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Abstract

Intermediate-task training—fine-tuning a pre-
trained model on an infermediate task before
fine-tuning again on the target task—often
improves model performance substantially on
language understanding tasks in monolingual
English settings. We investigate whether En-
glish intermediate-task training is still helpful
on non-English target tasks. Using nine in-
termediate language-understanding tasks, we
evaluate intermediate-task transfer in a zero-
shot cross-lingual setting on the XTREME
benchmark.  We see large improvements
from intermediate training on the BUCC and
Tatoeba sentence retrieval tasks and moder-
ate improvements on question-answering tar-
get tasks. MNLI, SQuAD and HellaSwag
achieve the best overall results as interme-
diate tasks, while multi-task intermediate of-
fers small additional improvements. Using
our best intermediate-task models for each tar-
get task, we obtain a 5.4 point improvement
over XLM-R Large on the XTREME bench-
mark, setting the state of the art! as of June
2020. We also investigate continuing multi-
lingual MLM during intermediate-task train-
ing and using machine-translated intermediate-
task data, but neither consistently outperforms
simply performing English intermediate-task
training.

1 Introduction

Zero-shot cross-lingual transfer involves training
a model on task data in one set of languages (or
language pairs, in the case of translation) and eval-
uating the model on the same task in unseen lan-
guages (or pairs). In the context of natural language
understanding tasks, this is generally done using a
pretrained multilingual language-encoding model

*Equal contribution.

!The state of art on XTREME at the time of final publi-

cation in September 2020 is held by Fang et al. (2020), who
introduce an orthogonal method.
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such as mBERT (Devlin et al., 2019a), XLM (Con-
neau and Lample, 2019) or XLM-R (Conneau et al.,
2020) that has been pretrained with a masked lan-
guage modeling (MLM) objective on large corpora
of multilingual data, fine-tune it on task data in
one language, and evaluate the tuned model on the
same task in other languages.

Intermediate-task training (STILTs; Phang et al.,
2018) consists of fine-tuning a pretrained model on
a data-rich intermediate task, before fine-tuning a
second time on the target task. Despite its simplic-
ity, this two-phase training setup has been shown
to be helpful across a range of Transformer models
and target tasks (Wang et al., 2019a; Pruksachatkun
et al., 2020), at least within English settings.

In this work, we propose to use intermediate
training on English tasks to improve zero-shot
cross-lingual transfer performance. Starting with a
pretrained multilingual language encoder, we per-
form intermediate-task training on one or more
English tasks, then fine-tune on the target task in
English, and finally evaluate zero-shot on the same
task in other languages.

Intermediate-task training on English data intro-
duces a potential issue: We train the pretrained mul-
tilingual model extensively on only English data
before evaluating it on non-English target task data,
potentially causing the model to lose the knowl-
edge of the other languages that was acquired dur-
ing pretraining (Kirkpatrick et al., 2017; Yogatama
et al.,, 2019). To mitigate this issue, we experi-
ment with mixing in multilingual MLM training
updates during the intermediate-task training. In
the same vein, we also conduct a case study where
we machine-translate intermediate task data from
English into three other languages (German, Rus-
sian and Swahili) to investigate whether interme-
diate training on these languages improves target
task performance in the same languages.

Concretely, we use the pretrained XLM-R (Con-
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Figure 1: We investigate the benefit of injecting an additional phase of intermediate-task training on English
language task data. We also consider variants using multi-task intermediate-task training, as well as continuing
multilingual MLM during intermediate-task training. Best viewed in color.

neau et al., 2020) encoder and perform experi-
ments on 9 target tasks from the recently introduced
XTREME benchmark (Hu et al., 2020), which aims
to evaluate zero-shot cross-lingual transfer perfor-
mance across diverse target tasks across up to 40
languages each. We investigate how training on
9 different intermediate tasks, including question
answering, sentence tagging, sentence completion,
paraphrase detection, and natural language infer-
ence impacts zero-shot cross-lingual transfer per-
formance. We find the following:

* Intermediate-task training on SQuAD, MNLI,
and HellaSwag yields large target-task im-
provements of 8.2, 7.5, and 7.0 points on
the development set, respectively. Multi-task
intermediate-task training on all 9 tasks per-
forms best, improving by 8.7 points.

* Applying intermediate-task training to BUCC
and Tatoeba, the two sentence retrieval target
tasks that have no training data of their own,
yields dramatic improvements with almost ev-
ery intermediate training configuration. Ty-
DiQA shows consistent improvements with
many intermediate tasks, whereas XNLI does
not see benefits from intermediate training.

» Evaluating our best performing models for
each target task on the XTREME benchmark
yields an average improvement of 5.4 points,
setting the state of the art as of writing.
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* Training on English intermediate tasks out-
performs the more complex alternatives of
(i) continuing multilingual MLM during
intermediate-task training, and (ii) using
machine-translated intermediate-task data.

2 Approach

We follow a three-phase approach to training, illus-
trated in Figure 1: (i) we use a publicly available
model pretrained on raw multilingual text using
MLM; (ii) we perform intermediate-task training
on one or more English intermediate tasks; and
(iii) we fine-tune the model on English target-task
training data, before evaluating it on target-task test
data in each target language.

In phase (ii), our intermediate tasks have English
input data. In Section 2.4, we investigate an alterna-
tive where we machine-translate intermediate-task
data to other languages, which we use for training.
We experiment with both single- and multi-task
training for intermediate-task training. We use tar-
get tasks from the recent XTREME benchmark for
zero-shot cross-lingual transfer.

2.1 Intermediate Tasks

We study the effect of intermediate-task training
(STILTs; Phang et al., 2018) with nine different
English intermediate tasks, described in Table 1.
We choose the tasks below based to cover a vari-
ety of task formats (classification, question answer-
ing, and multiple choice) and based on evidence



Name | Train| |Dev| |Test| Task Genre/Source
Intermediate tasks

ANLIT 1,104,934 22,857 — natural language inference  Misc.

MNLI 392,702 20,000 — natural language inference  Misc.

QQP 363,846 40,430 —  paraphrase detection Quora questions

SQuAD v2.0 130,319 11,873 —  span extraction Wikipedia

SQuAD v1.1 87,599 10,570 —  span extraction Wikipedia

HellaSwag 39,905 10,042 —  sentence completion Video captions & Wikihow

CCG 38,015 5,484 — tagging Wall Street Journal

Cosmos QA 25,588 3,000 — question answering Blogs

CommonsenseQA 9,741 1,221 —  question answering Crowdsourced responses
Target tasks (XTREME Benchmark)

XNLI 392,702 2,490 5,010 natural language inference =~ Misc.

PAWS-X 49,401 2,000 2,000 paraphrase detection Wiki/Quora

POS 21,253 3,974 47-20,436  tagging Misc.

NER 20,000 10,000 1,000-10,000 named entity recognition Wikipedia

XQuAD 87,599 34,726 1,190 question answering Wikipedia

MLQA 87,599 34,726 4,517-11,590  question answering Wikipedia

TyDiQA-GoldP 3,696 634 323-2,719  question answering Wikipedia

BUCC - - 1,896-14,330  sentence retrieval Wiki / news

Tatoeba - - 1,000  sentence retrieval Misc.

Table 1: Overview of the intermediate tasks (top) and target tasks (bottom) in our experiments. For target tasks,
Train and Dev correspond to the English training and development sets, while Test shows the range of sizes for the
target-language test sets for each task. XQuAD, TyDiQA and Tateoba do not have separate held-out development

sets.

of positive transfer from literature. Pruksachatkun
et al. (2020) shows that MNLI (of which ANLIis
a superset), CommonsenseQA, Cosmos QA and
HellaSwag yield positive transfer to a range of
downstream English-language tasks in intermedi-
ate training. CCG involves token-wise prediction
and is similar to the POS and NER target tasks.
Both versions of SQuAD are widely-used question-
answering tasks, while QQP is semantically sim-
ilar to sentence retrieval target tasks (BUCC and
Tatoeba) as well as PAWS-X, another paraphrase-
detection task.

ANLI + MNLI + SNLI (ANLI") The Adver-
sarial Natural Language Inference dataset (Nie
et al., 2020) is collected using model-in-the-loop
crowdsourcing as an extension of the Stanford Nat-
ural Language Inference (SNLI; Bowman et al.,
2015) and Multi-Genre Natural Language Infer-
ence (MNLI; Williams et al., 2018) corpora. We
follow Nie et al. (2020) and use the concatenated
ANLI, MNLI and SNLI training sets, which we
refer to as ANLI™. For all three natural language
inference tasks, examples consist of premise and
hypothesis sentence pairs, and the task is to classify
the relationship between the premise and hypothe-
sis as entailment, contradiction, or neutral.
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CCG CCGbank (Hockenmaier and Steedman,
2007) is a conversion of the Penn Treebank into
Combinatory Categorial Grammar (CCG) deriva-
tions. The CCG supertagging task that we use
consists of assigning lexical categories to individ-
ual word tokens, which together roughly determine
a full parse.”

CommonsenseQA CommonsenseQA (Talmor
et al., 2019) is a multiple-choice QA dataset gener-
ated by crowdworkers based on clusters of concepts
from ConceptNet (Speer et al., 2017).

Cosmos QA Cosmos QA is multiple-choice
commonsense-based reading comprehension
dataset (Huang et al., 2019b) generated by
crowdworkers, with a focus on the causes and
effects of events.

HellaSwag HellaSwag (Zellers et al., 2019) is a
commonsense reasoning dataset framed as a four-
way multiple choice task, where examples consist
of an incomplete paragraph and four choices of
spans, only one of which is a plausible continuation
of the scenario. It is built using adversarial filtering
(Zellers et al., 2018; Le Bras et al., 2020) with
BERT.

2If a word is tokenized into sub-word tokens, we use the

representation of the first token for the tag prediction for that
word as in Devlin et al. (2019a).



MNLI In additional to the full ANLIT, we also
consider the MNLI task as a standalone interme-
diate task because of its already large and diverse
training set.

QQP Quora Question Pairs? is a paraphrase de-
tection dataset. Examples in the dataset consist of
two questions, labeled for whether they are seman-
tically equivalent.

SQuAD Stanford Question Answering Dataset
(Rajpurkar et al., 2016, 2018) is a question-
answering dataset consisting of passages extracted
from Wikipedia articles and crowd-sourced ques-
tions and answers. In SQuAD version 1.1, each
example consists of a context passage and a ques-
tion, and the answer is a text span from the context.
SQuAD version 2.0 includes additional questions
with no answers, written adversarially by crowd-
workers. We use both versions in our experiments.

2.2 Target Tasks

We use the 9 target tasks from the XTREME bench-
mark, which span 40 different languages (here-
after referred to as the rarget languages): Cross-
lingual Question Answering (XQuAD; Artetxe
et al., 2020b); Multilingual Question Answer-
ing (MLQA; Lewis et al., 2020); Typologically
Diverse Question Answering (TyDiQA-GoldP;
Clark et al., 2020); Cross-lingual Natural Language
Inference (XNLI; Conneau et al., 2018); Cross-
lingual Paraphrase Adversaries from Word Scram-
bling (PAWS-X; Yang et al., 2019); Universal De-
pendencies v2.5 (Nivre et al., 2018) POS tagging;
Wikiann NER (Pan et al., 2017); BUCC (Zweigen-
baum et al., 2017, 2018), which requires identi-
fying parallel sentences from corpora of different
languages; and Tatoeba (Artetxe and Schwenk,
2019), which involves aligning pairs of sentences
with the same meaning.

Among the 9 tasks, BUCC and Tatoeba are sen-
tence retrieval tasks that do not include training sets,
and are scored based on the similarity of learned
representations (see Appendix A). XQuAD, Ty-
DiQA and Tatoeba do not include development sets
separate from the test sets.* For all XTREME tasks,
we follow the training and evaluation protocol de-
scribed in the benchmark paper (Hu et al., 2020)

*http://data.quora.com/
First-Quora-DatasetRelease—Question-Pairs

“UDPOS also does not include development sets for
Kazakh, Thai, Tagalog or Yoruba.

and their sample implementation.’ Intermediate-
and target-task statistics are shown in Table 1.

2.3 Multilingual Masked Language Modeling

Our setup requires that we train the pretrained mul-
tilingual model extensively on English data before
using it on a non-English target task, which can
lead to the catastrophic forgetting of other lan-
guages acquired during pretraining. We investi-
gate whether continuing to train on the multilin-
gual MLLM pretraining objective while fine-tuning
on an English intermediate task can prevent catas-
trophic forgetting of the target languages and im-
prove downstream transfer performance.

We construct a multilingual corpus across the 40
languages covered by the XTREME benchmark us-
ing Wikipedia dumps from April 14, 2020 for each
language and the MLLM data creation scripts from
the jiant 1.3 library (Phang et al., 2020). In total,
we use 2 million sentences sampled across all 40
languages using the sampling ratio from Conneau
and Lample (2019) with o = 0.3.

2.4 Translated Intermediate-Task Training

Large-scale labeled datasets are rarely available in
languages other than English for most language-
understanding benchmark tasks. Given the avail-
ability of increasingly performant machine trans-
lation models, we investigate if using machine-
translated intermediate-task data can improve same-
language transfer performance, compared to using
English intermediate task data.

We translate training and validation data of
three intermediate tasks: QQP, HellaSwag, and
MNLI. We choose these tasks based on the size
of the training sets and because their example-
level (rather than word-level) labels can be easily
mapped onto translated data. To translate QQP
and HellaSwag, we use pretrained machine trans-
lation models from OPUS-MT (Tiedemann and
Thottingal, 2020). These models are trained with
Marian-NMT (Junczys-Dowmunt et al., 2018) on
OPUS data (Tiedemann, 2012), which integrates
several resources depending on the available cor-
pora for the language pair. For MNLI, we use
the publicly available machine-translated training
data of XNLI provided by the XNLI authors.® We
use German, Russian, and Swabhili translations of

Shttps://github.com/google-research/
xtreme

6According to Conneau et al. (2018), these data are trans-
lated using a Facebook internal machine translation system.
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all three datasets instead of English data for the
intermediate-task training.

3 Experiments and Results

3.1 Models

We use the pretrained XLM-R Large model (Con-
neau et al., 2020) as a starting point for all our
experiments, as it currently achieves state-of-the-
art performance on many zero-shot cross-lingual
transfer tasks.” Details on intermediate- and target-
task training can be found in Appendix A.

XLM-R For our baseline, we directly fine-tune
the pretrained XLM-R model on each target task’s
English training data (if available) and evaluate
zero-shot on non-English data, closely follow-
ing the sample implementation for the XTREME
benchmark.

XLM-R + Intermediate Task In our main ap-
proach, as described in Figure 1, we include an
additional intermediate-task training phase before
training and evaluating on the target tasks as de-
scribed above.

We also experiment with multi-task training on
all available intermediate tasks. We follow Raf-
fel et al. (2020) and sample batches of examples
for each task with probability r,, = %,
where e, is the number of examples in task m and
the constant K = 27 limits the oversampling of
data-rich tasks.

XLM-R + Intermediate Task + MLM To in-
corporate multilingual MLM into the intermediate-
task training, we treat multilingual MLM as an
additional task for intermediate training, using the
same multi-task sampling strategy as above.

XLM-R + Translated Intermediate Task We
translate intermediate-task training and validation
data for three tasks and fine-tune XLM-R on trans-
lated intermediate-task data before we train and
evaluate on the target tasks.

3.2 Software

Experiments were carried out using the jiant (Phang
et al., 2020) library (2.0 alpha), based on PyTorch
(Paszke et al., 2019) and Transformers (Wolf et al.,
2019).

"XLM-R Large (Conneau et al., 2020) is a 50m-parameter
variant of the RoOBERTa masked language model (Liu et al.,
2019b) trained on a cleaned version of CommonCrawl on
100 languages. Notably, Yoruba is used in the POS and NER
XTREME tasks but not is not in the set of 100 languages.
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3.3 Results

We train three versions of each intermediate-task
model with different random seeds. For each run,
we compute the average target-task performance
across languages, and report the median perfor-
mance across the three random seeds.

Intermediate-Task Training As shown in Ta-
ble 2, no single intermediate task yields positive
transfer across all target tasks. The target tasks
TyDiQA, BUCC and Tatoeba see consistent gains
from most or all intermediate tasks. In particu-
lar, BUCC and Tatoeba, the two sentence retrieval
tasks with no training data, benefit universally
from intermediate-task training. PAWS-X, NER,
XQuAD and MLQA also exhibit gains with the
additional intermediate-task training on some inter-
mediate tasks. On the other hand, we find generally
no or negative transfer to XNLI and POS.

Among the intermediate tasks, we find that
MNLI performs best; with meaningful improve-
ments across the PAWS-X, TyDiQA, BUCC and
Tatoeba tasks. ANLI™, SQuAD v1.1, SQuAD v2.0
and HellaSwag also show strong positive transfer
performance: SQuAD v1.1 shows strong positive
transfer across all three QA tasks, SQuAD v2.0
shows the most positive transfer to TyDiQA, while
HellaSwag shows the most positive transfer to NER
and BUCC tasks. ANLI"does not show any im-
provement over MNLI (of which it is a superset),
even on XNLI for which it offers additional directly
relevant training data. This mirrors negative find-
ings from Nie et al. (2020) on NLI evaluations and
Bowman et al. (2020) on transfer within English.
QQP significantly improves sentence retrieval-task
performance, but has broadly negative transfer to
the other target tasks.® CCG also has relatively
poor transfer performance, consistent with Pruk-
sachatkun et al. (2020).

Among our intermediate tasks, both SQuAD
v1.1 and MNLI also serve as training sets for target
tasks (for XNLI and XQuAD/MLQA respectively).
While both tasks show overall positive transfer,
SQuAD vl.1 actually markedly improves the per-
formance in XQuAD and MLQA, while MNLI
slightly hurts XNLI performance. We hypothe-
size that the somewhat surprising improvements
to XQuAD and MLQA performance from SQuAD
v1.1 arise due to the baseline XQuAD and MLQA

8For QQP, on 2 of the 3 random seeds the NER model
performed extremely poorly, leading to the large negative
transfer of -45.4.



Target tasks

XNLI PAWS-X POS NER  XQuAD MLQA TyDiIQA  BUCC Tatoeba Avg.

Metric acc. acc. FI FI Fl/EM Fl/EM Fl/EM FI acc. -

# langs. 15 7 33 40 11 7 9 5 37 -
XLM-R 80.1 86.5 75.7 62.8 76.1/60.0 70.1/51.5 65.6/48.2 71.5 31.0 67.2
ANLI* -0.8 -0.0 -14 -35 -1.1/-0.5 -0.6/-0.8 -0.6/-3.0 +19.9 +48.2 +6.6
MNLI -1.2 +1.4 -07 +05 -03/-0.1 +0.2/+0.2 -1.0/-1.6 +20.0 +48.8 +7.5
E QQpP -44 -4.8 -6.5 454 -38/-38 -39/-44 -11.1/-10.2 +17.1 +49.5 -1.5
S  SQuADvl.1 -1.9 +12 -08 -04 +1.8/+25 +22/+26 +97/+108 +189  +413  +8.1
s SQuADv2 -1.6 +1.9 -1.1 +08 -05/+07 -04/+0.1 +104/+11.3 +19.3 +43.4 +8.2
£ HellaSwag -7.1 + 1.8 -07 +16 -0.0/+05 -0.1/+0.2 -0.0/-1.0 +20.3 +47.6 +7.0
‘é CCG -2.6 -34 -2.0 -1.5 -1.5/-1.3 -1.6/-1.5 -28/-6.2 +11.7 +41.9 +4.1
CosmosQA -2.1 -0.3 -14  -15 -09/-13 -1.5/7-20 +0.5/-0.6 +19.2 +43.9 +6.1
CSQA -2.9 -2.8 - 1.7 -1.6 -1.0/-1.8 -1.0/-0.6 +35/+29 +18.1 +48.6 +6.5
Multi-task -09 + 1.7 -1.0 +18 +03/409 +02/+0.5 +5.8/+6.0 +19.6 +49.9 +8.7
ANLI" - 1.1 +1.4 +00 +04 -19/-17 -0.7/-0.6 +09/+0.5 +18.6 +46.2 +7.1
MNLI -0.7 +1.6 -1.6 +10 -0.7/+0.1 +04/+0.8 -1.8/-3.2 +17.1 +44.3 +6.6
= QQpP -1.3 - 1.1 -24  -09 -03/-02 +00/+0.2 -1.6/-42 +14.4 +39.8 +5.0
= SQuADvl.1 =26 +03 220 -09 +02/+1.6 +0.1/+1.1 +85/+95 +160  +403  +68
= SQuADv2 -1.7 +2.1 -14  +10 -08/+0.1 -0.8/-0.5 +83/+8.9 +15.6 +31.3 + 6.1
f: HellaSwag -33 +2.0 -07 +08 -08/-00 +0.1/+406 +03/+1.0 +6.3 +22.3 +3.1
2 CCG -1.0 -1.3 -1.2 -1.9 -19/-22 -2.1/-2.6 -55/-62 +8.8 +36.1 +3.3
CosmosQA -1.0 -1.0 -1.6 -38 -3.1/-33 -3.7/-42 -0.6/-32 +15.5 +42.7 +4.7
CSQA -0.5 +0.3 -1.0 -0.7 -09/-1.0 -0.7/-0.6 +2.1/+04 +11.6 +17.2 +29

XTREME Benchmark Scores'

XLM-R (Hu et al., 2020) 79.2 86.4 72.6 65.4 76.6/ 60.8 71.6/53.2 65.1/45.0 66.0 57.3 68.1
XLM-R (Ours) 79.5 86.2 74.0 62.6 76.1/60.0 70.2/51.2 65.6/48.2 64.5 31.0 64.8
Our Best Models? 80.0 87.9 74.4 64.0 78.7/63.3 72.4/53.7 76.0 / 59.5 71.9 81.2 73.5

Human (Hu et al., 2020)  92.8 97.5 970 - 91.2/823  91.2/823 90.1/- - - -

Table 2: Intermediate-task training results. We compute the average target task performance across all languages,
and report the median over 3 separate runs with different random seeds. Multi-task experiments use all intermediate
tasks. We underline the best results per target task with and without intermediate MLM co-training, and bold-face
the best overall scores for each target task. T: XQuAD, TyDiQA and Tatoeba do not have held-out test data and are
scored using development sets in the benchmark. ¥: Results obtained with our best-performing intermediate task
configuration for each target task, selected based on the development set. The results for individual languages can

be found in Appendix B.

models being under-trained. For all target-task fine-
tuning, we follow the sample implementation for
target task training in the XTREME benchmark,
which trains on SQuAD for only 2 epochs. This
may explain why an additional phase of SQuAD
training can improve performance. Conversely, the
MNLI-to-XNLI model might be over-trained, given
the MNLI training set is approximately 4 times as
large as the SQuUAD v1.1 training set.

Multi-Task Training Multi-task training on all
intermediate tasks attains the best overall average
performance on the XTREME tasks, and has the
most positive transfer to NER and Tatoeba tasks.
However, the overall margin of improvement over
the best single intermediate-task model is relatively
small (only 0.3, over MNLI), while requiring sig-
nificantly more training resources. Many single
intermediate-task models also outperform the multi-
task model in individual target tasks. Wang et al.
(2019b) also found more mixed results from a hav-
ing an initial phase of multi-task training, albeit

only among English language tasks across a dif-
ferent set of tasks. On the other hand, multi-task
training precludes the need to do intermediate-task
model selection, and is a useful method for incor-
porating multiple, diverse intermediate tasks.

MLM Incorporating MLM during intermediate-
task training shows no clear trend. It reduces neg-
ative transfer, as seen in the cases of Common-
senseQA and QQP, but it also tends to somewhat
reduce positive transfer. The reductions in positive
transfer are particularly significant for the BUCC
and Tatoeba tasks, although the impact on TyDiQA
is more mixed. On balance, we do not see that in-
corporating MLM improves transfer performance.

XTREME Benchmark Results At the bottom
of Table 2, we show results obtained by XLM-R
on the XTREME benchmark as reported by
Hu et al. (2020), results obtained with our re-
implementation of XLM-R (i.e. our baseline), and
results obtained with our best models, which use
intermediate-task configuration selected according
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TL Model XNLI PAWS-X POS NER XQuAD MLQA TyDiQA BUCC Tatoeba
= XLM-R 89.3 93.4 95.9 81.6 86.3/74.2 81.6/68.6 70.4 /56.6 - -
72}
b MNLI., -1.2 + 1.6 +03 +26 -21/-16 +1.1/+14 +1.1/+1.1 - -
é QQP., -3.2 -04 -22  -58 -4.0/-3.6 -2.6/-26 -6.2/-50 - -
HellaSwag.,, -0.8 +1.5 +0.6 +2.7 -02/+14 +18/+23 +1.7/+25 — —
XLM-R 83.8 88.1 88.6  78.6 77.7161.2 69.1/52.0 - 71.7 63.9
= MNLI., -0.8 +0.9 -0.1 -0.8 -03/-1.0 -1.0/-0.2 - +16.5 +32.7
g MNLIse -04 +0.5 -03 -09 +0.2/-03 -24/-20 - +17.0 +33.7
5 QQP., -22 -4.2 -32  -73 -45/-4.7 -6.7/-64 - +16.5 +32.6
o QQPge -2.6 -9.1 -32 229  -6.6/-59 -7.717-6.6 - +16.0 +33.5
HellaSwag., -0.3 +0.3 +0.1 +05 +1.0/+02 -03/+04 - +16.9 +33.8
HellaSwag. -0.2 +0.2 -04 -04 +02/-02 -35/-25 - +16.3 +33.5
XLM-R 79.2 - 89.5 69.3 77.7159.8 - 65.4/43.6 79.2 42.1
= MNLI.n +0.3 - -00 +08 +01/+15 - -1.5/-4.6 +14.3 +47.1
-g MNLI,, -0.6 - -03 +19 -04/+13 - +11.2/+16.1  +13.1 +48.3
z QQPe.n -0.7 - -29 -186 -35/-24 - -8.1/-54 +14.1 +49.5
& QQP., -3.0 - -10.6  -59.1 -52/-39 - -14.4/-12.1 +13.3 +46.7
HellaSwag., -0.9 - -00 +14 +08/+29 - -4.0/-10.6 +14.7 +49.9
HellaSwag., -0.3 - -04 +28 +02/+02 - +8.5/+13.2 -71.6 -23.5
XLM-R 724 - - 69.8 - - 67.2/48.7 - 7.9
o= MNLI., -3.0 - - +0.6 - - -03/-0.2 - +24.9
= MNLIy - 1.1 - - -2.4 - - +13.8/+23.4 - +47.9
§ QQP., -2.8 - - -4.6 - - -12.7/7-12.2 - +27.2
n QQPsy, -7.1 - - -32.1 - - -7.0/-04 - +41.8
HellaSwag.,, -04 - - +0.1 - - -09/-04 - +27.2
HellaSwag,,, -9.8 - - +0.4 - - +15.6 / +26.3 - -0.5

Table 3: Experiments with translated intermediate-task training and validation data evaluated on all XTREME
target tasks. In each target language (TL) block, models are evaluated on a single target language. We show results
for models trained on original intermediate-task training data (en) and compare it to models trained on translated
data {de, ru, sw}. ‘-’ indicates that target task data is not available for that target language.

to development set performance on each target task.
Based on the results in Table 2, which reflect the
median over 3 runs, we pick the best intermediate-
task configuration for each target task, and then
choose the best model out of the 3 runs. Scores on
the XTREME benchmark are computed based on
the respective test sets where available, and based
on development sets for target tasks without sep-
arate held-out test sets. We are generally able to
replicate the best reported XLLM-R baseline results,
except for Tatoeba, where our implementation sig-
nificantly underperforms the reported scores in Hu
et al. (2020), and TyDiQA, where our implemen-
tation outperforms the reported scores. We also
highlight that there is a large margin of difference
between development and test set scores for BUCC—
this is likely because BUCC is evaluated based on
sentence retrieval over the given set of input sen-
tences, and the test sets for BUCC are generally
much larger than the development sets.

Our best models show gains in 8 out of the 9
XTREME tasks relative to both baseline implemen-
tations, attaining an average score of 73.5 across
target tasks, a 5.4 point improvement over the pre-
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vious best reported average score of 68.1. We set
the state of the art on the XTREME benchmark as
of June 2020, though Fang et al. (2020) achieve
higher results and hold the state of the art using
an orthogonal approach at the time of our final
publication in September 2020.

Translated Intermediate-Task Training Data
In Table 3, we show results for experiments us-
ing machine-translated intermediate-training data,
and evaluated on the available target-task lan-
guages. Surprisingly, even when evaluating in-
language, using target-language intermediate-task
data does not consistently outperform using En-
glish intermediate-task data in any of the interme-
diate tasks on average.

In general, cross-lingual transfer to XNLI is neg-
ative regardless of the intermediate-task or the tar-
get language. In contrast, we observe mostly pos-
itive transfer on BUCC, and Tatoeba, with a few
notable exceptions where models fail catastroph-
ically. TyDiQA exhibits positive transfer where
the intermediate- and target-task languages aligned:
intermediate training on Russian or German helps
TyDiQA performance in that respective language,



whereas intermediate training on English hurts non-
English performance somewhat. For the remaining
tasks, there appears to be little correlation between
performance and the alignment of intermediate-
and target-task languages. English language QQP
already has mostly negative transfer to all target
tasks except for BUCC and Tatoeba (see Table 2),
and also shows a similar trend when translated into
any of the three target languages.

We note that the quality of translations may af-
fect the transfer performance. While validation
performance on the translated intermediate tasks
(Table 15) for MNLI and QQP is only slightly
worse than the original English versions, the per-
formance for the Russian and Swahili HellaSwag
is much worse and close to chance. Despite this,
intermediate-task training on Russian and Swahili
HellaSwag improve performance on PAN-X and
TyDiQA, while we see generally poor transfer
performance from QQP. The interaction between
translated intermediate-task data and transfer per-
formance continues to be a complex open ques-
tion. Artetxe et al. (2020a) found that translating
or back-translating training data for a task can im-
prove zero-shot cross-lingual performance for tasks
such as XNLI depending on how the multilingual
datasets are created. In contrast, we train on trans-
lated intermediate-task data and then fine-tune on
a target task with English training data (exclud-
ing BUCC2018 and Tatoeba). The authors of the
XTREME benchmark have also recently released
translated versions of all the XTREME task train-
ing data, which we hope will prompt further inves-
tigation into this matter.

4 Related work

Sequential transfer learning using pretrained
Transformer-based encoders (Phang et al., 2018)
has been shown to be effective for many text clas-
sification tasks. This setup generally involves fine-
tuning on a single task (Pruksachatkun et al., 2020;
Vu et al., 2020) or multiple tasks (Liu et al., 2019a;
Wang et al., 2019b; Raffel et al., 2020), sometimes
referred to as the intermediate task(s), before fine-
tuning on the target task. We build upon this line
of work, focusing on intermediate-task training for
improving cross-lingual transfer.

Early work on cross-lingual transfer mostly re-
lies on the availability of parallel data, where one
can perform translation (Mayhew et al., 2017) or
project annotations from one language into another

(Hwa et al., 2005; Agié et al., 2016). For depen-
dency parsing, McDonald et al. (2011) use delexi-
calized parsers trained on source languages and la-
beled training data for parsing target-language data.
Agi¢ (2017) proposes a parser selection method to
select the single best parser for a target language.

For large-scale cross-lingual transfer outside
NLU, Johnson et al. (2017) train a single mul-
tilingual neural machine translation system with
up to 7 languages and perform zero-shot transla-
tion without explicit bridging between the source
and target languages. Aharoni et al. (2019) ex-
pand this approach to cover over 100 languages
in a single model. Recent works on extending
pretrained Transformer-based encoders to multi-
lingual settings show that these models are effec-
tive for cross-lingual tasks and competitive with
strong monolingual models on the XNLI bench-
mark (Devlin et al., 2019b; Conneau and Lample,
2019; Conneau et al., 2020; Huang et al., 2019a).
More recently, Artetxe et al. (2020a) showed that
cross-lingual transfer performance can be sensitive
to translation artifacts arising from a multilingual
datasets’ creation procedure.

Finally, Pfeiffer et al. (2020) propose adapter
modules that learn language and task representa-
tions for cross-lingual transfer, which allow adap-
tation to languages not seen during pretraining.

5 Conclusion

We evaluate the impact of intermediate-task train-
ing on zero-shot cross-lingual transfer. We investi-
gate 9 intermediate tasks and how intermediate-task
training impacts the zero-shot cross-lingual transfer
to the 9 target tasks in the XTREME benchmark.
Overall, intermediate-task training signifi-
cantly improves the performance on BUCC and
Tatoeba, the two sentence retrieval target tasks
in the XTREME benchmark, across almost every
intermediate-task configuration. Our best mod-
els obtain 5.9 and 23.9 point gains on BUCC and
Tatoeba, respectively, compared to the best avail-
able XLLM-R baseline scores (Hu et al., 2020). We
also observed gains in question-answering tasks,
particularly using SQuAD v1.1 and v2.0 as inter-
mediate tasks, with absolute gains of 2.1 F1 for
XQuAD, 0.8 F1 for MLQA, and 10.4 for F1 Ty-
DiQA, again over the best available baseline scores.
We improve over XLM-R by 5.4 points on aver-
age on the XTREME benchmark. Additionally,
we found multi-task training on all 9 intermedi-
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ate tasks to slightly outperform individual inter-
mediate training. On the other hand, we found
that neither incorporating multilingual MLLM into
the intermediate-task training phase nor translating
intermediate-task data consistently led to improved
transfer performance.

While we have explored the extent to which En-
glish intermediate-task training can improve cross-
lingual transfer, a clear next avenue of investigation
for future work is how the choice of intermediate-
and target-task languages influences transfer across
different tasks.
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A Implementation Details

A.1 Intermediate Tasks

For intermediate-task training, we use a learning
rate of le-5 without MLM, and 5e-6 with MLM.
Hyperparameters in the Table 4 were chosen based
on intermediate task validation performance in an
preliminary search. We use a warmup of 10% of the
total number of steps, and perform early stopping
based on the first 500 development set examples of
each task with a patience of 30. For CCG, where
tags are assigned for each word, we use the repre-
sentation of first sub-word token of each word for
prediction.

Task Batch size  # Epochs
ANLIt 24 2
MNLI 24 2
CCG 24 15
CommonsenseQA 4 10
Cosmos QA 4 15
HellaSwag 24 7
QQP 24 3
SQuAD 8 3
MLM 8 -
Multi-task Mixed 3

Table 4: Intermediate-task training configuration.

A.2 XTREME Benchmark Target Tasks

We follow the sample implementation for the
XTREME benchmark unless otherwise stated. We
use a learning rate of 3e-6, and use the same opti-
mization procedure as for intermediate tasks. Hy-
perparameters in the Table 5 follow the sample im-
plementation. For POS and NER, we use the same
strategy as for CCG for matching tags to tokens.
For BUCC and Tatoeba, we extract the represen-
tations for each token from the 13th self-attention
layer, and use the mean-pooled representation as
the embedding for that example, as in the sample
implementation. Similarly, we follow the sample
implementation and set an optimal threshold for
each language sub-task for BUCC as a similarity
score cut-off for extracting parallel sentences based
on the development set and applied to the test set.

We randomly initialize the corresponding output
heads for each task, regardless of the similarity
between intermediate and target tasks (e.g. even
if both the intermediate and target tasks train on
SQuAD, we randomly initialize the output head in
between phases).
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Task Batch size  # Epochs
XNLI (MNLI) 4 2
PAWS-X 32 5
XQuAD (SQuAD) 16 2
MLQA (SQuAD) 16 2
TyDiQA 16 2
POS 32 10
NER 32 10
BUCC - -
Tatoeba - -

Table 5: Target-task training configuration.

B Per-Language Results



Table 7: Full PAWS-X Results
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ar bg de el en es fr hi ru SW tr ur vi zh  Avg
XLM-R 798 827 838 813 893 844 837 773 792 724 771 789 726 80.0 79.6 80.1
ANLI™ 775 825 823 808 876 835 8.6 765 79.1 704 773 780 735 792 793 794
MNLI 784 828 83.0 813 882 840 8.6 772 795 694 776 779 732 798 79.1 79.7
5 QQP 77.1 81.0 81.6 816 86.1 836 8.0 754 785 696 769 771 727 792 786 787
S SQuADv20 779 813 817 799 856 835 81.8 755 785 706 772 772 737 789 79.6 789
¥ SQuADvl.l 771 821 818 799 87.1 828 8.7 755 786 713 763 773 712 792 786 788
S HellaSwag 786 826 835 806 885 837 831 774 782 720 774 787 735 800 794 798
E CCG 773 819 81.7 798 881 829 832 754 788 699 765 769 714 797 786 788
Cosmos QA 77.1 81.1 817 80.1 874 832 817 743 777 720 752 767 711 783 784 784
CSQA 773 808 819 80.0 875 835 825 763 784 706 763 715 725 796 785 789
Multi-task 769 822 829 810 885 844 825 758 791 711 771 791 720 79.6 792 794
ANLIT 78.5 828 838 815 892 841 825 765 792 727 774 786 727 80.7 80.1 80.0
MNLI 780 829 831 81.1 838 843 834 767 803 722 784 793 734 805 802 802
E QQP 78.0 81.7 833 808 886 845 829 759 783 722 717 186 727 799 789 79.6
S SQuADv20 775 828 833 804 888 8.6 827 760 796 71.6 770 787 729 799 789 79.6
= SQuADvIll 779 817 822 797 87.0 828 821 744 784 712 766 78.1 713 790 786 787
E HellaSwag 793 835 837 818 89.6 845 841 782 799 729 781 801 745 813 80.7 808
CCG 779 825 824 80.8 87.1 838 826 766 789 720 767 782 722 802 784 794
Cosmos QA 78.1 827 827 804 876 839 829 762 795 737 778 790 727 804 796 79.8
CSQA 79.0 834 837 812 890 838 833 769 799 723 78.0 79.1 733 804 80.6 80.2
Table 6: Full XNLI Results

de en es fr ja ko zh Avg

XLM-R 88.1 934 892 893 81.8 81.8 82.0 86.5

ANLIT 88.0 941 89.6 90.7 820 822 819 87.0

MNLI 89.0 950 90.7 909 829 838 842 88.1

5 QQP 839 930 877 887 792 786 797 844

S SQuADv2.0 889 952 917 913 847 845 854 88.8

¥ SQuADvl.l 894 942 911 91.1 838 835 839 881

S HellaSwag 884 950 902 91.1 848 846 845 884

'§ CCG 83,5 923 865 881 780 770 786 835

Cosmos QA 884 938 904 903 843 843 850 88.1

CSQA 859 937 88.6 89.8 817 804 815 86.0

Multi-task 89.0 950 902 91.1 838 835 8.5 883

ANLI™ 88.1 945 90.1 904 840 842 842 879

MNLI 90.1 955 913 913 844 84.1 845 887

E QQP 88.6 943 898 906 81.7 828 823 87.1

= SQuADv2.0 889 950 91.7 92.0 852 839 84.7 888

S SQuADvl.l 89.0 938 903 889 827 822 822 870

'§ HellaSwag 90.3 950 910 905 849 859 848 88.9

CCG 875 933 883 884 815 812 813 859

Cosmos QA 88.1 940 894 900 825 824 823 870

CSQA 88.7 941 89.1 89.8 825 829 822 87.0



af ar bg de el en es et eu fa fi fr he hi hu id it

XLM-R 877 563 879 886 856 959 898 876 728 70.0 849 655 68.1 732 813 81.7 888
ANLIT 879 576 883 888 856 957 894 873 734 720 849 654 709 70.1 829 81.0 883
MNLI 879 566 878 885 846 962 889 869 704 695 841 51.8 70.1 724 812 8l.1 88.6

E QQP 839 526 860 853 817 937 8.7 8.1 70.1 667 793 625 61.1 625 783 792 86.8
S SQuADv2.0 875 580 880 879 836 962 887 866 699 69.1 839 518 713 697 826 81.0 89.0
¥ SQuADvl.l 877 58.1 88.6 884 858 957 894 872 734 70.1 843 651 709 722 818 813 885
S HellaSwag 883 573 885 887 856 96,5 892 876 726 695 847 525 696 748 8l.6 8l.1 89.6
§ CCG 882 562 865 894 859 958 878 879 737 69.1 856 535 688 751 81.8 80.8 86.8
Cosmos QA 884 564 862 880 844 959 889 871 735 712 845 653 675 756 81.1 810 888
CSQA 87.1 557 876 878 858 954 886 873 764 693 847 646 653 676 812 809 86.6
Multi-task 877 585 89.7 888 852 963 894 871 677 71.6 847 527 710 682 815 80.7 89.8
ANLIT 879 584 883 889 863 958 903 878 764 725 851 533 690 725 824 80.7 88.6
MNLI 89.1 572 876 886 851 962 888 880 734 695 851 527 680 769 80.6 804 887
5 QQP 877 563 876 88.6 842 959 8.6 881 763 712 845 597 675 780 818 812 88.8
S SQuADv2.0 885 57.8 878 885 858 962 89.0 861 747 710 846 49.1 682 732 814 808 858
= SQuADvll 88.0 551 88.6 839 853 957 897 857 735 702 835 645 667 744 797 B8l5 868
'§ HellaSwag 883 580 878 883 857 964 872 8.8 740 702 843 515 709 748 799 81.0 884
CCG 88.1 545 8677 892 863 959 875 876 772 714 840 644 663 767 8l.1 814 89.0
Cosmos QA 87.5 57.8 8777 886 855 958 895 881 71.7 701 849 644 689 766 810 800 883
CSQA 87.6 559 874 887 851 956 885 872 764 704 842 651 682 683 8l.6 812 884
ja kk ko mr nl pt ru ta te th t tr ur vi yo zh Avg

XLM-R 31.9 - 504 80.0 90.1 902 895 67.1 90.0 - - 760 656 564 - 409 757
ANLIT 19.4 - 50.7 79.6 90.1 89.7 90.0 69.2 86.6 - - 75.0 66.2 553 - 272 74.8
MNLI 38.1 - 50.7 79.1 904 89.7 894 694 86.7 - - 748 67.6 544 - 48.6 754
5 QQP 6.2 - 459 735 884 882 866 651 817 - - 71.5 59.1 545 - 120 70.1
= SQuADv2.0 394 - 50.8 80.5 90.3 90.1 89.1 685 86.1 - - 741 60.6 54.1 - 453 750
2 SQuADvI.l 309 - 49.7 787 90.5 89.7 893 668 849 - - 744 654 562 - 37.7 753
S HellaSwag 31.1 - 50.5 837 90.1 898 89.5 69.7 862 - - 742 674 545 - 35.1 752
E CCG 17.8 - 503 81.0 90.1 880 889 66.8 884 - - 759 707 555 - 23.1 741
Cosmos QA 16.4 - 503 777 899 89.7 894 679 88.1 - - 76.5 69.2 563 - 232 744
CSQA 32.4 - 493 82.8 894 885 885 669 863 - - 745 635 56.0 - 29.6 745
Multi-task 36.4 - 50.7 79.6 90.0 89.8 889 684 86.2 - - 744 622 555 - 443 75.1
ANLIT 39.0 - 51.2 80.7 902 90.0 89.8 687 87.6 - - 764 662 56.7 - 457 76.1
MNLI 30.1 - 51.0 80.1 90.0 888 89.1 68.8 855 - - 75.1 69.6 554 - 384  75.1
E QQP 27.6 - 50.8 81.0 90.1 895 894 672 88.0 - - 762 703 56.5 - 340 754
S SQuADv2.0 353 - 51.0 802 899 881 893 671 843 - - 755 68.8 569 - 39.0 75.0
s SQuADvL.l 163 - 49.7 794 90.2 90.0 892 68.0 833 - - 75.8 646 573 - 19.0 73.8
§ HellaSwag 354 - 509 784 900 879 893 687 864 - - 754 693 5438 - 436 753
CCG 25.7 - 50.7 86.1 89.8 888 884 68.0 86.6 - - 762 682 555 - 239 1750
Cosmos QA 16.5 - 51.0 809 89.7 889 89.0 674 879 - - 763 70.1 56.0 - 19.6 745
CSQA 30.8 - 518 805 90.5 896 89.0 668 86.5 - - 748 619 563 - 313 748

Table 8: Full POS Results. kk, th, t1 and yo do not have development set data.
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af ar bg bn de el en es et eu fi fr he hi hu id ja jv ka
XLM-R 777 471 819 749 786 763 8l.6 747 772 612 582 783 783 502 687 806 537 808 156 562 614
ANLIT 754 527 781 727 764 763 809 71.6 728 522 60.7 758 774 491 696 79.6 527 789 13.1 543 62.1
MNLI 769 483 805 728 717 7719 842 769 785 621 583 787 811 551 690 811 557 808 164 542 681
E QQp 73.8 409 755 660 713 716 758 655 693 555 499 731 728 426 598 743 492 759 57 544 511
= SQuADv2.0 760 48.0 81.1 71.8 784 782 843 747 784 539 569 789 825 560 689 79.8 564 808 181 618 673
£ SQuADvI.l 791 526 80.1 755 778 781 808 753 767 543 619 787 784 528 656 803 546 808 187 521 624
2 HellaSwag 770 549 827 766 791 789 843 778 780 588 650 775 803 570 712 81.8 543 814 196 569 706
§ CCG 774 515 787 725 784 762 808 73.0 780 569 621 782 713 486 673 797 549 799 159 603 589
Cosmos QA 766 493 792 760 77.8 761 812 732 766 598 558 778 770 468 67.8 794 532 800 14.1 555 578
CSQA 776 46.1 789 754 784 762 813 773 752 59.8 619 780 782 489 676 79.6 556 80.1 11.6 538 577
Multi-task 785 492 820 733 789 801 845 766 785 594 494 79.1 812 564 706 81.0 570 80.7 207 647 686
ANLIT 764 515 807 733 792 7718 843 754 780 577 497 716 80.1 548 689 80.8 548 805 144 549 645
MNLI 780 523 817 730 796 781 844 772 794 596 606 792 814 551 686 81.0 513 81.0 140 620 643
E QQpP 77.1 467 790 729 794 763 819 742 787 618 660 783 780 504 69.1 81.6 532 80.1 151 62.6 60.7
S SQuADv20 780 465 828 717 790 773 842 748 790 616 633 795 800 57.6 675 819 620 807 200 623 632
£ SQuADvl.l 777 580 814 752 780 774 821 696 761 541 584 775 787 548 675 788 499 795 145 559 683
z HellaSwag 787 470 818 738 797 782 848 736 792 558 556 782 794 550 698 813 541 813 185 581 675
CCG 745 464 767 745 769 757 805 726 777 589 596 717 710 481 663 80.1 534 787 138 57.1 582
Cosmos QA 782 39.1 800 738 790 772 814 703 788 654 489 787 777 483 680 808 551 812 132 589 59.0
CSQA 774 488 789 739 788 763 819 752 795 66.7 586 79.6 785 477 682 81.0 553 813 122 604 589
kk ko ml mr ms my nl pt ru SW te th tl tr ur vi zh Avg
XLM-R 48.7 545 588 61.8 541 537 832 807 693 698 582 508 22 732 811 670 749 332 236 628 -
ANLI™ 502 526 612 630 668 465 818 787 670 669 550 521 25 712 780 673 739 433 189 620 -
MNLI 51.7 588 648 613 698 549 830 808 702 703 593 554 1.0 748 805 569 781 389 252 642 -
5 QQpP 504 40.1 512 514 614 325 782 730 508 651 473 414 1.6 674 723 572 679 439 86 559 -
= SQuADv2.0 499 581 61.6 625 721 500 831 823 708 654 626 536 06 748 800 632 789 412 225 641 -
s SQuADvl.l 51.8 57.1 61.7 598 504 522 833 808 698 692 583 495 08 716 79.1 586 763 475 262 630 -
2 HellaSwag 505 584 566 666 728 594 832 825 708 699 637 530 1.1 751 780 700 750 421 297 655 -
§ CCG 524 527 577 596 523 500 825 79.0 67.1 670 553 49.1 26 700 81.0 653 742 376 233 62.1 -
Cosmos QA 484 524 603 62.1 569 502 828 795 674 678 572 514 13 746 807 608 749 348 195 618 -
CSQA 49.7 520 59.1 629 624 461 825 803 654 690 571 512 18 731 802 733 735 353 193 623 -
Multi-task 532 578 608 610 693 542 838 808 694 70.6 589 537 22 752 712 577 756 46.1 304 64.7 -
ANLI* 529 568 600 61.1 754 495 834 809 683 710 572 498 745 790 598 763 31.7 225 632 -
MNLI 547 575 635 633 663 496 834 8.1 703 722 570 535 1.1 741 809 61.1 751 434 228 643 -
E QQp 499 545 633 646 547 490 829 789 687 709 580 507 11 740 823 702 771 403 249 635 -
S SQuADv2.0 521 60.8 651 632 547 548 834 809 716 726 630 541 04 753 804 598 776 33.6 280 647 -
£ SQuADvLl 516 57.7 627 602 622 529 818 777 714 685 597 499 15 729 781 542 715 343 224 626 -
S HellaSwag 536 589 625 632 724 547 828 809 713 706 595 520 24 736 801 584 783 368 249 642 -
CCG 546 535 606 628 69.1 416 807 781 654 681 551 516 13 687 798 619 688 379 198 61.6 -
Cosmos QA 49.7 525 557 602 521 481 829 789 671 666 553 477 09 747 808 595 740 349 193 613 -
CSQA 522 544 604 611 529 478 834 807 685 69.0 579 50.1 14 736 815 632 740 436 193 629 -
Table 9: Full NER Results
ar de el en es hi ru th tr vi zh Avg
XLM-R 725/534 777/612 77.6/592 863/742 80.0/61.0 73.7/575 77.7/59.8 72.8/623 72.6/548 77.6/58.0 68.7/582 76.1/60.0
ANLIH 7297550 77.2/60.7 758/583 849/73.1 784/59.5 73.1/569 76.8/59.9 73.0/633 72.1/550 78.0/57.6 683/59.0 75.5/59.8
MNLI 70.7/532 77.4/60.2 768/59.1 842/72.6 803/625 722/559 71.8/61.3 729/63.5 719/563 78.1/59.7 68.0/60.0 75.5/60.4
5 QQP 68.4/50.4 732/56.5 73.3/559 823/70.6 754/573 685/525 742/575 68.6/60.2 683/514 729/534 663/58.0 72.0/56.7
= SQuADv2.0 73.8/56.0 79.5/62.0 78.6/60.6 86.7/755 81.5/63.6 72.7/562 79.2/61.8 71.0/56.8 750/59.1 78.6/589 688/57.6 76.9/60.7
£ SQuADvl.l 75.9/599 80.3/63.6 803/62.1 883/77.4 81.8/632 76.1/592 80.0/641 756/655 758/59.2 80.5/61.2 70.8/613 78.7/63.3
2 HellaSwag 739/569 78.7/613 77.9/58.8 86.1/75.6 79.6/60.1 743/575 785/62.8 73.6/645 73.5/56.6 78.8/59.1 69.2/594 76.7/61.1
; CCG 71.5/542 763/585 759/582 842/723 79.0/60.1 723/549 76.7/60.0 712/60.9 71.7/553 764/569 67.9/582 74.8/59.0
Cosmos QA 73.2/538 78.1/622 77.3/583 86.7/754 799/619 742/577 779/594 723/61.5 733/556 782/580 683/585 76.3/60.2
CSQA 72.6/534 795/624 783/594 87.1/76.1 81.0/629 749/585 77.6/603 69.7/589 73.4/565 782/58.1 675/573 763/60.3
Multi-task 732/564 79.1/61.8 783/60.0 855/742 81.1/629 740/56.5 71.7/61.7 71.6/61.8 73.7/57.6 78.8/59.1 68.1/57.0 76.5/60.8
ANLI* 72.1/524 773/59.8 76.1/57.6 858/74.1 78.7/588 729/553 769/594 73.0/634 723/553 785/578 70.9/61.0 75.9/59.5
MNLI 725/548 78.4/60.7 77.8/604 864/755 804/613 73.6/566 782/61.7 73.9/645 725/575 79.0/603 69.0/59.7 76.5/61.2
5 QQP 72.8/553 788/61.6 769/58.8 859/744 79.8/61.2 739/563 78.1/613 720/61.0 73.4/577 782/59.0 67.6/572 76.1/604
S  SQuADv2.0 723/550 79.0/633 769/586 853/739 803/61.9 73.1/569 77.8/61.7 725/61.1 72.8/558 77.8/582 684/586 76.0/60.4
< SQuADvL.l 733/561 79.0/629 78.8/60.5 86.6/755 80.7/62.4 74.6/572 79.2/628 71.2/589 738/563 79.4/60.6 69.3/59.6 76.9/61.2
E HellaSwag 733/562 77.4/59.7 78.0/587 851/73.6 79.8/61.2 747/57.6 719/61.0 727/61.8 732/57.6 71.8/588 67.7/583 76.1/60.4
CCG 71.8/532 77.4/60.5 757/569 848/729 793/60.1 73.1/55.8 758/57.1 70.3/583 71.7/556 772/57.0 66.9/574 749/58.6
Cosmos QA 72.5/539 77.2/61.2 769/59.1 85.1/729 79.2/60.6 73.4/575 764/577 720/61.7 72.1/55.1 77.4/576 68.6/59.0 755/59.6
CSQA 73.0/540 77.6/60.7 77.4/587 86.2/745 803/61.1 73.1/573 77.8/59.9 71.4/59.6 72.1/550 779/58.7 71.2/60.7 76.2/60.0

Table 10: Full XQuAD Results
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ar de en es hi zh Avg

XLM-R 62.7/424 69.1/52.0 81.6/68.6 72.2/53.0 68.0/50.7 69.5/47.6 679/462 70.1/51.5
ANLIT 64.1/439 66.8/49.8 825/69.4 71.9/52.6 69.2/50.5 70.5/49.7 669/44.8 70.3/51.5
MNLI 64.2/435 68.1/51.8 82.7/70.0 73.7/548 70.3/527 689/49.5 67.1/46.0 70.7/52.6

5 QQP 60.5/39.7 62.4/455 79.0/66.0 70.7/51.6 629/454 67.0/47.6 635/41.1 66.6/48.1
= SQuADv2.0 66.1/453 68.2/502 835/711 73.6/554 685/51.5 71.7/524 682/464 71.4/532
¥ SQuADvl.l 67.4/464 69.6/529 84.1/708 753/56.8 72.5/548 709/51.7 69.4/47.0 72.8/54.4
£ HellaSwag 642/43.1 688/523 835/709 73.0/53.6 69.2/51.7 69.8/48.7 685/46.2 71.0/524
'§ CCG 62.7/41.6 67.5/504 829/70.0 729/54.6 66.1/50.1 68.9/489 66.4/45.6 69.6/51.6
Cosmos QA 63.8/439 68.2/504 822/69.0 729/542 69.4/51.7 708/50.1 66.6/444 70.6/52.0
CSQA 64.0/439 68.8/52.0 834/70.6 752/550 69.1/51.5 72.6/52.1 69.2/46.6 71.8/53.1
Multi-task 65.1/44.1 70.2/549 829/694 752/56.4 70.1/523 72.0/51.7 68.6/462 72.0/53.6
ANLIT 62.7/41.8 685/514 82.1/69.0 73.6/542 66.7/48.7 69.5/493 662/442 69.9/51.2
MNLI 629/41.0 69.2/53.5 82.6/69.4 743/544 68.0/50.7 70.5/50.5 68.0/458 70.8/52.2

E QQP 64.6/449 68.1/51.2 83.2/704 74.0/556 70.4/53.1 69.1/493 683/456 71.1/529
S SQuADv2.0 64.7/439 66.6/51.0 82.1/69.6 73.1/552 70.2/53.1 69.0/51.1 68.6/47.2 70.6/53.0
= SQuADvl.l 64.4/433 68.0/500 83.1/70.0 752/562 685/51.9 712/519 66.8/44.6 71.0/52.6
‘§ HellaSwag 64.7/443 68.4/523 833/704 739/550 69.5/52.1 69.9/479 67.7/448 71.1/524
CCG 604/414 66.5/50.8 81.8/68.6 728/542 662/48.7 67.7/462 645/44.6 68.6/50.7
Cosmos QA 63.4/43.1 69.0/51.0 819/689 723/53.6 663/489 69.1/47.6 66.0/452 69.7/51.2
CSQA 64.3/437 69.5/51.8 82.6/69.4 734/544 68.0/50.7 70.9/48.7 67.7/458 70.9/52.1

Table 11: Full MLQA Results
ar bn en fi id ko ru SW te Avg

XLM-R 64.5/469 59.5/41.6 704/56.6 649/492 75.1/598 54.7/39.5 654/43.6 67.2/48.7 68.8/483 65.6/482
ANLIT 67.3/478 549/372 71.0/57.3 64.7/47.8 749/575 545/413 6247330 672/473 682/469 65.0/462

S MNLI 67.8/49.7 60.6/40.7 71.6/577 665/48.6 76.6/619 553/424 63.9/39.0 669/48.5 71.0/51.4 66.7/489
E QQP 63.2/444 438/265 6447527 563/399 71.6/57.0 475/32.6 5747382 545/365 455/262 5607393
< SQuADv2.0 76.5/59.8 77.7/63.77 76.1/632 783/643 83.1/699 681/565 73.0/51.5 79.1/67.1 79.2/61.1 76.8/61.9
2 SQuADvl.l 76.1/60.0 75.6/61.9 77.6/66.6 760/61.3 825/683 63.7/51.4 71.1/447 765/63.5 79.0/61.6 753/59.9
£ HellaSwag  69.9/494 60.6/425 722/59.1 63.0/44.1 76.7/604 547/39.1 614/330 663/483 70.6/478 66.1/47.1
Z CCG 63.6/41.8 54.1/372 685/559 59.6/41.7 73.2/575 50.8/377 60.2/334 66.8/49.7 662/43.8 62.6/44.3
Cosmos QA 71.7/51.9 659/48.7 733/61.6 667/509 785/634 52.6/366 662/44.1 68.0/513 7T45/547 68.6/51.5
CSQA 70.9/52.1 67.8/49.6 746/609 69.6/526 77.0/60.2 60.8/464 63.6/36.0 70.8/53.5 733/547 69.8/51.8
Multi-task 73.3/523 66.7/48.7 75.6/63.6 747/59.6 81.7/673 60.2/464 71.0/43.0 76.0/643 77.2/584 72.9/56.0
ANLIT 67.1/489 59.5/425 722/589 67.2/514 768/60.7 549/420 624/353 703/521 704/53.1 66.8/49.4
MNLI 67.3/49.7 60.0/41.6 71.2/593 66.8/504 78.1/62.1 564/420 6227339 68.5/50.7 70.0/484 66.7/48.7

E QQP 67.8/49.0 557/372 69.8/56.1 64.1/47.1 742/586 49.0/344 60.0/345 64.5/457 70.1/456 63.9/453
S SQuADV2.0 769/605 70.1/549 76.6/645 744/59.6 83.4/69.7 61.6/48.6 71.3/452 740/615 76.7/593 73.9/582
S SQuADvl.l 77.0/593 685/513 754/643 772/634 833/71.0 63.7/51.8 71.7/479 73.1/56.5 76.4/59.0 74.0/58.3
'§ HellaSwag 68.8/504 62.6/47.8 709/56.8 64.0/48.6 774/61.8 54.6/409 61.2/31.7 682/49.5 714/505 66.6/48.7
CCG 68.1/49.1 575/39.8 69.0/559 659/48.6 765/61.9 550/399 61.6/319 67.5/493 563/30.3 64.2/452
Cosmos QA 66.6/46.6 56.8/37.2 71.5/580 642/450 75.0/57.0 563/413 63.6/39.0 69.0/51.1 63.6/463 652/46.8
CSQA 68.8/504 60.2/434 71.3/59.1 67.6/505 769/59.8 540/41.3 635/38.1 69.5/529 72.8/541 67.2/499

Table 12: Full TyDiQA Results
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de fr zh  Avg

XLM-R 777 6277 792 66.5 T1.5

ANLI" 946 89.8 935 886 916

MNLI 942 902 935 899 92.0

= QQp 942 910 933 885 918

S SQuADv2.0 940 898 930 899 0917

¥ SQuADvl.l 942 905 931 87.0 912

£ HellaSwag 946 919 939 889 923

=

E CCG 883 829 866 78.0 839

Cosmos QA 94.1 90.2 932 88.6 0915

CSQA 951 90.6 935 89.1 921

Multi-task 943 904 934 870 91.3

ANLIT 934 88.0 929 865 902

MNLI 927 89.0 932 86.1 90.3

5 QQP 90.8 869 90.6 83.6 88.0

= SQuADv2.0 928 87.0 914 858 89.2

= SQuADvl.1 929 89.5 927 853 90.1

'§ HellaSwag 92,6 875 914 86.6 89.5

CCG 876 785 876 757 824

Cosmos QA 91.8 869 917 884 89.7

CSQA 86.1 80.8 879 8l1.6 84.1

Table 13: Full BUCC Results
af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv
XLM-R 305 204 390 133 639 189 480 258 199 420 415 481 280 383 425 470 423 418 102
ANLI*™ 788 740 880 723 974 824 912 709 533 915 886 898 821 928 862 921 826 887 317
MNLI 79.6 707 848 712 966 825 931 743 592 90.0 89.0 89.6 818 91.7 860 917 863 89.5 307
E QQP 804 749 873 743 965 841 938 747 602 91.0 903 899 860 933 884 921 863 899 356
S SQuADv2.0 737 67.7 842 632 960 743 892 705 540 879 855 871 77.1 880 835 895 802 864 322
S SQuADvl.l 769 689 857 657 964 763 895 769 584 88.0 885 885 773 899 840 904 830 887 302
S HellaSwag 789 754 899 754 977 848 931 798 648 918 920 922 849 934 895 921 867 9.6 37.1
§ CCG 719 59.1 821 625 955 744 87.0 673 490 847 826 844 772 854 807 872 79.1 787 249
Cosmos QA 78.6 70.6 866 710 964 805 918 77.6 607 898 913 894 830 915 877 914 837 882 371
CSQA 79.5 745 877 740 969 836 929 79. 658 90.0 920 907 831 922 884 918 854 889 337
Multi-task 812 71.9 880 736 97.1 829 926 731 586 904 89.6 89.6 841 926 872 926 839 91.0 34.1
ANLI* 786 652 866 67.8 970 782 902 79.1 593 893 89.1 904 787 893 865 910 846 870 263
MNLI 773 652 838 649 972 761 921 777 573 881 888 875 810 89.0 871 905 82.6 856 273
5 QQP 744 613 837 646 962 757 88.1 767 594 863 870 869 766 859 842 898 798 840 288
S SQuADv2.0 708 57.6 809 527 966 634 845 715 474 854 869 851 719 852 839 904 781 832 161
S SQuADvLI 792 677 865 714 967 804 916 831 663 908 91.1 898 775 923 874 918 846 874 263
£ HellasSwag 571 452 694 404 897 578 734 640 422 771 764 765 626 751 762 825 697 775 220
CCG 719 523 804 51.0 950 726 860 735 510 833 841 818 713 79.1 816 872 787 762 127
Cosmos QA 69.7 63.7 840 588 951 742 846 765 586 857 852 845 762 871 847 885 814 855 249
CSQA 543 453 636 335 870 505 700 588 357 741 710 707 582 702 725 804 642 755 166
ka kk ko ml mr nl pt ru SW ta te th tl tr ur vi zh Avg

XLM-R 11.8 174 355 194 152 526 472 421 79 91 197 274 103 37.8 225 383 412 310 -
ANLIT 769 673 846 90.8 80.5 936 91.0 905 308 765 855 912 599 879 797 946 93.0 808 -
MNLI 779 677 843 89.8 804 925 913 892 328 70.0 782 867 609 888 745 925 912 802 -
5 QQP 787 694 864 929 829 933 925 916 351 814 90.6 900 646 914 817 950 923 827 -
S SQuADv2.0 67.0 63.0 808 828 71.6 89.7 904 869 277 609 744 807 542 859 706 925 893 761 -
% SQuADvl.l 709 637 833 873 747 917 902 891 315 606 77.8 823 593 883 683 928 908 779 -
S HellaSwag 808 720 865 921 81.1 932 919 920 351 792 872 896 645 906 824 951 926 833 -
§ CCG 651 569 768 825 703 889 888 845 249 603 654 728 533 826 647 897 848 729 -
Cosmos QA 757 69.9 836 90.1 787 920 913 897 341 723 846 89.1 597 89.6 798 933 909 809 -
CSQA 80.8 703 855 91.7 827 933 914 904 359 733 846 894 654 902 771 948 929 82 -
Multi-task 787 68.2 850 914 804 921 920 902 344 687 838 89.1 623 889 77.6 950 928 812 -
ANLI™ 706 647 836 889 756 920 910 881 290 700 769 847 516 880 717 936 91.6 785 -
MNLI 677 633 818 843 750 908 905 878 297 622 735 852 534 876 712 933 885 774 -
= QQp 660 642 802 8.0 706 894 898 867 305 609 761 836 523 849 727 905 880 760 -
= SQuADv2.0 538 548 775 725 61.5 900 87.0 872 203 417 51.7 805 380 818 633 906 89.1 704 -
= SQuADvI.I 732 668 839 898 789 9030 904 897 338 762 850 900 545 900 786 936 909 806 -
£ HellaSwag 385 431 705 632 397 791 784 800 192 309 556 666 331 715 498 804 777 614 -
2 CCG 583 513 746 763 584 890 869 829 233 469 603 726 409 825 558 879 803 694 -
Cosmos QA 633 560 807 79.0 63.1 894 872 861 262 557 718 805 446 830 637 910 851 738 -
CSQA 334 362 659 470 309 766 747 755 190 283 496 641 260 641 530 784 751 569 -

Table 14: Full Tatoeba Results

574



MNLI QQP HellaSwag

en 87.1 88.0 71.6
Translated to de 82.2 84.6 55.1
Translated to ru 70.1 83.8 274
Translated to sw 70.8 79.3 25.1

Table 15: Intermediate task performance on trained and evaluated on translated data. We report the median result
for English (original) task data.
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