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Abstract

Disentangled representations have attracted in-
creasing attention recently. However, how to
transfer the desired properties of disentangle-
ment to word representations is unclear. In this
work, we propose to transform typical dense
word vectors into disentangled embeddings
featuring improved interpretability via encod-
ing polysemous semantics separately. We also
found the modular structure of our disentan-
gled word embeddings helps generate more ef-
ficient and effective features for natural lan-
guage processing tasks.

1 Introduction

Disentangled representations are known to repre-
sent interpretable factors in separated dimensions.
This property can potentially help people under-
stand or discover knowledge in the embeddings. In
natural language processing (NLP), works of dis-
entangled representations have shown notable im-
pacts on sentence and document-level applications.
For example, Larsson et al. (2017) and Melnyk
et al. (2017) proposed to disentangle sentiment and
semantic of sentences. By manipulating sentiment
factors, the machine can rewrite a sentence with dif-
ferent sentiment. Brunner et al. (2018) also demon-
strated sentence generation while more focusing on
syntactic factors such as part-of-speech tags. For
document-level applications, Jain et al. (2018) pre-
sented a learning algorithm which embeds biomed-
ical abstracts disentangling populations, interven-
tions and outcomes. Regarding word-level disen-
tanglement, Athiwaratkun and Wilson (2017) pro-
posed mixture of Gaussian models which can dis-
entangle meanings of polysemous words into two
or three clusters. It has a connection with unsu-
pervised sense representations (Camacho-Collados
and Pilehvar, 2018) which is an active research
topic in the community.

In this work, we focus on word-level disentangle-
ment and introduce an idea of transforming dense
word embeddings such as GloVe (Pennington et al.,
2014) or word2vec (Mikolov et al., 2013b) into
disentangled word embeddings (DWE). The main
feature of our DWE is that it can be segmented
into multiple sub-embeddings or sub-areas as il-
lustrated in Figure 1. In the figure, each sub-area
encodes information relevant to one specific topical
factor such as Animal or Location. As an example,
we found words similar to “turkey” are “geese”,
“flock” and “goose” in the Animal area, and the
similar words turn into “Greece”, “Cyprus” and
“Ankara” in the Location area.

Figure 1: Disentangled embedding with factors Animal,
Location and Unseen.

We also found our DWE generally satisfies the
Modularity and Compactness properties proposed
by Higgins et al. (2018) and Ridgeway and Mozer
(2018) which can be a definition of general-purpose
disentangled representations. Also, our DWE can
have the following advantages:

• Explaining Underlying Knowledge
The multi-senses of words can be extracted
and separately encoded despite the learning
algorithm of the original word embeddings
(e.g. GloVe) does not do disambiguation. As a
result, the encoded semantic can be presented
in an intuitive way for examination.

• Modular and Compact Features
Each sub-area of our DWE can itself be infor-
mative features. The advantage is that people
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are free to abandon features in sub-areas ir-
relevant to the given downstream tasks while
still achieving competitive performance. In
Section 4, we show that using the compact
features is not only efficient but also helps
improve performance on downstream tasks.

• Quality Preservation
In addition to higher interpretability, our DWE
preserves co-occurrence statistics information
in the original word embeddings. We found it
also helps preserve the performance on down-
stream tasks including word similarity, word
analogy, POS-tagging, chunking, and named
entity recognition.

2 Obtaining Disentangled Word
Representations

2.1 Problem Definition

Our goal is transforming N d-dimensional dense
word vectors X ∈ RN×d into disentangled em-
beddings Z ∈ RN×d by leveraging a set of binary
attributes A = {a1, ..., aM} labelled on words.
Z is expected to have two properties. The first

one is preserving word features encoded in X .
More specifically, we require XXT ≈ ZZT as
pointed out by Levy and Goldberg (2014) that typ-
ical dense word embeddings can be regarded as
factorizing co-ocurrence statistics matrices.

The second property is that Z can be decom-
posed intoM+1 sub-embedding sets Za1 , ..., ZaM
and Zunseen, where each sub-embedding set en-
codes information only relevant to the correspond-
ing attribute. For example, Za1 is expected to be
relevant to a1 and irrelevant to a2, ..., aM . Informa-
tion in X not relevant to any attributes in A is then
encoded in Zunseen. An example of transforming
X into Z with two attributes, Animal and Location,
is illustrated in Figure 1.

For modelling the relevance between sub-
embeddings and attributes, we use mutual infor-
mation I(Za, a) as learning objectives, where a is
an arbitrary attribute in A.

2.2 Transformation with Quality
Preservation

We obtain Z by transforming X by a matrix
W ∈ Rd×d. That is, Z = XW . To ensure
XXT ≈ ZZT , an additional constraint WW T =
I is included. ZZT = (XW )(XW )T =
X(WW T )XT = XXT if WW T = I holds.

2.3 Optimizing I(Za, a)

Let za,i be the i-th row in Za. By derivation,
I(Za, a) =

ΣN
i=1p(zi)p(a|za,i)

[
log p(a|za,i)− log p(a)

]
≈ 1

N
ΣN
i=1p(a|za,i)

[
log p(a|za,i)− log p(a)

]
We let log p(a) be constant and replace p(a|z) with
a parametrized model qθ(a|z). By experiments,
we found logistic regression with parameter θ is
sufficient to be qθ(a|z). Intuitively, high I(Za, a)
means Za are informative features for a classifier
to distinguish whether words has attribute a.

When increasing I(Za, a) by optimizing
qθ(a|z), we found a strategy helping generate
higher quality Z. The strategy is letting Za be
features to reconstruct original vectors for words
having attribute a. For words with a, the approach
becomes a semi-supervised learning architecture
which attempts to predict labels and reconstruct
inputs simultaneously.

The loss function L(W, θ, φ) for maximizing
I(Za, a) is as follow:

−1

N
ΣN
i=1qθ(a|za,i) + λIa,i||xi − φ(za,i)||22

Ia,i =

{
1 when i-th word has attribute a

0 when i-th word does not have a
(1)

where φ is single and fully-connected layer, xi is
the original i-th word’s vector in X , and λ is a
hyper-parameter. We set λ = 1

d in all experiments.

2.4 Learning to Generate Sub-embedding Za
As discussed in 2.3 that high I(Za, a) indicates
Za are informative features for classification, we
propose to regard sub-embedding generation as a
feature selection problem. More specifically, we
apply sparsity constraint on Z. Ideally, when pre-
dicting a, a smaller number of dimensions of Z
are selected as the informative features, which are
regarded as Za.

In this work, we use Variational Dropout
(Kingma et al., 2015; Molchanov et al., 2017) as
the sparsity constraint. At each iteration of train-
ing, a set of multiplicative noise ξ is sampled from
a normal distribution N (1, αa = pa

1−pa ) and in-
jected on Z. That is, the prediction and recon-
struction is done by θ(ξ � Z) and φ(ξ � Z). The
parameter αa ∈ Rd is jointly learned with W , θ,
and φ. Afterwards, d-dimensional dropout rates
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pa = sigmoid(logαa) can be obtained. For each
attribute a in A, the dimensions with dropout rates
lower than 50% are normally regarded as Za.

We would like to emphasize that the learned
dropout rates are not binary values. Therefore, de-
ciding the length of sub-embeddings can actually
depend on users preferences or tasks requirements.
For example, users can obtain more compact and
pure Za by selecting dimensions with dropout rates
lower than 10%, or get more thorough yet less dis-
entangled Za by setting the threshold be 70%.

To encourage disentanglement when handling
multiple attributes, we include additional loss func-
tions on dropout rates. Let aM -dimensional vector
P be 1− pa for all a in A in a specific dimension.
The idea is to minimize

∏M
i=1 Pi with constraint

ΣM
i=1Pi = 1. The optimal solution is that the di-

mension is relevant to only one attribute a′ where
1− pa′ ≈ 1. In implementation, we minimize the
following loss function

ΣM
i=1 logPi + β||ΣM

i=1Pi − 1||22 (2)

We set β = 1 in the experiments, and equation 1
and 2 are optimized jointly.

To generate Zunseen, we initially select a set of
dimensions and constrain their dropout rates be al-
ways larger than 50%. The number of dimensions
of Zunseen is a hyper-parameter. After selection,
we do not apply equation 2 on the selected dimen-
sions.

3 Evaluation

3.1 Word Embeddings and Attributes
We transform 300-dimensional GloVe1 into DWE.
The 300-dimensional GloVe is denoted by GloVe-
300. For word attributesA, we use labels in Word-
Stat2. WordStat contains 45 kinds of attributes
labeled on 70,651 words. Among the attributes,
we select 5 high-level and easily understandable
attributes: Artifact, Location, Animal, Adjective
(ADJ) and Adverb (ADV) for our experiments. The
number of words labelled with these 5 attributes is
13,337. After training, all pre-trained GloVe vec-
tors are transformed by the learned matrix W (i.e.
XW ) for downstream evaluations.

The number of learned dimensions for each at-
tribute is illustrated in Figure 2, where the threshold
of dropout rates for dimension selection is 50%.

1https://nlp.stanford.edu/projects/glove/
2https://provalisresearch.com/products/content-analysis-

software/

Figure 2: Disentangled embedding with five attributes:
Artifact, Location, Animal, Adjective and Adverb. The
remaining dimensions are viewed as Unseen.

MEN SimLex BATS GA
GloVe-300 0.749 0.369 18.83 63.58

DWE 0.764 0.390 18.75 62.30

Table 1: Word similarity and analogy performance.

POS Chunking NER
GloVe-300 65.0 64.9 65.2

DWE 67.2 66.3 66.1

Table 2: POS-tag, chunking and NER performance.

3.2 Evaluation of Quality Preservation
We firstly examine whether DWE can preserve fea-
tures encoded in GloVe-300. The examination is
done by intrinsic evaluations including the follow-
ing tasks and datasets.

• Word Similarity: Marco, Elia and Nam
(MEN) (Bruni et al., 2014) and SimLex-999
(Hill et al., 2015).

• Word Analogy: Bigger Analogy Test Set
(BATS) (Gladkova et al., 2016), Google
Analogy (GA) (Mikolov et al., 2013a).

• POS tagging, Chunking and Named Entity
Recognition (NER): CoNLL 2003 (Sang and
Meulder, 2003; Li et al., 2017).

• QVEC-CCA3 (Tsvetkov et al., 2015): The
performance is measured by semantic and syn-
tactic CCA.

As shown in Table 1, 2 and 3, DWE can preserve
performance of GloVe-300 on various NLP tasks.
Probably due to the additional information of word
attributes, DWE can have slightly better perfor-
mance than GloVe-300 on seven of the tasks

3.3 Attribute Classification
We design an attribute classification task for ex-
amining whether the DWE can meet requirements
described in Section 2.3. We use logistic regression
and take sub-embeddings Za as input features for

3https://github.com/ytsvetko/qvec
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Semantic Syntactic
GloVe-300 0.473 0.341

DWE 0.474 0.348

Table 3: QVEC-CCA evaluation.

Artifact Location Animal ADJ ADV
Zartifact 77.8 71.0 68.0 65.5 71.2
Zlocation 59.2 83.8 64.0 60.5 69.8
Zanimal 58.5 67.5 84.2 60.2 71.0
Zadj 69.8 70.7 68.2 82.0 72.5
Zadv 59.0 72.5 71.8 71.5 84.2
Zunseen 54.8 70.0 66.5 60.2 68.8

Table 4: Attribute classification accuracies (%).

verifying the performance of classification by cross-
validation. For each attribute, We randomly sample
400 data for testing. The numbers of positive and
negative data for testing are balanced. Therefore, a
random predictor would get around 50% accuracy
in each classification task.

The binary classification accuracies are shown
in Table 4. Take the second column of Table 4 for
example. For distinguishing whether a word can
be location, taking Zlocation as features for training
a classifier achieves the highest accuracy 83.8%.
On the other hand, the accuracy reported in the
second row of Table 4 implies thatZlocation are less
informative features for other attributes. Similar
results can also be observed for other attributes.

3.4 Disentangled Interpretability

We provide some examples to demonstrate that
words having ambiguous or different aspects of se-
mantics can be disentangled. Table 5 shows the
results of nearby words. As can be seen, querying
a word in Za with different attributes can help dis-
cover the ambiguous semantics implicitly encoded
in the original word vectors X . The results also
show that Zunseen does capture meaningful infor-
mation having little relevance to given attributes.

4 Application: Compact Features for
Downstream Tasks

Here we demonstrate an application of the mod-
ularity and compactness properties of our DWE.
We firstly aim to show the sub-embeddings can
directly be informative features and can outper-
form GloVe with the same number of dimensions.
With the high interpretability, selecting relevant

Query Vectors Nearby Words
turkey Zanimal geese, flock, goose
turkey Zlocation greece, cyprus, ankara
mouse Zanimal mice, rat, rats
mouse Zartifact keyboard, joystick, buttons
japan Zlocation korea, vietnam, singapore
japan Zunseen japanese, yakuza, yen
apple Zartifact macintosh, software, mac
apple Zunseen mango, cherry, tomato

Table 5: Results of nearby words.

sub-embeddings could be intuitive. Secondly, we
will demonstrate that if deciding to fine-tune word
vectors for a given downstream task, by using our
DWE, we can focus on updating the relevant sub-
embedding instead of the whole embedding. The
advantage is that it reduces the number of learning
parameters. Also, it could be regarded as a dimen-
sional and interpretable regularization technique
reducing overfitting.

We take a sentiment analysis task, IMDB movie
review classification(Maas et al., 2011), for ex-
periments. Intuitively, ADJ and ADV should be
the most relevant attributes in A. We then select
50 dimensions from Z ∈ R300 with the lowest
dropout rates in ADJ and ADV sub-areas for com-
paring with 50-dimensional GloVe4 (GloVe-50).
The embeddings with the selected dimensions are
denoted by Zadj+adv-50. When tuning our DWE
with the classifier, we update the 52 dimensions
(Zadj ∈ R23 and Zadv ∈ R29) of DWE and com-
pare it with GloVe-300.

The document representations for classification
is averaged word embeddings. The classifier is a
logistic regression. When tuning the input word
embeddings, we update the embeddings with gra-
dient propagated from the classifier.

The results are listed in Table 6. From the ta-
ble, we can see Zadj+adv-50 directly outperforms
GloVe-50 without tuning. A possible explanation is
that GloVe-50 is forced to encode information less
relevant to the sentiments, making it less effective
than Zadj+adv-50 in this task.

In the fine-tuning experiments, DWE can show
slightly higher accuracy than GloVe-300 by updat-
ing only 52 instead of 300 dimensional features.

4https://nlp.stanford.edu/projects/glove/
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Feature Without Tuning After Tuning
GloVe-50 76.55 86.72
Zadj+adv-50 79.78 87.60
GloVe-300 83.85 87.72

DWE 83.67 87.84

Table 6: Classification accuracies (%) on IMDB
dataset.

5 Conclusion

In this work, we propose a new definition and learn-
ing algorithm for obtaining disentangled word rep-
resentations. As a result, the disentangled word
vectors can show higher interpretability and pre-
serve performance on various NLP tasks. We can
also see the ambiguous semantics hidden in typi-
cal dense word embeddings can be extracted and
separately encoded. Finally, we showed the disen-
tangled word vectors can help generate compact
and effective features for NLP applications. In the
future, we would like to investigate whether simi-
lar effects can be found from non-distributional or
contextualized word embeddings.
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Racanière, Loı̈c Matthey, Danilo J. Rezende, and
Alexander Lerchner. 2018. Towards a defi-
nition of disentangled representations. CoRR,
abs/1812.02230.

F. Hill, R. Reichart, and A. Korhonen. 2015. Simlex-
999: Evaluating semantic models with (genuine)
similarity estimation. Computational Linguistics,
41(4):665–695.

Sarthak Jain, Edward Banner, Jan-Willem van de
Meent, Iain J Marshall, and Byron C. Wallace. 2018.
Learning disentangled representations of texts with
application to biomedical abstracts. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4683–4693.
Association for Computational Linguistics.

Durk P Kingma, Tim Salimans, and Max Welling.
2015. Variational dropout and the local reparam-
eterization trick. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems
28, pages 2575–2583. Curran Associates, Inc.

Maria Larsson, Amanda Nilsson, and Mikael
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