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Abstract

Large-scale natural language inference (NLI)
datasets such as SNLI or MNLI have been
created by asking crowdworkers to read a
premise and write three new hypotheses, one
for each possible semantic relationships (en-
tailment, contradiction, and neutral). While
this protocol has been used to create useful
benchmark data, it remains unclear whether
the writing-based annotation protocol is opti-
mal for any purpose, since it has not been eval-
uated directly. Furthermore, there is ample
evidence that crowdworker writing can intro-
duce artifacts in the data. We investigate two
alternative protocols which automatically cre-
ate candidate (premise, hypothesis) pairs for
annotators to label. Using these protocols and
a writing-based baseline, we collect several
new English NLI datasets of over 3k exam-
ples each, each using a fixed amount of an-
notator time, but a varying number of exam-
ples to fit that time budget. Our experiments
on NLI and transfer learning show negative re-
sults: None of the alternative protocols outper-
forms the baseline in evaluations of generaliza-
tion within NLI or on transfer to outside target
tasks. We conclude that crowdworker writing
still the best known option for entailment data,
highlighting the need for further data collec-
tion work to focus on improving writing-based
annotation processes.

1 Introduction

Research on natural language understanding has
benefited greatly from the availability of large-
scale, annotated data, especially for tasks like read-
ing comprehension and natural language inference,
which lend themselves to non-expert crowdsourc-
ing. These datasets are useful in three settings:
evaluation (Williams et al., 2018; Rajpurkar et al.,
2018; Zellers et al., 2019); pretraining (Phang et al.,
2018; Conneau et al., 2018; Pruksachatkun et al.,

2020); and as training data for downstream tasks
(Trivedi et al., 2019; Portelli et al., 2020).

Natural language inference (NLI), also known as
recognizing textual entailment (RTE; Dagan et al.,
2005) is the problem of determining whether or
not a hypothesis semantically entails a premise.
The two largest NLI corpora, SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018) are created
by asking crowdworkers to write three labeled hy-
pothesis sentences given a premise sentence taken
from a preexisting text corpus. While these datasets
have been widely used as benchmarks for NLU,
there have been no studies evaluating writing-based
annotation for collecting NLI data. Moreover, there
is growing evidence that human writing can intro-
duce annotation artifacts, which enable models to
perform moderately well just by learning spurious
statistical patterns in the data (Gururangan et al.,
2018; Tsuchiya, 2018; Poliak et al., 2018a).

This paper explores the possibility of collecting
high-quality NLI data without asking crowdwork-
ers to write hypotheses. We introduce two alterna-
tive protocols (Figure 1) which substitute crowd-
worker writing with fully-automated pipelines to
generate premise-hypothesis sentence pairs, which
annotators then simply label. The first protocol
uses a sentence-similarity-based method to pair
similar sentences from large unannotated corpora.
The second protocol uses parallel sentences and
uses machine translation systems to generate sen-
tence pairs. Using the MNLI protocol as our base-
line, we collect five datasets using premises taken
from Gigaword news text (Parker et al., 2011) and
Wikipedia. We then compare models trained using
these datasets for their generalization performance
within NLI and for transfer learning to other tasks.

We start from the assumption that writing a new
hypothesis takes more time and effort than simply
labeling a presented hypothesis. As a result, it is
plausible that our protocols could offer some value
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Similarity Retrieval

Unstructured Source Text
–––––––––––––, –––––. –––––––––––––. ––––– ... 
–––––––. ––––––––––––––––. ––––––––––––––––.

Unlabeled Sentence Pairs
(–––––––––––––, –––––., ––––––––––––––––.)
(––––––, ––––, –––––., ––––––, –––––––––.)

Use FAISS and FastText to pair-up 
similar sentences.

Crowdworker Labeling 
P: –––––––––––––, –––––., H: ––––––––––––––––.
⚪entailment    ⚪neutral    ⚪contradiction

Use a tuned automatic filter to identify a 
diverse set of pairs to annotate.

�
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MNLI-Style Baseline

Unstructured Source Text
–––––––––––––, –––––. –––––––––––––. ––––– ... 
–––––––. ––––––––––––––––. ––––––––––––––––.

Sample individual sentences to annotate.

Crowdworker Writing
P: –––––––––––––, –––––. 
entailment:
contradiction: 
neutral: 

| �
�
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Translation

Unlabeled Sentence Pairs
(–––––––––––––, –––––., ––––––––––––––––.)
(––––––, ––––, –––––., ––––––, –––––––––.)

Identify pairs of similar sentences from 
existing bilingual comparable corpora. 
Translate the non-English sentence to 
English automatically. 

Crowdworker Labeling 
P: –––––––––––––, –––––., H: ––––––––––––––––.
⚪entailment    ⚪neutral    ⚪contradiction

Use a tuned automatic filter to identify a 
diverse set of pairs to annotate.

�
�
 
��

Aligned Bilingual Text
Eng.: –––––––––––––, –––––. –––––––––––––. 
日本語 : ––––––––––––––––. ––––––––––––––––.

Using the sampled sentence as a 
premise, collect a matching hypothesis 
for each label.

Collect a label for each pair.

Collect a label for each pair.

Figure 1: We introduce two new protocols for natural language inference data collection. Both use fully-automated
pipelines to generate pairs of semantically-related sentences, which crowdworker annotators then label.

even if the quality of the data they produce is no
better than a writing-based baseline. To study the
cost trade-off, we collect each dataset under the
same fixed annotation budget with a fixed (∼ US
$15) hourly wage. Using this constraint, we collect
approximately twice as many examples from our
new protocols.

Our main results on natural language inference
and transfer learning are clearly negative. Human-
constructed examples appear to be far superior to
automatically-constructed examples in both set-
tings. While crowdworker writing in data collec-
tion has known issues, it produces better training
data than our automatic methods, or any known
comparable methods which intervene the writing-
based protocol to help crowdworkers with the writ-
ing process (Bowman et al., 2020). This strongly
suggests that future work on data quality should
focus on improving human-based generation pro-
cesses.

2 Collecting NLI Data

We compare three protocols for collecting NLI data:
(1) a baseline MNLI-style protocol (BASE), (2) a
sentence-similarity-based protocol (SIM), and (3)
a translation-based protocol (TRANSLATE). To
test generalization performance across domains,
we collect two datasets for BASE and SIM, using
text from Gigaword (news) and Wikipedia (wiki)
domains.1 For TRANSLATE, we collect a dataset
from WikiMatrix (Schwenk et al., 2019), a col-
lection of Wikipedia parallel sentences. Table 1
shows examples of sentence pairs collected using

1The premise sentences for each protocol can be different
although they come from the same source.

each protocol.
Our new protocols (Figure 1) share a similar au-

tomated pipeline. Given an unstructured text, we
automatically collect similar sentence pairs which
annotators then label. There are two key differ-
ences between our new protocols and BASE. First,
our automatically paired sentences are unlabeled,
and thus require a further data labeling process
(Section 2.4). Second, our protocols might produce
datasets with imbalanced label distributions. This
is in contrast to BASE, which ensures each premise
will have one hypothesis for each label in the an-
notation. The following subsections describe each
protocol in more detail.

2.1 Baseline (BASE)

Our BASE protocol closely follows that used for
MNLI. We randomly sample premise sentences
from Gigaword and Wikipedia and ask crowdwork-
ers to write three new hypotheses, one for each
relation type.2

2.2 Sentence Similarity (SIM)

Our SIM protocol exploits the fact that, in large
corpora, it should be easy to find pairs of sentences
that describe similar events or situations. For ex-
ample, in Gigaword, one event might be written
differently by different news sources in ways that
yield any of our three relationships. We collect
similar sentences and automatically match them
to form sentence pairs which annotators then la-
bel. The whole pipeline consists of three steps:

2Our instructions can be found in the Appendix A, and our
FAQs are available at https://sites.google.com/
nyu.edu/nlu-mturk-faq/writing-sentences.

https://sites.google.com/nyu.edu/nlu-mturk-faq/writing-sentences
https://sites.google.com/nyu.edu/nlu-mturk-faq/writing-sentences
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Dataset Label Premise Hypothesis

Base-News E The city reconsidered that position on Wednesday,
saying it was seeking to raise an additional $1.5
million to extend Mardi Gras over two weekends
and to pay for overtime on several days.

The city is looking to get more money for Mardi
Gras.

Base-Wiki C Service books were not included and a note at the
end mentions many other books in French, English
and Latin which were then considered worthless.

Service books were included.

Sim-News N All of them run out like college football players
before a big bowl game.

Pray before a college football game.

Sim-Wiki C His work was heavily criticised as unscientific by
his contemporaries.

His work was recognized and admired by his
contemporaries.

Translate-Wiki E This was used to indicate a positive response, or
truth, or approval of the item in front of it.

This was used to indicate yes, true, or confirmed
on items in a list.

Table 1: Examples of sentence pairs chosen randomly from each test set, along with their assigned labels. E:
entailment, C: contradiction, N: neutral.

indexing and retrieval, reranking, and crowdworker
labeling.

Indexing and Retrieval Given a raw text, we
first split it into sentences.3 We encode each sen-
tence as a 300-dimensional vector using fastText
(Bojanowski et al., 2017) and index them using
FAISS (Johnson et al., 2019), an open-source li-
brary for large-scale similarity search on vectors.4

Since Gigaword and Wikipedia consist of billions
of sentences, we perform dimensionality reduction
using PCA and cluster the search space to allow
efficient index and retrieval. We randomly sam-
ple query sentences from the text corpus and re-
trieve the top 1k most similar sentences for each
query. This is done by building an index with type
"PCAR64,IVFx,Flat" in FAISS terms, where
x varies depending on the corpus size. Details of
our indexing and retrieval procedures can be found
in Appendix A.1.

Reranking FastText uses a Continuous Bag-of-
Words (CBoW) model to learn word representa-
tions. This means given a query, we will sometimes
have top matches which are syntactically similar
but describe different events or situations. While
unrelated sentences can be contradictory or neu-
tral, directly using the top-n sentences from FAISS
will give us too few entailment pairs. Furthermore,
because we use randomly sampled sentences as
queries, there could be no good match at all for a
given query.

3We use Spacy’s "en core web lg" model to segment
sentences and extract noun phrase and entities for later use in
reranking.

4https://github.com/facebookresearch/
faiss

To collect a set of sentence pairs with a reason-
able label distribution, for each query, we retrieve
top-K matches and rerank the (query, retrieved
sentence) pairs using the following features:

• FAISS similarity score: The raw similarity
score from FAISS.

• Word types: The proportion of word types
in the query sentence seen in the retrieved
sentence.

• Noun phrase: The proportion of noun phrases
in the query sentence seen in the retrieved
sentence.

• Subjects: The proportion of complete subject
spans (some sentences with embedded clauses
can have more than one subject) in the query
sentence seen in the retrieved sentence.

• Named entity: The proportion of named enti-
ties in the query sentence seen in the retrieved
sentence.

• Time: A boolean feature which denotes
whether two sentences are written in the same
month and year (only for Gigaword)

• Wiki article: A boolean feature which denotes
whether the pairs come from the same article.
(only for Wikipedia)

• Wiki link: The proportion of hyperlink tokens
in the query sentence seen in the retrieved
sentence (only for Wikipedia)

The choice of these hand-crafted features will likely
impact the distribution of our final dataset, but we

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
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don’t expect these choices to inject significant label-
association artifacts, since our methods play no
role in setting labels. We calculate the score for
each sentence pair using a weighted sum of these
features. We populate pairs from all queries and
sort them based on their feature scores. We then
select the top N% pairs as our final pairs.

We use a Bayesian hyperparameter optimiza-
tion to tune the feature weights, K, and N . In an
ideal case, we want our dataset to have a balanced
distribution so that all classes will be represented
equally. To push for this, we tune these parameters
to minimize the Kullback–Leibler (KL) divergence
between a uniform distribution across three entail-
ment classes, P (x), and an empirical distribution,
Q(x), computed based on the predictions of an
NLI model. We run Bayesian optimization for 100
iterations using Optuna (Akiba et al., 2019). For
the NLI model, we use a RoBERTaLarge model
fine-tuned on a combination of SNLI, MNLI, and
ANLI.

2.3 Translation (TRANSLATE)

Multilingual comparable corpora contain similar
texts in at least two different languages. If they are
sentence-aligned, we can automatically translate
text from one language to one of the others to yield
candidate sentence pairs. Since the alignment be-
hind the corpus can be noisy, the resulting sentence
pairs range almost continuously from being parallel
to being semantically unrelated, potentially fitting
any of the three entailment relationships. In the
TRANSLATE protocol, we investigate whether we
can use such sentence pairs as entailment data.

We use WikiMatrix (Schwenk et al., 2019), a
collection of 135 million Wikipedia parallel sen-
tences, which was constructed by aligning simi-
lar sentences in different languages in a joint sen-
tence embedding space (Schwenk, 2018; Artetxe
and Schwenk, 2019). It is a mix of translated sen-
tence pairs and comparable sentences written inde-
pendently about the same information. We collect
parallel sentences where one of the sentences is in
English, sE . For the paired non-English languages,
we pick 5 languages: German, French, Indone-
sian, Japanese, and Czech. We then translate the
aligned non-English sentence into an English sen-
tence, sÊ using the OPUS-MT (Tiedemann and
Thottingal, 2020) machine translation systems, and
treat (sE , sÊ) as a sentence pair. The diverse set of
languages allows us to collect a more diverse set

Individual == Gold No Gold Label

MNLI (Full) 88.7% 1.8%

Base-News 78.7% 13.1%
Base-Wiki 76.4% 10.0%
Sim-News 72.9% 15.8%
Sim-Wiki 74.1% 11.9%
Translate-Wiki 72.8% 14.6%

Table 2: Validation statistics for each protocol, com-
pared to MNLI Full.

of sentence pairs coming from the structural dif-
ferences across languages. We do not perform any
reranking as our predictions using an NLI model
on the initially retrieved data (the same one that we
used in §2.2) shows a near-balanced distribution.

2.4 Data Labeling
We use Amazon Mechanical Turk to label the
automatically-collected sentence pairs (SIM and
TRANSLATE). We hire crowdworkers which have
completed at least 5000 HITs with at least a 99% ac-
ceptance rate. In each task, we present crowdwork-
ers with a sentence pair and ask them to provide
a single label (entailment, contradiction, neutral
or “I don’t understand”) for the pair. The latter is
used if there are problems with either sentence, e.g.,
because of errors during preprocessing. We collect
one label per sentence pair. We use the same HIT
setup for validating our test sets (Section 3).

3 The Resulting Datasets

Using BASE, we collect 3k examples for Base-
News and Base-Wiki.5 For SIM and TRANSLATE,
we increase the number of pairs to exhaust the same
budget that was used for the corresponding base-
line dataset ($1,791 for Base-News and $1,445 for
Base-Wiki), allowing us to collect around twice as
many examples for each protocol.6

For each dataset, we randomly select 250 sen-
tence pairs as the test set and use the rest as the
training set. To ensure accurate labeling, we per-
form an additional round of annotation on the test
sets. We ask four crowdworkers to label each pair
using the same instructions that we use for data
labeling, giving us a total of 5 annotations per ex-
ample. We assign the majority vote as the gold

5Our preliminary experiments on subsets of MNLI show
that RoBERTa performance starts to stabilize once we use at
least 3k training examples.

6The resulting datasets are available at https://
github.com/nyu-mll/semi-automatic-nli. We
provide anonymized worker-ids.

https://github.com/nyu-mll/semi-automatic-nli
https://github.com/nyu-mll/semi-automatic-nli


676

#Pairs Label Distribution HLE HLC HLN Word Type Overlap
E C N µ (σ) µ (σ) µ (σ) E C N

Tr
ai

ni
ng

MNLI-3k 2750 33.4 33.9 32.7 9.7 4.4 9.4 4.0 11.0 4.4 25.2 17.3 15.4

Base-News 2734 33.5 33.4 33.2 12.1 6.0 11.8 5.8 12.4 6.2 23.5 18.4 18.1
Base-Wiki 2740 33.3 33.7 33.0 11.1 7.7 10.5 4.5 11.6 7.1 31.2 23.4 22.7
Sim-News 6627 21.8 39.1 39.2 23.2 9.7 22.7 10.0 23.3 9.9 46.6 21.8 23.0
Sim-Wiki 6174 23.5 40.4 36.1 12.8 6.0 12.7 5.2 13.1 5.3 52.7 31.7 29.7
Translate-Wiki 6189 34.7 31.4 34.0 18.6 9.6 14.2 7.5 16.0 8.8 41.3 20.0 24.6

Te
st

MNLI-3k 250 29.2 37.6 33.2 10.6 4.6 9.4 3.7 10.7 4.2 26.3 14.6 15.9

Base-News 226 38.1 33.2 28.8 12.8 5.7 11.5 5.1 11.6 4.6 22.8 14.4 13.5
Base-Wiki 234 32.5 32.1 35.5 12.5 8.6 11.7 8.2 11.5 4.8 32.9 24.6 21.1
Sim-News 219 20.1 44.3 35.6 22.5 11.1 24.9 11.1 23.9 10.9 69.3 20.9 20.6
Sim-Wiki 229 20.5 45.0 34.5 12.6 7.6 13.7 5.8 12.0 4.5 60.5 32.8 28.7
Translate-Wiki 222 40.5 29.3 30.2 18.7 8.5 13.0 6.9 14.3 6.7 46.3 15.1 21.1

Table 3: Dataset statistics. HL denotes the average and standard deviation of the hypothesis length of each label.

label.
Table 2 shows the agreement statistics for each

protocol. BASE shows a higher agreement than
SIM and TRANSLATE, although it is lower than
MNLI. Compared to MNLI, all of our datasets
show higher number of examples with no gold label
(no consensus between annotators). As we strictly
follow the MNLI protocol for BASE, this suggests
that the different population of crowdworkers is
likely responsible for these differences.7

3.1 Dataset Statistics
Table 3 shows the statistics of our collected data.
As anticipated, datasets collected using SIM and
TRANSLATE have slightly unbalanced distributions
compared to BASE. In particular, for SIM, we ob-
serve that the entailment class has the lowest distri-
bution in the training and test data.

One clear difference between BASE and our
new protocols is the hypothesis length. SIM and
TRANSLATE tend to create longer hypothesis than
BASE. We suspect that this is an artifact of the
sentence-similarity method, which prefers identi-
cal sentences (both syntax and semantics) over se-
mantically similar sentences. Across domains, we
observe that sentences from news texts are longer
than Wikipedia.

Recent work by McCoy et al. (2019) shows that
popular NLI models might learn a simple lexical
overlap heuristic for predicting entailment labels.
While this heuristic is natural for entailment, it can
affect the model’s generalization especially when it
is strongly reflected in the data. We calculate word
type overlap by using the intersection of premise

7MNLI used an organized group of crowdworkers hired
through Hybrid (gethybrid.io).

and hypothesis word types, divided by the union
of the two sets. The last three columns in Table 3
reports word type overlap in each dataset for each
entailment label. We find that word type overlap is
a much stronger predictor of the label in our new
protocols than in BASE. This could be a significant
driver of our results and might hurt the generaliza-
tion performance of models trained using our new
protocols’ data.

3.2 Annotation Cost
We use the FairWork platform to set payment for
each of our HITs (Whiting et al., 2019). Fair-
Work surveys workers to estimate the time that
each HIT takes and adjusts pay to a target of US
$15/hr. Based on its estimation, we pay $0.4 and
$0.3 for each written hypothesis of Base-News and
Base-Wiki, respectively. For Sim-News, Sim-Wiki,
and Translate-Wiki, we pay $0.175, $0.15, $0.15
for each labeled sentence pair, respectively. In total,
we spend $1791 for each dataset collected from Gi-
gaword and $1445 for each dataset collected from
Wikipedia.

4 Experiments

We aim to test whether our alternative protocols
can produce high-quality data that yield models that
generalize well within NLI and in transfer learning.
For the NLI evaluation, we evaluate each model on
nine test sets: (i) the five new individual test sets,
each containing ∼250 examples; (ii) the MNLI de-
velopment set; and (iii) the three development sets
of Adversarial NLI (ANLI; Nie et al., 2020), col-
lected from three rounds of annotation (A1, A2,
A3). ANLI is collected using an iterative adver-
sarial approach that follows MNLI but encourages
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Test Data

Training Data BN BW SN SW TW MNLI A1 A2 A3 Avg.

C
B

oW

Base-News 33.4 37.8 32.4 30.1 35.8 35.6 32.8 32.8 33.4 34.0
Base-Wiki 34.1 33.1 37.9 35.4 39.0 35.6 33.1 31.6 33.2 34.8
Sim-News 35.4 35.9 32.0 32.3 37.8 35.8 33.1 32.8 33.4 34.3
Sim-Wiki 32.3 37.2 52.1 49.1 44.6 36.6 33.1 32.4 32.1 38.8
Translate-Wiki 37.4 39.3 35.4 35.8 45.5 35.4 33.0 32.9 32.8 36.4

R
oB

E
R

Ta

MNLI-3k 79.0 61.3 76.7 57.5 58.1 83.9 33.4 27.0 28.7 56.2

Base-News 79.4 76.1 57.5 61.6 58.1 83.1 35.8 29.5 28.0 56.6
Base-Wiki 77.0 74.2 58.5 62.0 61.3 54.0 30.9 31.8 33.1 53.6
Sim-News 53.3 56.0 65.8 59.8 66.2 79.5 35.8 30.2 28.2 52.8
Sim-Wiki 62.0 62.8 64.8 64.9 69.1 64.7 32.2 32.0 31.5 53.8
Translate-Wiki 48.5 54.9 60.7 58.1 67.1 50.9 32.5 32.7 33.2 48.7

Average per test set 52.0 51.7 52.2 49.7 53.0 54.1 33.2 31.4 31.6 45.4

Table 4: Model performance on individual test sets, as a median over 10 random restarts. BN: Base-News, BW:
Base-Wiki, SN: Sim-News, SW: Sim-Wiki, TW: Translate-Wiki. The last row shows the average performance
across models on each test set.

Test Data

Training Data BN BW SN SW TW MNLI A1 A2 A3 Avg.

MNLI-3k 46.5 50.4 33.3 38.4 36.2 52.8 33.3 33.1 33.0 39.7

Base-News 47.8 46.6 33.8 33.6 37.4 51.5 32.5 33.3 33.1 38.8
Base-Wiki 33.2 32.1 44.3 45.0 29.3 32.8 33.3 33.3 33.0 35.1
Sim-News 33.2 35.5 38.8 38.9 29.3 32.8 33.3 33.3 33.5 34.3
Sim-Wiki 33.2 30.8 44.3 44.6 28.8 32.8 33.3 33.3 33.0 34.9
Translate-Wiki 31.4 34.6 34.3 34.5 32.4 33.6 33.3 33.3 33.5 33.4

Average per test set 37.5 38.3 38.1 39.2 32.2 39.4 33.2 33.3 33.2 36.0

Table 5: RoBERTa performance on individual test sets for hypothesis-only models.

crowdworkers to write sentences that are difficult
for a trained NLI model.

We experiment with two sentence encoders: a
CBoW baseline initialized with fastText embed-
dings (Bojanowski et al., 2017), and a more pow-
erful RoBERTaLarge (Liu et al., 2019) model, fine-
tuned on individual training sets. We perform a
hyperparameter sweep, varying the learning rate
∈ {1e − 3, 1e − 4, 1e − 5} and the dropout rate
∈ {0.1, 0.2}. We use batch size of 16 and 4
for CBoW and RoBERTA, respectively. We train
each model using the best hyperparameters for 10
epochs, with 10 random restarts. In initial exper-
iments, we find that this setup yields sTable per-
formance given our relatively small datasets, espe-
cially when using RoBERTa.8

For transfer learning, we test whether each
dataset can improve downstream task performance
when it is used as intermediate-task data (Phang
et al., 2018; Pruksachatkun et al., 2020). As our col-

8This is consistent with the recent findings of Zhang et al.
(2020) and Mosbach et al. (2020) regarding fine-tuning BERT-
style models on small data.

lected datasets are fairly small (< 10K examples),
we use five data-poor downstream target tasks in
the SuperGLUE benchmark (Wang et al., 2019a):
COPA (Roemmele et al., 2011); WSC (Levesque
et al., 2012); RTE (Dagan et al., 2005, et seq),
WiC (Pilehvar and Camacho-Collados, 2019); and
MultiRC (Khashabi et al., 2018). We experi-
ment with the BERTLarge (Devlin et al., 2019) and
RoBERTaLarge models. We follow Pruksachatkun
et al. (2020) for training hyperparameters. We use
the Adam optimizer (Kingma and Ba, 2015).

We run experiments using the jiant toolkit
(Wang et al., 2019b), which is the recommended
baseline package for SuperGLUE, and is based on
Pytorch (Paszke et al., 2019), HuggingFace Trans-
formers (Wolf et al., 2020), and AllenNLP (Gard-
ner et al., 2017).

4.1 NLI Experiments

Table 4 reports the model performance on indi-
vidual test sets. We include a baseline training
data, a 3k randomly sampled training examples
from MNLI (MNLI-3k). We observe that all the
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Intermediate COPA MultiRC RTE WiC WSC Avg.training data acc. F1α acc. acc. acc.

B
E

R
T

None 70.0 70.9 73.3 72.7 62.5 69.9

MNLI-3k +0.0 -0.1 +4.0 -0.8 -2.9 +0.0

Base-News +1.0 -0.5 +4.3 -1.7 +1.0 +0.8
Base-Wiki +2.0 +0.3 +3.2 -1.2 -1.0 +0.7
Sim-News +3.0 -0.3 +2.2 -2.3 +0.0 +0.5
Sim-Wiki +7.0 -0.2 +4.0 -2.6 -3.8 +0.9
Translate-Wiki +4.0 +0.1 +2.5 -3.7 0.0 +0.6

R
oB

E
R

Ta

None 88.0 77.0 85.2 71.9 67.3 77.9

MNLI-3k -4.0 -0.1 +0.7 +0.2 -3.8 -1.5

Base-News +1.0 +0.4 +1.1 +0.7 -1.9 +0.3
Base-Wiki -2.0 -1.2 +1.1 +0.5 -1.0 -0.5
Sim-News -6.0 -3.6 -6.1 -0.1 -3.8 -3.9
Sim-Wiki -5.0 -1.9 -2.2 -1.2 -16.3 -5.3
Translate-Wiki -5.0 -2.7 -2.5 -1.8 -6.7 -3.7

Table 6: Results on using each collected dataset as intermediate training data on five SuperGLUE tasks. We
report the median performance over 3 random restarts on the intermediate NLI models. None denotes experiments
without intermediate-task training, i.e., direct fine-tuning on target tasks. The last column shows the average score
across the five tasks. We report the difference with respect to None using BERT and RoBERTa.

CBoW baselines obtain near chance performance.
Using RoBERTa, the top performing models are
all trained on datasets collected using BASE: Base-
News and MNLI-3k. We find that models trained
using Translate-Wiki obtain the worst performance.
On average across all training sets, ANLI devel-
opment sets seem to be the hardest, while MNLI
seems to be the easiest.

Unsurprisingly, we do not find a single training
set which yields the best model across all test sets.
We observe that models trained on Base-News per-
form the best for Base-News and Base-Wiki test
sets. Similarly, Sim-Wiki performs the best on both
Sim-Wiki and Sim-News test sets. We find that all
models do poorly on all ANLI development sets.

Overall, we find that Base-News outperforms
all other datasets. However, it is also better than
SIM and TRANSLATE which suggests that our new
protocols failed. The lower accuracy for SIM and
TRANSLATE on their respective test sets also sug-
gests that they produce datasets with noisier labels.

4.2 Hypothesis-Only Results

Next, we experiment with a hypothesis-only model
(Poliak et al., 2018b) to investigate spurious statis-
tical patterns in the hypotheses which might signal
the actual labels to the model. Table 5 reports the
results for all five datasets and MNLI. On the five
new test sets, we observe that MNLI and Base-
News are the most solvable by the hypothesis-only
models, though their numbers are still much lower

than with SNLI with accuracy 69.17.
On average across all test sets, none of the

training sets obtain much higher performance than
chance. All models achieve chance performance on
ANLI. However, all of our training sets are fairly
small, and these numbers might not be very infor-
mative. This also explains why these numbers are
relatively lower than other NLI datasets (Poliak
et al., 2018b). Across all training sets, we again
see that the MNLI test set is the most solvable by
the hypothesis-only models.

Our new protocols show lower performance than
the BASE, but that may just be because they are
of lower overall quality and not because they are
less solvable by the hypothesis-only models. We
verify this by looking at their transfer learning per-
formance in the following section.

4.3 Transfer Learning

Table 6 shows our results when using each col-
lected data as intermediate-training data on the five
target tasks. We report the median performance of
three random restarts on the validation sets. Using
BERT, we observe that all our new datasets yield
models with better performance than plain BERT
or MNLI-3k as intermediate-training data. We see
less positive transfer when we use RoBERTa.

If we look at individual target task performance,
both Base-News and Base-Wiki data give consis-
tent positive transfer for RTE, a natural language
inference task. We also see some positive trans-
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Entailment Contradiction Neutral
M

-3
k looked 0.44 no 1.03 also 0.75

capital 0.43 never 0.95 because 0.71
population 0.43 any 0.88 better 0.63

B
-N

ew
s according 0.58 never 1.07 also 0.62

position 0.45 no 1.02 many 0.52
set 0.42 any 0.90 most 0.52

B
-W

ik
i both 0.45 never 1.18 most 0.78

named 0.38 not 1.01 well 0.64
early 0.35 any 0.96 many 0.56

S-
G

ig
a summit 0.53 points 0.66 very 0.54

roads 0.51 we 0.65 research 0.48
weighted 0.46 – 0.59 weeks 0.48

S-
W

ik
i division 0.56 census 0.88 through 0.57

team 0.48 population 0.86 such 0.54
candidate 0.47 2010 0.82 number 0.49

T-
W

ik
i ; 0.68 brought 0.45 each 0.57

album 0.58 maintain 0.40 { 0.56
f 0.55 will 0.39 } 0.56

Table 7: Top three words most associated with each
label by PMI. M: MNLI, B: Base, S: Sim, T: Translate.

fer for COPA, however since its validation set is
very small (100 examples), we can not conclude
anything with confidence.

Overall, our BASE shows better transfer learning
performance compared to MNLI, suggesting that
our setup is sound. However, we also see that our
new protocols perform worse than BASE, showing
that they produce less useful training data than the
strong baseline of crowdworker writing.

5 Dataset Analysis

5.1 Annotation Artifacts

Following Gururangan et al. (2018), we compute
the PMI between each hypothesis word and label in
the training set to examine whether certain words
have high associations with its inference label. For
a fair comparison, we only use ∼3k training ex-
amples from each dataset, and sub-sample data
collected using SIM and TRANSLATE.

Table 7 shows the top three most associated
words for each label, sorted by their PMI scores.
We find that BASE has similar associations to
MNLI, especially for the neutral and contradic-
tion labels where we found many negations and
adverbs. We observe that both SIM and TRANS-
LATE are less susceptible to this artifact. However,
this might be a side-effect of high word overlap in
the data, which prefers similar words in the premise
and hypothesis. This is also a well-known artifact
for NLI data (McCoy et al., 2019).

5.2 Qualitative Analysis

Our new protocols use a vector-distance based mea-
surement to find similar sentences, and we find
that many of the sentence pairs share similar syn-
tactic structure in their premise and hypothesis,
even when both describe different events or enti-
ties. We also find that hypothesis in several Sim-
News examples differs by only a few words with
its premise. For Translate-Wiki, we observe some
effects of translation divergence, where the transla-
tion of the sentence changes semantically because
of cross-linguistic distinctions between languages.
We provide some examples of these observations
in Table 8.

6 Related Work

There is a large body of work on constructing data
for natural language inference. The first test suite
for entailment problems, FraCas (Consortium et al.,
1996), is a very small set created manually by ex-
perts to isolate phenomena of interest. The RTE
challenge corpora (Dagan et al., 2005, et seq) were
built by asking human annotators to judge whether
a text entails a hypothesis. The SICK dataset
(Marelli et al., 2014) is constructed by mining ex-
isting paraphrase sentence pairs from image and
video captions, which annotators then label.

Some recent works also use automatic methods
for generating sentence pairs for entailment data.
Zhang et al. (2017) propose a framework to gen-
erate hypotheses based on context from general
world knowledge or neural sequence-to-sequence
methods. The DNC corpus (Poliak et al., 2018a) is
an NLI dataset with ordinal judgments constructed
by recasting several NLP datasets to NLI examples
and labeling them using custom automatic proce-
dures. QA-NLI (Demszky et al., 2018) is an NLI
dataset derived from existing QA datasets. Simi-
lar to ours, both DNC and QA-NLI use automatic
methods to generate sentence pairs. However, nei-
ther of them explicitly evaluates whether machine-
generated pairs are better than human-generated
pairs.

Bowman et al. (2020) propose four potential
modifications to the SNLI/MNLI protocol, all still
involving crowdworker writing, and show that none
yields improvements in the resulting data. SWAG
(Zellers et al., 2018) and HellaSwag (Zellers et al.,
2019) construct sentence pairs from specific data
sources and use language models to generate chal-
lenging negative examples.
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Type Dataset Premise Hypothesis Label

Syntactic
structure Sim-News

For many people, choosing wallpaper
is one of decorating’s more stressful
experiences, fraught with anxiety over
color, pattern and cost.

For many people, anxiety about dec-
orating stems from not understanding
the language of furniture, fabrics and
decorative styles.

E

Sim-Wiki Its flowers are pale yellow to white
and spherical.

Its flowers are funnel-shaped and
pink to white. C

Translate-Wiki
But now, in the early 1990s, the
Jakarta-Begor railway had turned into
a double rail.

However, by the early 1990s, Mc-
Creery’s position within the UDA be-
came less secure.

N

Lexical over-
lap Sim-News

GrandMet owns Burger King, the
world’s second-biggest hamburger
chain, as well as US frozen foods
manufacturer Pillsbury, which pro-
duces the luxury ice-cream Haagen-
Daazs.

GrandMet owns Burger King, the
world’s second-biggest hamburger
chain, as well as US food group Pills-
bury, which produces the luxury ice-
cream Haagen-Daazs.

E

Translation
divergence Translate-Wiki Marcus Claudius then abducted her

while she was on her way to school.
Marcus Claudius then kidnapped him
while he was on his way to school. N

Table 8: Dataset observations from our new protocols.

On the topic of cost-effective crowdsourcing,
Gao et al. (2015) develop a method to reduce redun-
dant translations when collecting human translated
data. When the annotation budget is fixed, Khetan
et al. (2018) suggest that it is better to label collect
single label per training example as many as pos-
sible, rather than collecting less training examples
with multiple labels.

7 Conclusion

In this paper, we introduce two data collection pro-
tocols which use fully-automatic pipelines to col-
lect hypotheses, replacing crowdworker writing in
the MNLI baseline protocol. We find that switching
to a writing-free process with the same source data
and annotator pool yields poor-quality data. Our
main experiments show strong negative results both
in NLI generalization and transfer learning, and
mixed results on annotation artifacts, suggesting
that MNLI-style crowdworker writing examples
are broadly better than automatically paired ones.
This finding dovetails with that of Bowman et al.
(2020), who find that they are unable to improve
upon a base MNLI-style prompt when introducing
aids meant to improve annotator speed or creativ-
ity. Future work along this line might focus on
crowdsourcing strategies (beyond the basic HIT
design) which encourage crowdworkers to produce
high-quality data with reduced artifacts.

While our fully-automatic methods to construct
sentence pairs yield negative results, we have
not exhausted all possible automatic techniques
for collecting similar sentences. However, given

that we use state-of-the-art tools including FAISS,
RoBERTa, and OPUS, and refine our methods with
several rounds of piloting and tuning, we are skep-
tical that there is low-hanging fruit in the two direc-
tions we explored. A more radically different direc-
tion might involve generating pairs from scratch,
using a large language model like GPT-3 (Brown
et al., 2020). However, this would still require train-
ing data from crowdworker-written dataset, and
might add a major source of potentially difficult-to-
diagnose bias.

Finally, despite its known issues, we find that
MNLI-style data is still the most effective for both
NLI evaluation and transfer learning, and future
efforts to create similar data should work from that
starting point.
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A Appendices

A.1 Indexing and Retrieval
Gigaword The corpus contains texts from seven
news sources: afp eng, apw eng, cna eng, ltw eng,
nyt eng, wpb eng, and xin eng. We build
one index for each news source with type
“PCAR64,IVFx,Flat”, where x defines the
number of clusters in the index. This type of in-
dex allows faster retrieval, however it requires a
training stage to assign a centroid to each cluster.
We refer readers to FAISS documentation for more
detail explanations.9

For each news source, we randomly sample 100
sentences from its monthly articles and use them
as seed sentences to train the clusters. We then
set the number of clusters x to N

100 (rounded to
the nearest hundred), where N is the number of
seed sentences. Table 9 lists the number of seed
sentences and clusters used for each news source
index.

Source #seed sentences x

afp eng 111,147 1,100
apw eng 146,119 1,400
cna eng 125,508 1,200
ltw eng 90,195 900
nyt eng 136,827 1,300
wpb eng 9,144 100
xin eng 157,760 1,500

Table 9: Number of seed sentences and number of clus-
ters for each news source index.

During retrieval, for each query, we retrieve
top 1000 sentences from each index and perform
reranking on the combined list, i.e., 7,000 sentence
pairs, as described in Section 2.2.

Wikipedia We build one index for the whole
Wikipedia corpus. For seed sentences, we use sen-
tences taken from the first paragraph of each article
as it usually contains the summary of the article.
We set the number of clusters x to 15,000.

9https://github.com/facebookresearch/
faiss

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
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A.2 Writing HIT Instructions

●
●
●

Prompt:
“Security and reliability are two important aspects of this service because of the sensitivity and urgency of the data sent over.”

Definitely correct
Example: For the prompt “The cottages near the shoreline, styled like plantation homes with large covered porches, are luxurious within; some come with private hot tubs.”, you 
could write “The shoreline has plantation style homes near it, which are luxurious and often have covered porches or hot tubs.”

Maybe correct
Example: For the prompt “Government Executive magazine annually presents Government Technology Leadership Awards to recognize federal agencies and state governments 
for their excellent performance with information technology programs.”, you could write “In addition to their annual Government Technology Leadership Award, Government 
Executive magazine also presents a cash prize for best dressed agent from a federal agency.”

Definitely incorrect
Example: For the prompt “Yes, he’s still under arrest, which is why USAT’s front-page refer headline British Court Frees Chile’s Pinochet is a bit off.”, you could write “The 
headline `British Court Frees Chile’s Pinochet` is correct, since the man is freely roaming the streets.”

Problems (optional) If something is wrong with the prompt that makes it difficult to understand, let us know here.

Figure 2: Writing HIT instructions.
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A.3 Data Labeling and Validation HIT Instructions

●

●

●

●

Figure 3: Data Labeling and Validation HIT instructions. We collect one annotation per example for data labeling
and five annotations per example for validation.


