
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
10th International Joint Conference on Natural Language Processing: Student Research Workshop, pages 130–138

December 4 - 7, 2020. c©2020 Association for Computational Linguistics

130

GRUBERT: A GRU-Based Method to Fuse BERT Hidden Layers for
Twitter Sentiment Analysis

Leo Horne*

ETH Zurich

hornel@ethz.ch

Matthias Matti*

ETH Zurich

mmatti@ethz.ch

Pouya Pourjafar*

ETH Zurich

ppouya@ethz.ch

Zuowen Wang*

ETH Zurich

wangzu@ethz.ch

Abstract

In this work, we introduce a GRU-based archi-

tecture called GRUBERT that learns to map

the different BERT hidden layers to fused em-

beddings with the aim of achieving high ac-

curacy on the Twitter sentiment analysis task.

Tweets are known for their highly diverse lan-

guage, and by exploiting different linguistic in-

formation present across BERT hidden layers,

we can capture the full extent of this language

at the embedding level. Our method can be eas-

ily adapted to other embeddings capturing dif-

ferent linguistic information. We show that our

method outperforms well-known heuristics of

using BERT (e.g. using only the last layer) and

other embeddings such as ELMo. We observe

potential label noise resulting from the data ac-

quisition process and employ early stopping as

well as a voting classifier to overcome it.

1 Introduction

With the rise of social media, Twitter has become

an important and oft-used platform for sharing opin-

ions and even doing politics. Furthermore, Twit-

ter is a rich source of data collection since tweets

are often closer to everyday spoken language than

formally written texts. This has caused Twitter

sentiment analysis (Kouloumpis et al., 2011) to

become a well-established benchmark in the sci-

entific community with practical applications such

as predicting political preferences (Ansari et al.,

2020). Moreover, it has piqued scientific interest

in the field of natural language processing (NLP)

as a source of learning informal languages. Col-

loquial language has many unique features as op-

posed to formal language, such as the use of slang

words, misspellings, abbreviations, metaphors, sar-

casm and context-dependent changes in meaning.

*All authors contributed equally to this work.

Tweets also make extensive use of hashtags. This

high volatility results in approaches well-suited to

the analysis of formal texts giving sub-par perfor-

mance on Twitter sentiment analysis.

The success of word embeddings such as

Word2Vec and GloVe (Mikolov et al., 2013; Pen-

nington et al., 2014) is based on their effectiveness

in encoding semantic relationships between words.

These were the first instances of word embeddings

pre-trained on large corpora of text in an unsuper-

vised fashion. However, one major drawback of

these representations is that they do not account for

the fact that a word can have different meanings

based on its context, i.e. polysemy is not modeled.

Additionally, words not in the dictionary cannot be

easily taken into account in such models, which is

a problem for tweets because of their frequent use

of abbreviations, misspellings, and hashtags not

present in the dictionary.

Following the idea of ELMo, more recent works

expand unsupervised language models to a much

larger scale by training them on large corpora of

free text (Devlin et al., 2019; Radford, 2018; Rad-

ford et al., 2019; Brown et al., 2020). Unlike ELMo,

which uses a multi-layer bi-LSTM (Hochreiter and

Schmidhuber, 1997), these models are based on

a multi-layer transformer architecture (Vaswani

et al., 2017). Similarly to recurrent neural networks

(RNNs) and LSTMs, transformers are designed to

handle sequential data. However, they are entirely

based on attention mechanisms (Bahdanau et al.,

2014), which allow to train more powerful lan-

guage models more efficiently. Transformer-based

models have reached state-of-the-art performance

in many NLP tasks (Liu et al., 2019b; Devlin et al.,

2019; Lan et al., 2019; Radford, 2018; Radford

et al., 2019; Brown et al., 2020). It has been shown

that fine-tuning such pre-trained models is effective

for many downstream tasks. (Howard and Ruder,

2018; Radford, 2018).

131

A recent major breakthrough in the realm of

NLP was the advent of BERT (Devlin et al., 2019),

which leveraged bi-directional transformers for lan-

guage representations. One of the main advantages

of using BERT for Twitter sentiment analysis is

that it uses sub-tokens instead of a fixed per-word

token. This makes it highly suitable for the Twitter

dataset that often includes misspellings and slang

words. Moreover, contextualized word represen-

tations can be extracted from hidden layers of the

BERT model (Devlin et al., 2019). However, one

of the main challenges is the question of how and

which layers to use in order to fully optimize the

performance for the downstream task (Kovaleva

et al., 2019; Devlin et al., 2019). Different layers

of the model have been shown to capture different

linguistic information (Liu et al., 2019a). While

earlier layers capture more low level information

such as character-based features, the middle layers

tend to capture syntactic information and later lay-

ers more semantic features (Jawahar et al., 2019).

Hence, finding a good way to leverage the relevant

information for a specific language task becomes

an important problem.

Another research problem involving microblog-

ging is the limitations rooted in automatic data

collection. Various ways of automatically labelling

twitter data have been developed, such as (Pak

and Paroubek, 2010; Bifet and Frank, 2010) which

use emoticons to label tweets. These processes in-

evitably introduce label noise in the training dataset,

as is also stated in (Barbosa and Feng, 2010).

Problem setup Our training dataset1 consists of

2.5 million labeled tweets, of which one half used

to contain a positive smiley “:)” and the other half a

negative smiley “:(”. Those which previously con-

tained a positive smiley are labeled as positive, and

those which previously contained a negative smiley

are considered to be negative. Since emoticons are

not a perfect indicator for positivity or negativity of

a tweet (especially due to phenomena like sarcasm

and irony), we suspect that the dataset potentially

contains label noise.

Given a tweet, our task is to predict its sentiment

as either positive or negative. We split the dataset

into a 70% training dataset and a 30% validation

dataset. Furthermore, we use a separate test dataset

consisting of 10 thousand unlabeled tweets (ex-

cluded from the aforementioned 2.5 million tweets)

1The dataset can be accessed at https://www.kaggle.
com/c/cil-text-classification-2020/data

to report test accuracy.

Contributions We make the following contribu-

tions:

• We propose a novel architecture to create con-

textualized word representations from the hid-

den layers of the BERT model. Our architec-

ture learns a combination of the hidden layers

using gated recurrent units (GRUs) (Cho et al.,

2014).

• We show that our method outperforms well-

known heuristics for this task, e.g. concatenat-

ing the last four layers or using only the last

hidden layer.

• We demonstrate that our proposed method is

also applicable to other BERT-based models

such as RoBERTa (Liu et al., 2019b).

• Using early stopping and a voting classifier,

we prevent overfitting to possible label noise

(which may result from many automatic data

acquisition processes) and improve general-

ization of the model.

2 Models and Methods

In this section, we describe our pipeline for Twitter

sentiment analysis.2

2.1 Pre-processing

In Section 1, we mention that tweets deviate from

standard written texts in that they contain many

abbreviations, slang, misspellings etc. not typi-

cally found in formal written text. Since most

embeddings are trained on formal texts, we pre-

process the datasets in an effort to make them con-

form more to the type of text the embeddings were

trained on. The following data pre-processing steps

are performed on the training set, validation set,

and test set. We delete duplicate tweets to remove

biases, remove excessive whitespaces from tweets

and replace <user> (resulting from Twitter @men-

tions) and <url> (resulting from hyperlinks) by

xxuser and xxurl respectively to avoid misinter-

pretations due to punctuation. Moreover, we use

pyspellchecker (Barros, 2018) to correct misspelled

words in each tweet.

2.2 Architectures

Our architecture aims at finding a way of combin-

ing different hidden layers of BERT such that the

2The code can be found at https://github.com/
ZuowenWang0000/GRUBERT-A-GRU-Based-Method-

to-Fuse-BERT-Hidden-Layers

https://www.kaggle.com/c/cil-text-classification-2020/data
https://www.kaggle.com/c/cil-text-classification-2020/data
https://github.com/ZuowenWang0000/GRUBERT-A-GRU-Based-Method-to-Fuse-BERT-Hidden-Layers
https://github.com/ZuowenWang0000/GRUBERT-A-GRU-Based-Method-to-Fuse-BERT-Hidden-Layers
https://github.com/ZuowenWang0000/GRUBERT-A-GRU-Based-Method-to-Fuse-BERT-Hidden-Layers

132

87654321 9 10 11 12

BERT Language Model

BERT encoder

"just setting up my twttr"

BI-GRU BI-GRUBI-GRU

Downstream BI-GRU

Dense Layer + ReLU

Dropout

Dense Layer + Softmax

BERT hidden layers 40x768 dimensions each

2x100 2x1002x100

40 tokens

2x100

1x100

1x2

co
m

b
in

e
em

b
ed

d
in

g
s

Embedding BI-GRUs

Figure 1: Illustration of the proposed architecture. The

shaded part of the model indicates the combination of

embeddings from hidden layers of the BERT model.

The specific example shows the model BERT-cat-3, see

Table 1. The symbol ⊗ represents the concatenation of

tensors.

accuracy on the Twitter sentiment analysis task is

increased compared to commonly used heuristics.

Taking the average of the last four layers is a com-

mon heuristic which corresponds to a linear combi-

nation. Since the language used in tweets is very

diverse, having a fixed way to combine the layers

such as a linear combination may not leverage the

full capabilities of BERT. For example, tweets in-

cluding uncommon words might benefit more from

information which is present in the earlier layers

of BERT (character-based embeddings) whereas

more formal tweets might benefit from the later

layers. One possibility to overcome this challenge

is to take the sequential information flow between

subsequent layers into account via a recurrent unit.

Hence, we opt for learning the combination of em-

beddings by utilizing gated recurrent units (GRUs)

to capture the information flow from low level to

high level features better. Moreover, we opt to first

combine the BERT hidden layers in groups using

a first layer of GRUs, then combine the output of

the first layer of GRUs using another GRU. We

hypothesize that grouping different layers together

could be beneficial since the capacity of one bi-

GRU could hinder its ability to capture the full in-

formation of the 12 layers. Thus, we divide the job

by utilizing several bi-GRUs and assigning them

grouped embeddings. We experiment with differ-

ent number of bi-GRUs in order to find the best

balance between incorporating information across

layers and the capacity of one single bi-GRU.

An example of our model architecture is depicted

in Figure 1. A tweet is first run through the BERT

tokenizer, which prepares the inputs for the BERT

model, i.e. tokenizes the input into sub-tokens, then

embeds those sub-tokens. We heuristically clip

tweets at 40 sub-tokens, since the 0.95-quantile

of the number of words is 28. Shorter tweets are

padded to the same length.

The tokenized tweet is then run through the

BERT-base-uncased language model (Devlin et al.,

2019; Wolf et al., 2019), which outputs 12 hidden

layers of dimension 40× 768. Each hidden layer

can be interpreted as a sequence of 40 contextual-

ized sub-token embeddings of dimension 1× 768.

Using a variable number of bi-GRUs, we combine

multiple hidden layers into intermediate group em-

beddings. Each bi-GRU has a hidden state size of

100 for the forward and backward layer and cre-

ates a length 2× 100-unit length embedding. We

call these bi-GRUs embedding bi-GRUs. By con-

catenating the embeddings produced by embedding

bi-GRUs, we obtain sub-token embeddings which

contain information of all 12 layers, see the shaded

area in Figure 1.

A further downstream bi-GRU—again with a

hidden state size of 100 for both directions—is then

run on the obtained embeddings. Its output is fed

into a 200-unit fully-connected layer with rectified

linear unit (ReLU) activation and dropout. A fully

connected layer with 2 units followed by a softmax

layer is added before the output is classified to

either positive or negative. A cross-entropy loss is

used for training the network.

Grouping hidden layers To determine the effect

of group size on performance, we vary the com-

bination of BERT hidden layers assigned to the

embedding bi-GRUs. To keep the number of com-

binations of groups within reasonable limits, we

assign the layers in uniformly sized groups to one

embedding bi-GRU each, where the group size is a

divisor of 12 (i.e. 1, 2, 3, 4 or 6). We further avoid

shuffling the layers and only combine consecutive

133

layers within groups.

Model Hidden layer groups

BERT-cat-1 1-12

BERT-cat-2 1-6, 7-12

BERT-cat-3 1-4, 5-8, 9-12

BERT-cat-4 1-3, 4-6, 7-9, 10-12

BERT-cat-6 1-2, 3-4, 5-6, 7-8, 9-10, 11-12

BERT-share-c see BERT-cat-c

Table 1: Listing of different models, which differ in the

number of embedding bi-GRUs used to combine hid-

den layers. Each group of hidden layers is assigned to

one GRU. BERT-cat-c has c embedding bi-GRUs (c ∈
{1, 2, 3, 4, 6}) while BERT-share-c has one embedding

bi-GRU shared among different groups. For BERT-

share-c we use the same grouping as in the BERT-cat-c

models, with the difference that the lone GRU is shared

among different embedding groups. Notice that BERT-

cat-1 is equivalent to BERT-share-1.

Weight sharing We observe that some of our

models benefit from sharing the weights of the em-

bedding bi-GRUs. One possible reason for this

could be that different groups of BERT hidden lay-

ers contain some of the same information. Indeed,

the transformer architecture has skip connections,

so some information from previous layers is passed

onto the next layer. We further observe that weight

sharing can prevent overfitting to some extent, as

it implicitly induces regularization due to the fact

that the degrees of freedom are more restricted, al-

lowing the model to be trained for more iterations.

2.3 Training and implementation details

All models are implemented with PyTorch (Paszke

et al., 2019). We use pre-trained BERT models

and corresponding tokenizers from huggingface’s

transformers (Wolf et al., 2019) library.

Dense layers are initialized with Glorot initial-

ization (Glorot and Bengio, 2010) and a dropout

rate of 0.5 is used (Srivastava et al., 2014). We use

the Adam optimizer (Kingma and Ba, 2015) with

an initial learning rate of 1 · 10−5, which is multi-

plied by 0.9 after each epoch. We further perform

fine-tuning on the whole BERT model in every it-

eration in order to calibrate the embeddings with

our dataset. For all experiments we use a batch

size of 64 and train for 15 epochs in total. The

hyperparameters are picked by a coarse grid search

but due to computational resource constraint it is

not exhaustive.

We train the models with one single GPU on

a node equipped with an NVIDIA GeForce GTX

1080Ti and two 10-core Xeon E5-2630v4 proces-

sors. Each epoch takes approximately 1.5 hours for

all models using BERT.

2.4 Preventing overfitting to label noise

Since the dataset is collected in an automated man-

ner, there will inevitably be incorrectly labeled sam-

ples. Sarcasm and other rhetorics broadly exist in

the tweets. Thus, :) and :(do not perfectly indi-

cate the sentiment of the text. For example, “grr

.. ready for school .. i hate uniforms ! ! ugh we

need our real clothes !” is a picked sample from

the training set where the label is positive but the

ground truth is clearly negative.

Furthermore, the progression of the training also

suggests the existence of noisy labels. In Figure

2 we show a typical training record when using

a model trained exclusively on the last layer of

BERT. The validation loss decreases when the val-

idation accuracy increases at the beginning phase.

However, after a turning point, the validation loss

starts to rise while the validation accuracy keeps

on going upwards, indicating that the classifier is

less and less confident about its decisions as train-

ing progresses. This suggests that the classifier is

overly considering data points with an incorrect

label as opposed to correctly labeled data, making

the model less confident on the latter. Notice that

this phenomenon is most likely not due to a gen-

eralization problem, since the validation loss and

accuracy are rising at the same time.

0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0

Epoch

V
a
lid

a
ti
o
n
 L

o
s
s

1 3 5 7 9 11 13 15

0
.9

0
0
.9

2
0
.9

4

V
a
lid

a
ti
o
n
 A

c
c
u
ra

c
y

Figure 2: Validation loss and accuracy at different

epochs for the model trained with the last layer of

BERT with fine tuning. The validation loss reaches the

lowest at the 4th epoch then starts increasing, while the

validation accuracy is constantly rising until plateau.

This indicates the existence of label noise in the train-

ing dataset.

In order to combat this problem, we apply early

stopping and majority voting to ensure better ro-

134

bustness to label noise and generalization ability of

the model. We assume that for the majority of the

collected data samples, the sentiment corresponds

to the label. Thus we aim to train the model to per-

form well on the data points in the test set whose

labels match the actual sentiment.

Early stopping We split 30% from the prepro-

cessed training set as a validation set, and we select

the checkpoint with the lowest validation loss at the

corresponding epoch, which is equivalent to early

stopping on the criteria of the lowest validation

loss. Li et al. (2019) suggest that overparameter-

ized deep neural networks optimized by first-order

gradient descent with early stopping are provably

robust to label noise or corruption.

Majority voting Furthermore, a natural ap-

proach, which is also pointed out in (Frénay and

Kabán, 2014), to alleviating this issue, and to make

the model generalize better, is the use of voting

classifiers. We ensemble several trained models

and apply majority voting for the final prediction.

Our code framework can be easily extended to

other multi-layer embeddings such as RoBERTa

(Liu et al., 2019b). Therefore, we implement a vot-

ing classifier with BERT-base-uncased, RoBERTa

and a multilingual BERT due to the presence of

multilingual tweets in the dataset.

3 Results

In this section we first discuss the baselines we

compare our models to and report in Tables 2 and 3

mean accuracies of three runs for each experiment,

as well as the standard deviation. We report the

accuracies of the method based on the test split of

the dataset.

Major Baselines To assess the usefulness of the

learned contextualized representations of our mod-

els, we implement a baseline architecture similar

to the GRUBERT architecture as follows: after the

embedding layer, there is a single bi-GRU (analo-

gous to the embedding bi-GRUs from GRUBERT),

followed by another bi-GRU (analogous to the

downstream bi-GRU from GRUBERT), followed

by a dense layer with ReLU activation, dropout,

and dense layer with a softmax over the logits as in

the GRUBERT architecture.

We also chose to compare the intermediate em-

beddings of our models with two BERT hidden

layer combination heuristics used in (Devlin et al.,

2019).

• GloVe: We use GloVe trained on Wikipedia

2014 and Gigaword 5 from Pennington et al.

(2014).

• ELMo: We use ELMo embeddings (Peters

et al., 2018) provided by the Flair NLP library

(Akbik et al., 2019) (using AllenNLP (Gard-

ner et al., 2017)).

• BERT-last-layer: This baseline uses the last

hidden layer, i.e. layer 12.

• BERT-last-four: This baseline uses the con-

catenation of the last four hidden layers.

All baseline models are trained using the same hy-

perparameters as in Section 2.3, except for ELMo,

which is trained with a learning rate of 1 · 10−3.

All baselines use one embedding bi-GRU followed

by the rest of the downstream architecture, i.e. one

embedding bi-GRU and a classifier.

BERT-cat and BERT-share Table 2 presents

our results for the Twitter sentiment classification

task using the models mentioned in Section 2. The

BERT-cat-2 and BERT-cat-4 models outperform

the equivalent parameter-sharing models, although

BERT-share-3 outperforms BERT-cat-3. It remains

an open question why this is the case, although we

suspect that it may be due to consecutive groups of

four layers containing similar information to each

other, while other consecutive groupings diverge

more in the type of information contained in each

grouping. Furthermore, we suspect that BERT-cat-

2 outperforms the other BERT-cat models because

BERT-cat models send different groups of layers

through different bi-GRUs, thereby cutting the flow

of information between layers. BERT-cat-2 only

has two groups, so this cutting of information flow

between layers is minimal. This hypothesis also

explains why accuracy shows a downward trend

as the number of groups in BERT-cat models is

increased.

We also observe that certain configurations of

GRUBERT outperform other commonly used em-

beddings such as GloVe, ELMo, as well as other

common ways of using BERT embeddings, such as

using only the last layer or concatenating the last

four layers.

Table 3 validates our idea of using a GRU to

capture the fact that different tweets may each ben-

efit from different BERT layers by replacing the

first layer of GRUs with fully connected linear lay-

ers. A linear layer always combines layers in the

same way, so different tweets are always associ-

ated with the same combination of the embedding

135

Model Mean Accuracy (Std. Dev.)

GloVe 83.52

ELMo 86.44

BERT-last-layer 89.06 (0.05)

BERT-last-four 89.27 (0.15)

BERT-cat-2 89.43 (0.02)

BERT-cat-3 89.21 (0.13)

BERT-cat-4 89.22 (0.26)

BERT-cat-6 89.05 (0.21)

BERT-share-1 89.37 (0.19)

BERT-share-2 89.04 (0.20)

BERT-share-3 89.66 (0.18)

BERT-share-4 89.14 (0.35)

BERT-share-6 89.02 (0.24)

Table 2: Experiment results for baselines, BERT-cat

models and BERT-share models. The mean accuracy

is computed over several runs of the model and evalu-

ated on the test set. Note that BERT-cat-1 is equivalent

to BERT-share-1, hence it is omitted from the table.

The GloVe and ELMo baselines are presented with-

out standard deviation due to computational resource

constraints and since they are significantly worse than

BERT-based approaches.

layers, as opposed to a GRU, which can generate

different combinations of layers for different tweets

due to the recurrent information flow, and is there-

fore more context-sensitive. Table 3 shows that we

obtain a higher accuracy using GRUs.

Model Mean Acc. (Std. Dev.)

BERT-share-3-linear 89.43 (0.17)

BERT-share-3 89.66 (0.18)

Table 3: Comparison between linear layers for layer

group combining vs GRUs. BERT-share-3-linear is

equivalent to BERT-share-3, but with the first layer of

GRUs replaced by fully connected linear layers.

Our method can be easily extended to other

multi-layer embeddings such as RoBERTa (Liu

et al., 2019b), leaving possibilities of adapting en-

semble methods. We evaluate the final model by

implementing our technique on top of a RoBERTa

(Liu et al., 2019b) model and doing an ensemble

with various BERT-share-3 models trained: (1) as

described in Section 2, (2) on the full dataset, (3)

using multilingual BERT embeddings, (4) with a

weight decay of 1 · 10−5, (5) using RoBERTa em-

beddings, as well as (6) a BERT-share-4 and (7) a

BERT-share-6 model, both trained with RoBERTa

embeddings. Using this technique we reach a final

test score of 90.94%.

4 Discussion

We show empirically that GRUBERT is superior

to standard embeddings for the task of Twitter sen-

timent analysis. However, our model is not easily

interpretable and does not allow deeper insights

into the BERT hidden layers, as is made apparent

by the fact that we cannot draw concrete conclusion

about why weight sharing gives a boost to certain

groupings but not to others. In future work we

would like to find interpretable combinations of the

BERT layers for different task, to better understand

the linguistic features present in each hidden layer.

As another item of future work, the effect of

each component on the overall architecture should

be examined more closely.

Furthermore, the effectiveness of our approach

for other NLP tasks remains to be tested. How-

ever, our architecture can easily be used as a plug-

in module for other multi-layer embeddings and

downstream models, allowing the effectiveness to

be easily examined by future work.

5 Conclusion

We have shown that a dynamic way of combining

the BERT hidden layers using GRUs can lead to

performance benefits in the case of irregular and

plastic language found in tweets. We further ex-

perimented with different ways of combining the

embeddings and observed that weight sharing can

benefit the training process by implicitly inducing

regularization and restricting the model complexity.

We used early stopping as well as voting classifiers

to address the label noise problem inherent in the

automatic data collection process Using these find-

ings, we develop a framework for the problem of

machine-labeled Twitter sentiment analysis which

makes use of an ensemble of different GRUBERT

models to combat label noise.

Acknowledgements

We thank the Data Analytics Lab at ETH Zurich for

providing computing infrastructure. We also thank

them, in addition to our mentor Shuhei Kurita and

the anonymous reviewers, for valuable feedback.

136

References

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Mohd Zeeshan Ansari, Areesha Fatima Siddiqui, and
Mohammad Anas. 2020. Inferring political prefer-
ences from twitter.

Dzmitry Bahdanau, Kyunghyun Cho, and Y. Bengio.
2014. Neural machine translation by jointly learning
to align and translate. 3rd International Conference
on Learning Representations, ICLR 2015 - Confer-
ence Track Proceedings.

Luciano Barbosa and Junlan Feng. 2010. Robust senti-
ment detection on twitter from biased and noisy data.
In Coling 2010 - 23rd International Conference on
Computational Linguistics, Proceedings of the Con-
ference, volume 2, pages 36–44.

Tyler Barros. 2018. pyspellchecker. Available
online: https://github.com/barrust/pyspellchecker.
Consulted 2020-07-27.

Albert Bifet and Eibe Frank. 2010. Sentiment knowl-
edge discovery in twitter streaming data. pages 1–
15.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation.
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Benoı̂t Frénay and Ata Kabán. 2014. A comprehensive
introduction to label noise. In Proceedings of the
European Symposium on Artificial Neural Networks
(ESANN).

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy. PMLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
ACL. Association for Computational Linguistics.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651–3657, Florence, Italy. Associa-
tion for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Efthymios Kouloumpis, Theresa Wilson, and Johanna
Moore. 2011. Twitter sentiment analysis: The good
the bad and the omg! In Proceedings of the 2011
International Conference on Web and Social Media
(ICWSM).

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the Dark Secrets
of BERT. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations.

https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
https://www.aclweb.org/anthology/C18-1139
https://www.aclweb.org/anthology/C18-1139
http://arxiv.org/abs/2007.10604
http://arxiv.org/abs/2007.10604
https://doi.org/10.1007/978-3-642-16184-1_1
https://doi.org/10.1007/978-3-642-16184-1_1
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/d19-1445
https://doi.org/10.18653/v1/d19-1445
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942

137

Mingchen Li, Mahdi Soltanolkotabi, and Samet Oy-
mak. 2019. Gradient descent with early stopping is
provably robust to label noise for overparameterized
neural networks.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, Workshop Track Proceed-
ings.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In Proceedings of LREC, volume 10.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’é Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates,
Inc.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers).

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Shikhar Vashishth, Prateek Yadav, Manik Bhandari,
Piyush Rai, Chiranjib Bhattacharyya, and Partha P.
Talukdar. 2018. Graph convolutional networks
based word embeddings. CoRR, abs/1809.04283.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

http://arxiv.org/abs/1903.11680
http://arxiv.org/abs/1903.11680
http://arxiv.org/abs/1903.11680
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1809.04283
http://arxiv.org/abs/1809.04283
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

138

A Appendices

A.1 Number of Words per Tweet

0 20 40 60 80 100 120
Number of Words

0

20000

40000

60000

80000

100000

120000

140000

Nu
m
be

r o
f T
we

et
s

Number of Words in Positive Tweets Histogram

0 20 40 60 80 100
Number of Words

0

20000

40000

60000

80000

100000

120000

140000

160000

Nu
m
be

r o
f T
we

et
s

Number of Words in Negative Tweets Histogram

Figure 3

Figure 3 illustrates histograms of the number of

words in the original data sets with positive and

negative tweets.

Dataset Positive Tweets Negative Tweets

#Tweets 1.25mio 1.25mio

Mean 14.34 17.14

Std. Dev. 7.18 7.31

Max 128 104

Min 1 1

Quantiles

0.05 5 6

0.25 5 6

0.5 13 18

0.75 19 23

0.95 28 28

Table 4: Statistics about number of words in tweets.

A.2 Additional Baselines

In this section, we present additional baselines us-

ing context-sensitive word embeddings such as

ELMo (Peters et al., 2018), Flair (Akbik et al.,

2018) and a graph convolution network based em-

bedding SynGCN (Vashishth et al., 2018). We also

try different stackings of these embeddings then

feed them into the embedding bi-GRU followed by

the downstream architecture. The training sched-

ule is the same as mentioned in section 2.3. The

following embeddings are used (Suffix -ft indicates

with fine-tuning):

• SynGCN: We the pretrained SynGCN embed-

ding from (Vashishth et al., 2018).

• GloVe-SynGCN: We stack the GloVe embed-

ding used in 2 with the SynGCN embedding.

• ELMo-mix: On top of GloVe-SynGCN, we

stack the ELMo embedding same as used in

table 2. We use starting learning rate 1 · 10−4

(choosed by grid search) with decay by multi-

plying 0.9 after every epoch.

• Flair-mix: On top of GloVe-SynGCN, we

stack the Flair embedding same as used in

table 2. For Flair-mix-ft fine-tuning was used.

Model Accuracy

SynGCN 83.48

GloVe-SynGCN 85.44

ELMo-mix 86.30

Flair-mix 86.44

Flair-mix-ft 87.16

Table 5: Results from additional baselines.

