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Abstract
Simultaneous text translation and end-to-end
speech translation have recently made great
progress but little work has combined these
tasks together. We investigate how to adapt
simultaneous text translation methods such as
wait-k and monotonic multihead attention to
end-to-end simultaneous speech translation by
introducing a pre-decision module. A detailed
analysis is provided on the latency-quality
trade-offs of combining fixed and flexible pre-
decision with fixed and flexible policies. We
also design a novel computation-aware latency
metric, adapted from Average Lagging. 1

1 Introduction

Simultaneous speech translation (SimulST) gener-
ates a translation from an input speech utterance
before the end of the utterance has been heard.
SimulST systems aim at generating translations
with maximum quality and minimum latency, tar-
geting applications such as video caption transla-
tions and real-time language interpreter. While
great progress has recently been achieved on both
end-to-end speech translation (Ansari et al., 2020)
and simultaneous text translation (SimulMT) (Gris-
som II et al., 2014; Gu et al., 2017; Luo et al., 2017;
Lawson et al., 2018; Alinejad et al., 2018; Zheng
et al., 2019b,a; Ma et al., 2020; Arivazhagan et al.,
2019, 2020), little work has combined the two tasks
together (Ren et al., 2020).

End-to-end SimulST models feature a smaller
model size, greater inference speed and fewer com-
pounding errors compared to their cascade counter-
part, which perform streaming speech recognition
followed by simultaneous machine translation. In
addition, it has been demonstrated that end-to-end
SimulST systems can have lower latency than cas-
cade systems (Ren et al., 2020).

1The code is available at https://github.com/
pytorch/fairseq

In this paper, we study how to adapt methods
developed for SimulMT to end-to-end SimulST. To
this end, we introduce the concept of pre-decision
module. Such module guides how to group en-
coder states into meaningful units prior to making
a READ/WRITE decision. A detailed analysis of
the latency-quality trade-offs when combining a
fixed or flexible pre-decision module with a fixed
or flexible policy is provided. We also introduce a
novel computation-aware latency metric, adapted
from Average Lagging (AL) (Ma et al., 2019).

2 Task formalization

A SimulST model takes as input a sequence of
acoustic features X = [x1, ...x|X|] extracted from
speech samples every Ts ms, and generates a se-
quence of text tokens Y = [y1, ..., y|Y |] in a target
language. Additionally, it is able to generate yi
with only partial input X1:n(yi) = [x1, ...xn(yi)],
where n(yi) ≤ |X| is the number of frames needed
to generate the i-th target token yi. Note that n is a
monotonic function, i.e. n(yi−1) ≤ n(yi).

A SimulST model is evaluated with respect to
quality, using BLEU (Papineni et al., 2002), and
latency. We introduce two latency evaluation meth-
ods for SimulST that are adapted from SimulMT.
We first define two types of delays to generate
the word yi, a computation-aware (CA) and a non
computation-aware (NCA) delay. The CA delay
of yi, dCA(yi), is defined as the time that elapses
(speech duration) from the beginning of the pro-
cess to the prediction of yi, while the NCA delay
for yi dCA(yi) is defined by dNCA(yi) = Ts · n(yi).
Note that dNCA is an ideal case for dCA where the
computational time for the model is ignored. Both
delays are measured in milliseconds. Two types of
latency measurement, LCA and LNCA, are calcu-
lated accordingly: L = C(D) where C is a latency
metric and D = [d(y1), ..., d(y|Y |)].

https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
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To better evaluate the latency for SimulST, we
introduce a modification to AL. We assume an ora-
cle system that can perform perfect simultaneous
translation for both latency and quality, while in
Ma et al. (2019) the oracle is ideal only from the
latency perspective. We evaluate the lagging based
on time rather than steps. The modified AL metric
is defined in Eq. (1):

AL =
1

τ(|X|)

τ(|X|)∑
i=1

d(yi)−
|X|
|Y ∗|

·Ts ·(i−1) (1)

where |Y ∗| is the length of the reference transla-
tion, τ(|X|) is the index of the first target token
generated when the model read the full input. There
are two benefits from this modification. The first
is that latency is measured using time instead of
steps, which makes it agnostic to preprocessing and
segmentation. The second is that it is more robust
and can prevent an extremely low and trivial value
when the prediction is significantly shorter than the
reference.

3 Method

3.1 Model Architecture
End-to-end ST models directly map a source
speech utterance into a sequence of target tokens.
We use the S-Transformer architecture proposed by
(Di Gangi et al., 2019b), which achieves competi-
tive performance on the MuST-C dataset (Di Gangi
et al., 2019a). In the encoder, a two-dimensional
attention is applied after the CNN layers and a dis-
tance penalty is introduced to bias the attention
towards short-range dependencies.

We investigate two types of simultaneous trans-
lation mechanisms, flexible and fixed policy. In
particular, we investigate monotonic multihead at-
tention (Ma et al., 2020), which is an instance of
flexible policy and the prefix-to-prefix model (Ma
et al., 2019), an instance of fixed policy, designated
by wait-k from now on.

Monotonic Multihead Attention (MMA) (Ma
et al., 2020) extends monotonic attention (Raf-
fel et al., 2017; Arivazhagan et al., 2019) to
Transformer-based models. Each head in each layer
has an independent step probability pij for the ith
target and jth source step, and then uses a closed
form expected attention for training. A weighted
average and variance loss were proposed to control
the behavior of the attention heads and thus the
trade-offs between quality and latency.

Wait-k (Ma et al., 2019) is a fixed policy that
waits for k source tokens, and then reads and
writes alternatively. Wait-k can be a special case
of Monotonic Infinite-Lookback Attention (MILk)
(Arivazhagan et al., 2019) or MMA where the step-
wise probability pij = 0 if j − i < k else pij = 1.

Figure 1: Simul-ST architecture with pre-decision module.
Blue states in the figure indicate the point Simul-SST model
triggers the simultaneous making process

3.2 Pre-Decision Module
In SimulMT, READ or WRITE decisions are made
at the token (word or BPE) level. However, with
speech input, it is unclear when to make such de-
cisions. For example, one could choose to read
or write after each frame or after generating each
encoder state. Meanwhile, a frame typically only
covers 10ms of the input while an encoder state
generally covers 40ms of the input (assuming a
subsampling factor of 4), while the average length
of a word in our dataset is 270ms. Intuitively, a
policy like wait-k will not have enough information
to write a token after reading a frame or generating
an encoder state. In principle, a flexible or model-
based policy such as MMA should be able to handle
granulawhile MMA is more robust tr input. Our
analysis will show, however, that o the granularity
of the input, it also performs poorly when the input
is too fine-grained.

In order to overcome these issues, we introduce
the notion of pre-decision module, which groups
frames or encoder states, prior to making a deci-
sion. A pre-decision module generates a series of
trigger probabilities ptr on each encoder states to
indicate whether a simultaneous decision should be
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made. If ptr > 0.5, the model triggers the simul-
taneous decision making, otherwise keeps reading
new frames. We propose two types of pre-decision
module.

Fixed Pre-Decision A straightforward policy for
a fixed pre-decision module is to trigger simul-
taneous decision making every fixed number of
frames. Let ∆t be the time corresponding to this
fixed number of frames, with ∆t a multiple of Ts,
and re = int(|X|/|H|). ptr at encoder step j is
defined in Eq. (2):

ptr(j) =

{
1 if mod(j · re · Ts,∆t) = 0,

0 Otherwise.
(2)

Flexible Pre-Decision We use an oracle flexible
pre-decision module that uses the source bound-
aries either at the word or phoneme level. Let A be
the alignment between encoder states and source
labels (word or phoneme). A(hi) represents the
token that hi aligns to. The trigger probability can
then be defined in Eq. (3):

ptr(j) =

{
0 if A(hj) = A(hj−1)

1 Otherwise.
(3)

4 Experiments

We conduct experiments on the English-German
portion of the MuST-C dataset (Di Gangi et al.,
2019a), where source audio, source transcript and
target translation are available. We train on 408
hours of speech and 234k sentences of text data.
We use Kaldi (Povey et al., 2011) to extract 80 di-
mensional log-mel filter bank features, computed
with a 25ms window size and a 10ms window
shift. For text, we use SentencePiece (Kudo and
Richardson, 2018) to generate a unigram vocab-
ulary of size 10,000. We use Gentle2 to gener-
ate the alignment between source text and speech
as the label to generate the oracle flexible pre-
decision module. Translation quality is evalu-
ated with case-sensitive detokenized BLEU with
SACREBLEU (Post, 2018). The latency is eval-
uated with our proposed modification of AL (Ma
et al., 2019). All results are reported on the MuST-
C dev set.

All speech translation models are first pre-
trained on the ASR task where the target vocab-
ulary is character-based, in order to initialize the

2https://lowerquality.com/gentle/

encoder. We follow the same hyperparameter set-
tings from (Di Gangi et al., 2019b). We follow
the latency regularization method introduced by
(Ma et al., 2020; Arivazhagan et al., 2019), The
objective function to optimize is

L = −log (P (Y |X)) + λmax (C(D), 0) (4)

Where C is a latency metric (AL in this case) and
D is described in Section 2. Only samples with
AL > 0 are regularized to avoid overfitting. For
the models with monotonic multihead attention, we
first train a model without latency with λlatency =
0. After the model converges, λlatency is set to a
desired value and the model is continue trained
until convergence.

The latency-quality trade-offs of the 4 types of
model from the combination of fixed or flexible pre-
decision with fixed or flexible policy are presented
in Fig. 2. The non computation-aware delays are
used to calculate the latency metric in order to
evaluate those trade-offs from a purely algorithmic
perspective.

Fixed Pre-Decision + Fixed Policy 3 (Fig. 2a).
As expected, both quality and latency increase with
step size and lagging. In addition, the latency-
quality trade-offs are highly dependent on the step
size of the pre-decision module. For example, with
step size 120ms, the performance is very poor even
with large k because of very limited information
being read before writing a target token. Large
step sizes improve the quality but introduce a lower
bound on the latency. Note that step size 280ms,
which provides an effective latency-quality trade-
off compared to other step sizes, also matches the
average word length of 271ms. This motivates the
study of a flexible pre-decision module based on
word boundaries.

Fixed Pre-Decision + Flexible Policy 4 (Fig. 2b)
Similar to wait-k, MMA obtains very poor perfor-
mance with a small step size of 120ms. For other
step sizes, MMA obtains similar latency-quality
trade-offs, demonstrating some form of robustness
to the step size.

Flexible Pre-Decision Curve ? and in figure
Fig. 2 show latency-quality trade-offs when the pre-
decision module is determined by oracle word or
phoneme boundaries. Note that a SimulST model

3k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
4λ = 0.001, 0.004, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1
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Figure 2: Latency-Quality trade-off curves. The unit of AL is millisecond
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Figure 3: Comparison of best models in four settings
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Figure 4: Computation-aware latency for fixed pre-decision
+ wait-k policy. Points on dotted lines are computation-aware,
without lines are non-computation-aware

would not normally have access to this informa-
tion and that the purpose of this experiment is
to guide future design of a flexible pre-decision
model. First, as previously observed, the gran-
ularity of the pre-decision greatly influences the
latency-quality trade-offs. Models using phoneme
boundaries obtain very poor translation quality be-
cause those boundaries are too granular, with an
average phoneme duration of 77ms. In addition,
comparing MMA and wait-k with phoneme bound-
aries, MMA is found to be more robust to the gran-
ularity of the pre-decision.

Best Curves The best settings for each approach

are compared in Fig. 3. For fixed pre-decision,
we choose the setting that has the best quality for
each latency bucket of 500ms, while for the flexible
pre-decision we use oracle word boundaries. For
both wait-k and MMA, the flexible pre-decision
module outperforms the fixed pre-decision mod-
ule. This is expected since the flexible pre-decision
module uses oracle information in the form of pre-
computed word boundaries but provides a direc-
tion for future research. The best latency-quality
trade-offs are obtained with MMA and flexible pre-
decision from word boundaries.

4.1 Computation Aware Latency

We also consider the computation-aware latency
described in Section 2, shown in Fig. 4. The fo-
cus is on fixed pre-decision approaches in order to
understand the relation between the granularity of
the pre-decision and the computation time. Fig. 4
shows that as the step size increases, the differ-
ence between the NCA and the CA latency shrinks.
This is because with larger step sizes, there is less
overhead of recomputing the bidirectional encoder
states 5. We recommend future work on SimulST
to make use of CA latency as it reflects a more real-
istic evaluation, especially in low-latency regimes,
and is able to distinguish streaming capable sys-
tems.

5 Conclusion

We investigated how to adapt SimulMT methods
to end-to-end SimulST by introducing the concept
of pre-decision module. We also adapted Average
Lagging to be computation-aware. The effects of
combining a fixed or flexible pre-decision module

5This is a common practice in SimulMT where the input
length is significantly shorter than in SimulST (Arivazhagan
et al., 2019; Ma et al., 2019; Arivazhagan et al., 2020)
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with a fixed or flexible policy were carefully ana-
lyzed. Future work includes building an incremen-
tal encoder to reduce the CA latency and design a
learnable pre-decision module.
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