against the MRC test examples without
questions.

(ii) The MRC model is trained with training ex-
amples that do not include questions, with

(ii-a) the trained MRC model is evaluated
against the MRC test examples without
questions, or

(ii-b) the trained MRC model is evaluated
against the MRC test examples with
questions.

Detailed Procedure
The SQuAD1.1 dataset is composed of approxi-
mately 100,000 MRC examples that use 23,215

Figure 3: Splitting the MRC Examples into “Easy to
Answer” and “Hard to Answer” Classes with 10-fold
Cross-Validation

paragraphs extracted from 536 Wikipedia articles
as context. With these contexts, questions and
answers are annotated through crowdsourcing to
generate the complete 100,000 MRC example set.
From these examples, we apply N -fold cross-
validation (N=10 in this paper) to the set U of the
MRC training examples collected from 442 out of
the 536 Wikipedia articles.

Before the N -fold cross-validation, we first di-
vide the 442 Wikipedia articles into disjoint N
subsets. From the i-th (i = 1, . . . , N ) subset of
Wikipedia articles, we obtain the i-th test set tsi
of the MRC examples, and the i-th training set of
the MRC examples is obtained as the set tri of the
remaining MRC examples. Then, the set U of the
complete SQuAD1.1 training example set is rep-
resented as

U =
⋃

i=1,...,N

tsi
(
tsi ∩ tsj = ∅ (i ̸= j)

)
As shown in Table 1, from the i-th training set

tri of the MRC examples, each of which contains
a question, another training set triQ=∅ of the MRC
examples is obtained by removing the question Q
from each example. So, each MRC example in
the obtained training set triQ=∅ now has an empty
question. Similarly, from a test MRC example s
in the i-th test set tsi of the MRC examples that
contains a question, another test MRC example
sQ=∅ is obtained by removing its question Q from
s. So, the obtained test MRC example sQ=∅ has
an empty question. By pairing the two training
sets tri and tri

Q=∅ from the MRC examples and
the two test MRC examples s and sQ=∅, as shown
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in Table 1, a resulting four pairs of training sets
from the MRC examples and a test MRC example
can be examined as to if the MRC model trained
with the designated training set is “answerable”
or “unanswerable” given the designated test MRC
example. Finally, in each of these four pairs, the
set tsi of the test MRC examples is split into the
set aα(tsi) of answerable test MRC examples and
uaα(tsi) of unanswerable test MRC examples, ac-
cording to (α = 1, 2, 3, 4)

a1(tsi) ={
s ∈ tsi

∣∣∣answerable(m(tri), s
)
= 1

}
a2(tsi) ={

s ∈ tsi

∣∣∣answerable(m(tri
Q=∅), s

)
= 1

}
a3(tsi) ={

s ∈ tsi

∣∣∣answerable(m(tri), s
Q=∅

)
= 1

}
a4(tsi) ={
s ∈ tsi

∣∣∣answerable(m(tri
Q=∅), sQ=∅

)
= 1

}
uaα(tsi) = tsi − aα(tsi) (α = 1, 2, 3, 4)

The sets aα(tsi) (α = 1, 2, 3, 4) of “answerable”
test MRC examples are obtained by evaluating the
MRC model trained with the training sets tri (with
questions) or tri

Q=∅ (without questions) against
s (with a question) or sQ=∅ (without a question).
We define the set E of “easy to answer” MRC
examples as the union of the three sets aα(tsi)
(α = 2, 3, 4) of “answerable” test MRC exam-
ples. For these, we collect the “answerable” test
MRC examples over the cases with questions re-
moved either from the training or test MRC exam-
ples (a1(tsi) is excluded because the questions are
used in both the training and test MRC examples).
The set H of “hard to answer” MRC examples is
subsequently defined as the complement set of E.4

Consequently, as shown in Table 2, the set U
of the complete SQuAD1.1 training examples is
split into the set E of 12,487 “easy to answer”
examples and the set H of 75,112 “hard to an-

4Over the set U of the complete SQuAD1.1 train-
ing examples, the set aα of “answerable” examples and
the set uaα of “unanswerable” examples are defined as

aα =
∪

i=1,...,N

aα(tsi), uaα = U − aα (α = 1, 2, 3, 4),

where the number of examples in each set is provided in Ta-
ble 1.

Figure 4: Distributions of the Positions of Answers in
the Contexts as the Ratio of “start position of an an-
swer” / “length of context”

swer” examples. Figure 4 compares the distribu-
tions of positions of answers within the contexts as
a ratio of the “start position of an answer” to the
“length of context”. These results indicate that the
answers of the “easy to answer” MRC examples
tend to be located near the beginning of the context
as compared with those of the “hard to answer”
MRC examples.5 We repeat this splitting proce-
dure ten times and compare the numbers of “easy
to answer” and “hard to answer” examples, where
we have almost the same results as we report in
this section. For examples of the “easy to answer”
MRC examples, Figure 5 provides two cases, one
of which is a typical “easy to answer” with its an-
swer located exactly at the beginning of the con-
text, and a second as the opposite class with its
answer located exactly at the end of the context.

6 Effectiveness of “Hard to Answer”
Examples in MRC Model Training

We next evaluate the effectiveness of “hard to an-
swer” and “easy to answer” MRC examples based

5We also compare the context length between the “easy
to answer” and “hard to answer” examples, where we did not
detect any significant difference.
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Figure 5: Two Sample “Easy to Answer” MRC Exam-
ples

Training set
Number of
examples

U : training set of SQuAD1.1 87,599
H: “hard to answer” examples

75,112
M : examples randomly sampled from U

E: “easy to answer” examples
12,487Hsml: examples randomly sampled from H

Msml: examples randomly sampled from U

Table 2: Number of Examples in Each Training Set

on the performance of each class when used for the
MRC model training. The sets shown in Table 2
are evaluated as the MRC model training exam-
ples. In addition to the sets H and E, we evaluate
a set M comprised of |H| = 75, 112 MRC exam-
ples randomly sampled from U and sets Hsml and
Msml of |E| = 12, 487 MRC examples randomly
sampled from H and U , respectively. The sets
Hsml and Msml are intended to directly compare
the effectiveness of the “easy to answer”, “hard
to answer”, and (randomly sampled) SQuAD1.1
training examples by restricting the numbers of the
training examples to be the same. The set M is
also intended to directly compare the effectiveness
of the “hard to answer” and SQuAD1.1 training
examples by restricting the numbers of training
examples to be the same. All these sets are used
to fine-tune the BERT pre-trained model on the
MRC task, and the development set of SQuAD1.1

Figure 6: Evaluation Results on the Development Set
of SQuAD1.1 where EM is an Exact Match, and F1 is
the Macro-Average of the F1 Score per Example

is used as the test set for each evaluation. For the
evaluation measures, we utilize the exact match
(EM), which is defined as the rate of examples
with a predicted answer that exactly matches the
reference answer. The macro average of the F1
score is calculated from the precision and recall
between the token sequences of the predicted and
reference answers.

Figure 6 compares the performance of the five
MRC training examples, and Figure 7 presents the
learning curves with the training examples of the
sets E and Hsml of Table 2 used against the de-
velopment set of SQuAD1.1 as the test set. From
both results, the set Hsml outperforms the set E
with a statistically significant (p<0.01) difference,
suggesting that the “hard to answer” examples are
effective in MRC model training6. Unfortunately,
however, Figure 6 also presents that the perfor-
mance of Hsml is almost comparable with that of
Msml. From this result, our definite future work
includes inventing a technique of automatic selec-
tion of MRC training examples from the set U
of the complete SQuAD1.1 training example set,
which outperform those of the same size randomly
sampled from U .

Also, although we omit the detailed evaluation
results, in addition to BERT, we also applied Span-
BERT (Joshi et al., 2020)7 (base & cased) and
XLNet (Yang et al., 2019)8 (XLNet-Large, Cased)
and obtained the similar results regarding both of

6We repeat the splitting procedure and the evaluation pro-
cedure ten times, where we have almost the same evaluation
results we report in this section.

7https://github.com/facebookresearch/
SpanBERT

8https://github.com/zihangdai/xlnet
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Figure 7: Comparison of the Learning Curves for the
Exact Match (EM)

(1) the model trained with “hard to answer” ex-
amples outperformed that trained with “easy to
answer” ones, and (2) answers from the “easy
to answer” MRC example class tend to be lo-
cated around the beginning of the context com-
pared with those from the “hard to answer” MRC
example class.

7 Related Work

Swayamdipta et al. (2020) proposed a general
framework of identifying three regions, namely,
ambiguous, easy to learn, and hard to learn
within a dataset, and applied the framework to
several tasks such as natural language inference
and sentence-level machine reading comprehen-
sion. It is concluded that ambiguous instances
are useful for high performance, easy to learn in-
stances are aid optimization, and hard to learn
instances correspond to data errors. Following
the conclusions of Swayamdipta et al. (2020), our
future work include applying the framework of
Swayamdipta et al. (2020) to the tasks of machine
reading comprehension studied in this paper and
investigating the difference of our notion of “easy
to answer” / “hard to answer” and their notion
of “easy to learn” / “hard to learn.” Among
other related work, Sugawara et al. (2018) stud-
ied splitting 12 MRC datasets into easy and hard
subsets according to two types of simple lexical
based heuristics and showed that the performance
against easy subsets were lower than the whole
datasets. Min et al. (2018) also studied to select
minimal set of sentences within the context of ex-
isting MRC datasets to answer the MRC question.

In the task of recognizing textual entailment
that classifies the relation between a pair of two
sentence as a premise and hypothesis, Tsuchiya
(2018) compared two of the “Recognizing Tex-

tual Entailment” datasets, SICK (Bowman et al.,
2015) and SNLI (Marelli et al., 2014). Tsuchiya
reported that the cases of SNLI had the correct
textual entailment labels predicted when only the
hypothesis sentence was provided and without the
premise sentence. However, Tsuchiya (2018) also
pointed out that, a hidden bias in the SNLI cor-
pus caused much of the high accuracy achieved by
the neural network based models that were trained
with SNLI.

Developing machine reading comprehen-
sion datasets requires an expensive and time-
consuming effort to manually create questions
from paragraphs and extract spans of text from
each paragraph to represent the answer to each
question. The approach of active learning, in
which the key idea is that a machine learning
algorithm can achieve greater accuracy with
fewer training labels if it is allowed to choose
the data from which it learns (Settles, 1995,
2010), could be applied to reduce the cost of
developing MRC datasets. While there exists no
previous study that applies the active learning
technique for machine reading comprehension
task, other work applied the technique to reduce
the cost of developing datasets for other NLP
tasks (Sener and Savarese, 2018; Chen et al.,
2019), image classification (Beluch et al., 2018;
Fang et al., 2017), as well as other machine learn-
ing tasks, such as predicting molecular energetics
in the field of chemistry (Smith et al., 2018).

8 Conclusion

We proposed a method based on
BERT (Devlin et al., 2019) that splits the training
examples from the MRC dataset SQuAD1.1 into
classes of “easy to answer” and “hard to answer.”
Experimental evaluations of comparing the two
models, one of which is trained only with the
“easy to answer” examples and the other with
the “hard to answer” examples, demonstrate
that the latter outperformed the former. Future
work includes applying the analysis procedure of
this paper to several popular MRC benchmark
datasets other than SQuAD (Pranav et al., 2016)
and investigating whether the similar results are
obtained. We also work on deeper analysis of
the characteristics of “easy to answer” / “hard
to answer” examples to find out features that are
related to the disparity of training effectiveness.
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Köhler. 2018. The power of ensembles for ac-
tive learning in image classification. In Proc. 31st
CVPR, pages 9368–9377.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning.
2015. A large annotated corpus for learning natural
language inference. In Proc. 20th EMNLP, pages
632–642.

X. C. Chen, A. Sagar, J. T. Kao, T. Y. Li, C. Klein,
S. Pulman, A. Garg, and J. D. Williams. 2019. Ac-
tive learning for domain classification in a commer-
cial spoken personal assistant. In Proc. 20th INTER-
SPEECH, pages 1478–1482.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proc.
NAACL-HLT, pages 4171–4186.

M. Fang, Y. Li, and T. Cohn. 2017. Learning how to ac-
tive learn: A deep reinforcement learning approach.
In Proc. EMNLP, pages 595–605.
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