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Abstract

Intermediate-task training—fine-tuning a pre-
trained model on an intermediate task before
fine-tuning again on the target task—often
improves model performance substantially on
language understanding tasks in monolingual
English settings. We investigate whether En-
glish intermediate-task training is still helpful
on non-English target tasks. Using nine in-
termediate language-understanding tasks, we
evaluate intermediate-task transfer in a zero-
shot cross-lingual setting on the XTREME
benchmark. We see large improvements
from intermediate training on the BUCC and
Tatoeba sentence retrieval tasks and moder-
ate improvements on question-answering tar-
get tasks. MNLI, SQuAD and HellaSwag
achieve the best overall results as interme-
diate tasks, while multi-task intermediate of-
fers small additional improvements. Using
our best intermediate-task models for each tar-
get task, we obtain a 5.4 point improvement
over XLM-R Large on the XTREME bench-
mark, setting the state of the art1 as of June
2020. We also investigate continuing multi-
lingual MLM during intermediate-task train-
ing and using machine-translated intermediate-
task data, but neither consistently outperforms
simply performing English intermediate-task
training.

1 Introduction

Zero-shot cross-lingual transfer involves training
a model on task data in one set of languages (or
language pairs, in the case of translation) and eval-
uating the model on the same task in unseen lan-
guages (or pairs). In the context of natural language
understanding tasks, this is generally done using a
pretrained multilingual language-encoding model

⇤⇤Equal contribution.
1The state of art on XTREME at the time of final publi-

cation in September 2020 is held by Fang et al. (2020), who
introduce an orthogonal method.

such as mBERT (Devlin et al., 2019a), XLM (Con-
neau and Lample, 2019) or XLM-R (Conneau et al.,
2020) that has been pretrained with a masked lan-
guage modeling (MLM) objective on large corpora
of multilingual data, fine-tune it on task data in
one language, and evaluate the tuned model on the
same task in other languages.

Intermediate-task training (STILTs; Phang et al.,
2018) consists of fine-tuning a pretrained model on
a data-rich intermediate task, before fine-tuning a
second time on the target task. Despite its simplic-
ity, this two-phase training setup has been shown
to be helpful across a range of Transformer models
and target tasks (Wang et al., 2019a; Pruksachatkun
et al., 2020), at least within English settings.

In this work, we propose to use intermediate
training on English tasks to improve zero-shot
cross-lingual transfer performance. Starting with a
pretrained multilingual language encoder, we per-
form intermediate-task training on one or more
English tasks, then fine-tune on the target task in
English, and finally evaluate zero-shot on the same
task in other languages.

Intermediate-task training on English data intro-
duces a potential issue: We train the pretrained mul-
tilingual model extensively on only English data
before evaluating it on non-English target task data,
potentially causing the model to lose the knowl-
edge of the other languages that was acquired dur-
ing pretraining (Kirkpatrick et al., 2017; Yogatama
et al., 2019). To mitigate this issue, we experi-
ment with mixing in multilingual MLM training
updates during the intermediate-task training. In
the same vein, we also conduct a case study where
we machine-translate intermediate task data from
English into three other languages (German, Rus-
sian and Swahili) to investigate whether interme-
diate training on these languages improves target
task performance in the same languages.

Concretely, we use the pretrained XLM-R (Con-
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Figure 1: We investigate the benefit of injecting an additional phase of intermediate-task training on English
language task data. We also consider variants using multi-task intermediate-task training, as well as continuing
multilingual MLM during intermediate-task training. Best viewed in color.

neau et al., 2020) encoder and perform experi-
ments on 9 target tasks from the recently introduced
XTREME benchmark (Hu et al., 2020), which aims
to evaluate zero-shot cross-lingual transfer perfor-
mance across diverse target tasks across up to 40
languages each. We investigate how training on
9 different intermediate tasks, including question
answering, sentence tagging, sentence completion,
paraphrase detection, and natural language infer-
ence impacts zero-shot cross-lingual transfer per-
formance. We find the following:

• Intermediate-task training on SQuAD, MNLI,
and HellaSwag yields large target-task im-
provements of 8.2, 7.5, and 7.0 points on
the development set, respectively. Multi-task
intermediate-task training on all 9 tasks per-
forms best, improving by 8.7 points.

• Applying intermediate-task training to BUCC
and Tatoeba, the two sentence retrieval target
tasks that have no training data of their own,
yields dramatic improvements with almost ev-
ery intermediate training configuration. Ty-
DiQA shows consistent improvements with
many intermediate tasks, whereas XNLI does
not see benefits from intermediate training.

• Evaluating our best performing models for
each target task on the XTREME benchmark
yields an average improvement of 5.4 points,
setting the state of the art as of writing.

• Training on English intermediate tasks out-
performs the more complex alternatives of
(i) continuing multilingual MLM during
intermediate-task training, and (ii) using
machine-translated intermediate-task data.

2 Approach

We follow a three-phase approach to training, illus-
trated in Figure 1: (i) we use a publicly available
model pretrained on raw multilingual text using
MLM; (ii) we perform intermediate-task training
on one or more English intermediate tasks; and
(iii) we fine-tune the model on English target-task
training data, before evaluating it on target-task test
data in each target language.

In phase (ii), our intermediate tasks have English
input data. In Section 2.4, we investigate an alterna-
tive where we machine-translate intermediate-task
data to other languages, which we use for training.
We experiment with both single- and multi-task
training for intermediate-task training. We use tar-
get tasks from the recent XTREME benchmark for
zero-shot cross-lingual transfer.

2.1 Intermediate Tasks
We study the effect of intermediate-task training
(STILTs; Phang et al., 2018) with nine different
English intermediate tasks, described in Table 1.

We choose the tasks below based to cover a vari-
ety of task formats (classification, question answer-
ing, and multiple choice) and based on evidence
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Name |Train| |Dev| |Test| Task Genre/Source

Intermediate tasks

ANLI+ 1,104,934 22,857 – natural language inference Misc.
MNLI 392,702 20,000 – natural language inference Misc.
QQP 363,846 40,430 – paraphrase detection Quora questions
SQuAD v2.0 130,319 11,873 – span extraction Wikipedia
SQuAD v1.1 87,599 10,570 – span extraction Wikipedia
HellaSwag 39,905 10,042 – sentence completion Video captions & Wikihow
CCG 38,015 5,484 – tagging Wall Street Journal
Cosmos QA 25,588 3,000 – question answering Blogs
CommonsenseQA 9,741 1,221 – question answering Crowdsourced responses

Target tasks (XTREME Benchmark)

XNLI 392,702 2,490 5,010 natural language inference Misc.
PAWS-X 49,401 2,000 2,000 paraphrase detection Wiki/Quora
POS 21,253 3,974 47–20,436 tagging Misc.
NER 20,000 10,000 1,000–10,000 named entity recognition Wikipedia
XQuAD 87,599 34,726 1,190 question answering Wikipedia
MLQA 87,599 34,726 4,517–11,590 question answering Wikipedia
TyDiQA-GoldP 3,696 634 323–2,719 question answering Wikipedia
BUCC – – 1,896–14,330 sentence retrieval Wiki / news
Tatoeba – – 1,000 sentence retrieval Misc.

Table 1: Overview of the intermediate tasks (top) and target tasks (bottom) in our experiments. For target tasks,
Train and Dev correspond to the English training and development sets, while Test shows the range of sizes for the
target-language test sets for each task. XQuAD, TyDiQA and Tateoba do not have separate held-out development
sets.

of positive transfer from literature. Pruksachatkun
et al. (2020) shows that MNLI (of which ANLI+is
a superset), CommonsenseQA, Cosmos QA and
HellaSwag yield positive transfer to a range of
downstream English-language tasks in intermedi-
ate training. CCG involves token-wise prediction
and is similar to the POS and NER target tasks.
Both versions of SQuAD are widely-used question-
answering tasks, while QQP is semantically sim-
ilar to sentence retrieval target tasks (BUCC and
Tatoeba) as well as PAWS-X, another paraphrase-
detection task.

ANLI + MNLI + SNLI (ANLI+) The Adver-
sarial Natural Language Inference dataset (Nie
et al., 2020) is collected using model-in-the-loop
crowdsourcing as an extension of the Stanford Nat-
ural Language Inference (SNLI; Bowman et al.,
2015) and Multi-Genre Natural Language Infer-
ence (MNLI; Williams et al., 2018) corpora. We
follow Nie et al. (2020) and use the concatenated
ANLI, MNLI and SNLI training sets, which we
refer to as ANLI+. For all three natural language
inference tasks, examples consist of premise and
hypothesis sentence pairs, and the task is to classify
the relationship between the premise and hypothe-
sis as entailment, contradiction, or neutral.

CCG CCGbank (Hockenmaier and Steedman,
2007) is a conversion of the Penn Treebank into
Combinatory Categorial Grammar (CCG) deriva-
tions. The CCG supertagging task that we use
consists of assigning lexical categories to individ-
ual word tokens, which together roughly determine
a full parse.2

CommonsenseQA CommonsenseQA (Talmor
et al., 2019) is a multiple-choice QA dataset gener-
ated by crowdworkers based on clusters of concepts
from ConceptNet (Speer et al., 2017).

Cosmos QA Cosmos QA is multiple-choice
commonsense-based reading comprehension

dataset (Huang et al., 2019b) generated by
crowdworkers, with a focus on the causes and
effects of events.

HellaSwag HellaSwag (Zellers et al., 2019) is a
commonsense reasoning dataset framed as a four-
way multiple choice task, where examples consist
of an incomplete paragraph and four choices of
spans, only one of which is a plausible continuation
of the scenario. It is built using adversarial filtering
(Zellers et al., 2018; Le Bras et al., 2020) with
BERT.

2If a word is tokenized into sub-word tokens, we use the
representation of the first token for the tag prediction for that
word as in Devlin et al. (2019a).
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MNLI In additional to the full ANLI+, we also
consider the MNLI task as a standalone interme-
diate task because of its already large and diverse
training set.

QQP Quora Question Pairs3 is a paraphrase de-
tection dataset. Examples in the dataset consist of
two questions, labeled for whether they are seman-
tically equivalent.

SQuAD Stanford Question Answering Dataset
(Rajpurkar et al., 2016, 2018) is a question-
answering dataset consisting of passages extracted
from Wikipedia articles and crowd-sourced ques-
tions and answers. In SQuAD version 1.1, each
example consists of a context passage and a ques-
tion, and the answer is a text span from the context.
SQuAD version 2.0 includes additional questions
with no answers, written adversarially by crowd-
workers. We use both versions in our experiments.

2.2 Target Tasks

We use the 9 target tasks from the XTREME bench-
mark, which span 40 different languages (here-
after referred to as the target languages): Cross-
lingual Question Answering (XQuAD; Artetxe
et al., 2020b); Multilingual Question Answer-
ing (MLQA; Lewis et al., 2020); Typologically
Diverse Question Answering (TyDiQA-GoldP;
Clark et al., 2020); Cross-lingual Natural Language
Inference (XNLI; Conneau et al., 2018); Cross-
lingual Paraphrase Adversaries from Word Scram-
bling (PAWS-X; Yang et al., 2019); Universal De-
pendencies v2.5 (Nivre et al., 2018) POS tagging;
Wikiann NER (Pan et al., 2017); BUCC (Zweigen-
baum et al., 2017, 2018), which requires identi-
fying parallel sentences from corpora of different
languages; and Tatoeba (Artetxe and Schwenk,
2019), which involves aligning pairs of sentences
with the same meaning.

Among the 9 tasks, BUCC and Tatoeba are sen-
tence retrieval tasks that do not include training sets,
and are scored based on the similarity of learned
representations (see Appendix A). XQuAD, Ty-
DiQA and Tatoeba do not include development sets
separate from the test sets.4 For all XTREME tasks,
we follow the training and evaluation protocol de-
scribed in the benchmark paper (Hu et al., 2020)

3http://data.quora.com/
First-Quora-DatasetRelease-Question-Pairs

4UDPOS also does not include development sets for
Kazakh, Thai, Tagalog or Yoruba.

and their sample implementation.5 Intermediate-
and target-task statistics are shown in Table 1.

2.3 Multilingual Masked Language Modeling
Our setup requires that we train the pretrained mul-
tilingual model extensively on English data before
using it on a non-English target task, which can
lead to the catastrophic forgetting of other lan-
guages acquired during pretraining. We investi-
gate whether continuing to train on the multilin-
gual MLM pretraining objective while fine-tuning
on an English intermediate task can prevent catas-
trophic forgetting of the target languages and im-
prove downstream transfer performance.

We construct a multilingual corpus across the 40
languages covered by the XTREME benchmark us-
ing Wikipedia dumps from April 14, 2020 for each
language and the MLM data creation scripts from
the jiant 1.3 library (Phang et al., 2020). In total,
we use 2 million sentences sampled across all 40
languages using the sampling ratio from Conneau
and Lample (2019) with ↵ = 0.3.

2.4 Translated Intermediate-Task Training
Large-scale labeled datasets are rarely available in
languages other than English for most language-
understanding benchmark tasks. Given the avail-
ability of increasingly performant machine trans-
lation models, we investigate if using machine-
translated intermediate-task data can improve same-
language transfer performance, compared to using
English intermediate task data.

We translate training and validation data of
three intermediate tasks: QQP, HellaSwag, and
MNLI. We choose these tasks based on the size
of the training sets and because their example-
level (rather than word-level) labels can be easily
mapped onto translated data. To translate QQP
and HellaSwag, we use pretrained machine trans-
lation models from OPUS-MT (Tiedemann and
Thottingal, 2020). These models are trained with
Marian-NMT (Junczys-Dowmunt et al., 2018) on
OPUS data (Tiedemann, 2012), which integrates
several resources depending on the available cor-
pora for the language pair. For MNLI, we use
the publicly available machine-translated training
data of XNLI provided by the XNLI authors.6 We
use German, Russian, and Swahili translations of

5https://github.com/google-research/
xtreme

6According to Conneau et al. (2018), these data are trans-
lated using a Facebook internal machine translation system.

http://data.quora.com/First-Quora-DatasetRelease-Question-Pairs
http://data.quora.com/First-Quora-DatasetRelease-Question-Pairs
https://github.com/google-research/xtreme
https://github.com/google-research/xtreme
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all three datasets instead of English data for the
intermediate-task training.

3 Experiments and Results

3.1 Models
We use the pretrained XLM-R Large model (Con-
neau et al., 2020) as a starting point for all our
experiments, as it currently achieves state-of-the-
art performance on many zero-shot cross-lingual
transfer tasks.7 Details on intermediate- and target-
task training can be found in Appendix A.

XLM-R For our baseline, we directly fine-tune
the pretrained XLM-R model on each target task’s
English training data (if available) and evaluate
zero-shot on non-English data, closely follow-
ing the sample implementation for the XTREME
benchmark.

XLM-R + Intermediate Task In our main ap-
proach, as described in Figure 1, we include an
additional intermediate-task training phase before
training and evaluating on the target tasks as de-
scribed above.

We also experiment with multi-task training on
all available intermediate tasks. We follow Raf-
fel et al. (2020) and sample batches of examples
for each task with probability rm = min(em,K)P

(min(em,K) ,
where em is the number of examples in task m and
the constant K = 217 limits the oversampling of
data-rich tasks.

XLM-R + Intermediate Task + MLM To in-
corporate multilingual MLM into the intermediate-
task training, we treat multilingual MLM as an
additional task for intermediate training, using the
same multi-task sampling strategy as above.

XLM-R + Translated Intermediate Task We
translate intermediate-task training and validation
data for three tasks and fine-tune XLM-R on trans-
lated intermediate-task data before we train and
evaluate on the target tasks.

3.2 Software
Experiments were carried out using the jiant (Phang
et al., 2020) library (2.0 alpha), based on PyTorch
(Paszke et al., 2019) and Transformers (Wolf et al.,
2019).

7XLM-R Large (Conneau et al., 2020) is a 550m-parameter
variant of the RoBERTa masked language model (Liu et al.,
2019b) trained on a cleaned version of CommonCrawl on
100 languages. Notably, Yoruba is used in the POS and NER
XTREME tasks but not is not in the set of 100 languages.

3.3 Results
We train three versions of each intermediate-task
model with different random seeds. For each run,
we compute the average target-task performance
across languages, and report the median perfor-
mance across the three random seeds.

Intermediate-Task Training As shown in Ta-
ble 2, no single intermediate task yields positive
transfer across all target tasks. The target tasks
TyDiQA, BUCC and Tatoeba see consistent gains
from most or all intermediate tasks. In particu-
lar, BUCC and Tatoeba, the two sentence retrieval
tasks with no training data, benefit universally
from intermediate-task training. PAWS-X, NER,
XQuAD and MLQA also exhibit gains with the
additional intermediate-task training on some inter-
mediate tasks. On the other hand, we find generally
no or negative transfer to XNLI and POS.

Among the intermediate tasks, we find that
MNLI performs best; with meaningful improve-
ments across the PAWS-X, TyDiQA, BUCC and
Tatoeba tasks. ANLI+, SQuAD v1.1, SQuAD v2.0
and HellaSwag also show strong positive transfer
performance: SQuAD v1.1 shows strong positive
transfer across all three QA tasks, SQuAD v2.0
shows the most positive transfer to TyDiQA, while
HellaSwag shows the most positive transfer to NER
and BUCC tasks. ANLI+does not show any im-
provement over MNLI (of which it is a superset),
even on XNLI for which it offers additional directly
relevant training data. This mirrors negative find-
ings from Nie et al. (2020) on NLI evaluations and
Bowman et al. (2020) on transfer within English.
QQP significantly improves sentence retrieval-task
performance, but has broadly negative transfer to
the other target tasks.8 CCG also has relatively
poor transfer performance, consistent with Pruk-
sachatkun et al. (2020).

Among our intermediate tasks, both SQuAD
v1.1 and MNLI also serve as training sets for target
tasks (for XNLI and XQuAD/MLQA respectively).
While both tasks show overall positive transfer,
SQuAD v1.1 actually markedly improves the per-
formance in XQuAD and MLQA, while MNLI
slightly hurts XNLI performance. We hypothe-
size that the somewhat surprising improvements
to XQuAD and MLQA performance from SQuAD
v1.1 arise due to the baseline XQuAD and MLQA

8For QQP, on 2 of the 3 random seeds the NER model
performed extremely poorly, leading to the large negative
transfer of -45.4.
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Target tasks

XNLI PAWS-X POS NER XQuAD MLQA TyDiQA BUCC Tatoeba Avg.
Metric acc. acc. F1 F1 F1 / EM F1 / EM F1 / EM F1 acc. –
# langs. 15 7 33 40 11 7 9 5 37 –

XLM-R 80.1 86.5 75.7 62.8 76.1 / 60.0 70.1 / 51.5 65.6 / 48.2 71.5 31.0 67.2

W
ith

ou
tM

LM

ANLI+ - 0.8 - 0.0 - 1.4 - 3.5 - 1.1 / - 0.5 - 0.6 / - 0.8 - 0.6 / - 3.0 +19.9 +48.2 + 6.6
MNLI - 1.2 + 1.4 - 0.7 + 0.5 - 0.3 / - 0.1 + 0.2 / + 0.2 - 1.0 / - 1.6 +20.0 +48.8 + 7.5
QQP - 4.4 - 4.8 - 6.5 -45.4 - 3.8 / - 3.8 - 3.9 / - 4.4 -11.1 / -10.2 +17.1 +49.5 - 1.5
SQuADv1.1 - 1.9 + 1.2 - 0.8 - 0.4 + 1.8 / + 2.5 + 2.2 / + 2.6 + 9.7 / +10.8 +18.9 +41.3 + 8.1
SQuADv2 - 1.6 + 1.9 - 1.1 + 0.8 - 0.5 / + 0.7 - 0.4 / + 0.1 +10.4 / +11.3 +19.3 +43.4 + 8.2
HellaSwag - 7.1 + 1.8 - 0.7 + 1.6 - 0.0 / + 0.5 - 0.1 / + 0.2 - 0.0 / - 1.0 +20.3 +47.6 + 7.0
CCG - 2.6 - 3.4 - 2.0 - 1.5 - 1.5 / - 1.3 - 1.6 / - 1.5 - 2.8 / - 6.2 +11.7 +41.9 + 4.1
CosmosQA - 2.1 - 0.3 - 1.4 - 1.5 - 0.9 / - 1.3 - 1.5 / - 2.0 + 0.5 / - 0.6 +19.2 +43.9 + 6.1
CSQA - 2.9 - 2.8 - 1.7 - 1.6 - 1.0 / - 1.8 - 1.0 / - 0.6 + 3.5 / + 2.9 +18.1 +48.6 + 6.5
Multi-task - 0.9 + 1.7 - 1.0 + 1.8 + 0.3 / + 0.9 + 0.2 / + 0.5 + 5.8 / + 6.0 +19.6 +49.9 + 8.7

W
ith

M
LM

ANLI+ - 1.1 + 1.4 + 0.0 + 0.4 - 1.9 / - 1.7 - 0.7 / - 0.6 + 0.9 / + 0.5 +18.6 +46.2 + 7.1
MNLI - 0.7 + 1.6 - 1.6 + 1.0 - 0.7 / + 0.1 + 0.4 / + 0.8 - 1.8 / - 3.2 +17.1 +44.3 + 6.6
QQP - 1.3 - 1.1 - 2.4 - 0.9 - 0.3 / - 0.2 + 0.0 / + 0.2 - 1.6 / - 4.2 +14.4 +39.8 + 5.0
SQuADv1.1 - 2.6 + 0.3 - 2.0 - 0.9 + 0.2 / + 1.6 + 0.1 / + 1.1 + 8.5 / + 9.5 +16.0 +40.3 + 6.8
SQuADv2 - 1.7 + 2.1 - 1.4 + 1.0 - 0.8 / + 0.1 - 0.8 / - 0.5 + 8.3 / + 8.9 +15.6 +31.3 + 6.1
HellaSwag - 3.3 + 2.0 - 0.7 + 0.8 - 0.8 / - 0.0 + 0.1 / + 0.6 + 0.3 / + 1.0 + 6.3 +22.3 + 3.1
CCG - 1.0 - 1.3 - 1.2 - 1.9 - 1.9 / - 2.2 - 2.1 / - 2.6 - 5.5 / - 6.2 + 8.8 +36.1 + 3.3
CosmosQA - 1.0 - 1.0 - 1.6 - 3.8 - 3.1 / - 3.3 - 3.7 / - 4.2 - 0.6 / - 3.2 +15.5 +42.7 + 4.7
CSQA - 0.5 + 0.3 - 1.0 - 0.7 - 0.9 / - 1.0 - 0.7 / - 0.6 + 2.1 / + 0.4 +11.6 +17.2 + 2.9

XTREME Benchmark Scores†

XLM-R (Hu et al., 2020) 79.2 86.4 72.6 65.4 76.6 / 60.8 71.6 / 53.2 65.1 / 45.0 66.0 57.3 68.1
XLM-R (Ours) 79.5 86.2 74.0 62.6 76.1 / 60.0 70.2 / 51.2 65.6 / 48.2 64.5 31.0 64.8
Our Best Models‡ 80.0 87.9 74.4 64.0 78.7 / 63.3 72.4 / 53.7 76.0 / 59.5 71.9 81.2 73.5
Human (Hu et al., 2020) 92.8 97.5 97.0 - 91.2 / 82.3 91.2 / 82.3 90.1 / - - - -

Table 2: Intermediate-task training results. We compute the average target task performance across all languages,
and report the median over 3 separate runs with different random seeds. Multi-task experiments use all intermediate
tasks. We underline the best results per target task with and without intermediate MLM co-training, and bold-face
the best overall scores for each target task. †: XQuAD, TyDiQA and Tatoeba do not have held-out test data and are
scored using development sets in the benchmark. ‡: Results obtained with our best-performing intermediate task
configuration for each target task, selected based on the development set. The results for individual languages can
be found in Appendix B.

models being under-trained. For all target-task fine-
tuning, we follow the sample implementation for
target task training in the XTREME benchmark,
which trains on SQuAD for only 2 epochs. This
may explain why an additional phase of SQuAD
training can improve performance. Conversely, the
MNLI-to-XNLI model might be over-trained, given
the MNLI training set is approximately 4 times as
large as the SQuAD v1.1 training set.

Multi-Task Training Multi-task training on all
intermediate tasks attains the best overall average
performance on the XTREME tasks, and has the
most positive transfer to NER and Tatoeba tasks.
However, the overall margin of improvement over
the best single intermediate-task model is relatively
small (only 0.3, over MNLI), while requiring sig-
nificantly more training resources. Many single
intermediate-task models also outperform the multi-
task model in individual target tasks. Wang et al.
(2019b) also found more mixed results from a hav-
ing an initial phase of multi-task training, albeit

only among English language tasks across a dif-
ferent set of tasks. On the other hand, multi-task
training precludes the need to do intermediate-task
model selection, and is a useful method for incor-
porating multiple, diverse intermediate tasks.

MLM Incorporating MLM during intermediate-
task training shows no clear trend. It reduces neg-
ative transfer, as seen in the cases of Common-
senseQA and QQP, but it also tends to somewhat
reduce positive transfer. The reductions in positive
transfer are particularly significant for the BUCC
and Tatoeba tasks, although the impact on TyDiQA
is more mixed. On balance, we do not see that in-
corporating MLM improves transfer performance.

XTREME Benchmark Results At the bottom
of Table 2, we show results obtained by XLM-R
on the XTREME benchmark as reported by
Hu et al. (2020), results obtained with our re-
implementation of XLM-R (i.e. our baseline), and
results obtained with our best models, which use
intermediate-task configuration selected according



563

TL Model XNLI PAWS-X POS NER XQuAD MLQA TyDiQA BUCC Tatoeba
En

gl
ish

XLM-R 89.3 93.4 95.9 81.6 86.3 / 74.2 81.6 / 68.6 70.4 / 56.6 – –

MNLIen - 1.2 + 1.6 + 0.3 + 2.6 - 2.1 / - 1.6 + 1.1 / + 1.4 + 1.1 / + 1.1 – –
QQPen - 3.2 - 0.4 - 2.2 - 5.8 - 4.0 / - 3.6 - 2.6 / - 2.6 - 6.2 / - 5.0 – –
HellaSwagen - 0.8 + 1.5 + 0.6 + 2.7 - 0.2 / + 1.4 + 1.8 / + 2.3 + 1.7 / + 2.5 – –

G
er

m
an

XLM-R 83.8 88.1 88.6 78.6 77.7 / 61.2 69.1 / 52.0 – 77.7 63.9

MNLIen - 0.8 + 0.9 - 0.1 - 0.8 - 0.3 / - 1.0 - 1.0 / - 0.2 – +16.5 +32.7
MNLIde - 0.4 + 0.5 - 0.3 - 0.9 + 0.2 / - 0.3 - 2.4 / - 2.0 – +17.0 +33.7
QQPen - 2.2 - 4.2 - 3.2 - 7.3 - 4.5 / - 4.7 - 6.7 / - 6.4 – +16.5 +32.6
QQPde - 2.6 - 9.1 - 3.2 -22.9 - 6.6 / - 5.9 - 7.7 / - 6.6 – +16.0 +33.5
HellaSwagen - 0.3 + 0.3 + 0.1 + 0.5 + 1.0 / + 0.2 - 0.3 / + 0.4 – +16.9 +33.8
HellaSwagde - 0.2 + 0.2 - 0.4 - 0.4 + 0.2 / - 0.2 - 3.5 / - 2.5 – +16.3 +33.5

R
us

sia
n

XLM-R 79.2 – 89.5 69.3 77.7 / 59.8 – 65.4 / 43.6 79.2 42.1

MNLIen + 0.3 – - 0.0 + 0.8 + 0.1 / + 1.5 – - 1.5 / - 4.6 +14.3 +47.1
MNLIru - 0.6 – - 0.3 + 1.9 - 0.4 / + 1.3 – +11.2 / +16.1 +13.1 +48.3
QQPen - 0.7 – - 2.9 -18.6 - 3.5 / - 2.4 – - 8.1 / - 5.4 +14.1 +49.5
QQPru - 3.0 – -10.6 -59.1 - 5.2 / - 3.9 – -14.4 / -12.1 +13.3 +46.7
HellaSwagen - 0.9 – - 0.0 + 1.4 + 0.8 / + 2.9 – - 4.0 / -10.6 +14.7 +49.9
HellaSwagru - 0.3 – - 0.4 + 2.8 + 0.2 / + 0.2 – + 8.5 / +13.2 -71.6 -23.5

Sw
ah

ili

XLM-R 72.4 – – 69.8 – – 67.2 / 48.7 – 7.9

MNLIen - 3.0 – – + 0.6 – – - 0.3 / - 0.2 – +24.9
MNLIsw - 1.1 – – - 2.4 – – +13.8 / +23.4 – +47.9
QQPen - 2.8 – – - 4.6 – – -12.7 / -12.2 – +27.2
QQPsw - 7.1 – – -32.1 – – - 7.0 / - 0.4 – +41.8
HellaSwagen - 0.4 – – + 0.1 – – - 0.9 / - 0.4 – +27.2
HellaSwagsw - 9.8 – – + 0.4 – – +15.6 / +26.3 – - 0.5

Table 3: Experiments with translated intermediate-task training and validation data evaluated on all XTREME
target tasks. In each target language (TL) block, models are evaluated on a single target language. We show results
for models trained on original intermediate-task training data (en) and compare it to models trained on translated
data {de,ru,sw}. ‘–’ indicates that target task data is not available for that target language.

to development set performance on each target task.
Based on the results in Table 2, which reflect the
median over 3 runs, we pick the best intermediate-
task configuration for each target task, and then
choose the best model out of the 3 runs. Scores on
the XTREME benchmark are computed based on
the respective test sets where available, and based
on development sets for target tasks without sep-
arate held-out test sets. We are generally able to
replicate the best reported XLM-R baseline results,
except for Tatoeba, where our implementation sig-
nificantly underperforms the reported scores in Hu
et al. (2020), and TyDiQA, where our implemen-
tation outperforms the reported scores. We also
highlight that there is a large margin of difference
between development and test set scores for BUCC–
this is likely because BUCC is evaluated based on
sentence retrieval over the given set of input sen-
tences, and the test sets for BUCC are generally
much larger than the development sets.

Our best models show gains in 8 out of the 9
XTREME tasks relative to both baseline implemen-
tations, attaining an average score of 73.5 across
target tasks, a 5.4 point improvement over the pre-

vious best reported average score of 68.1. We set
the state of the art on the XTREME benchmark as
of June 2020, though Fang et al. (2020) achieve
higher results and hold the state of the art using
an orthogonal approach at the time of our final
publication in September 2020.

Translated Intermediate-Task Training Data
In Table 3, we show results for experiments us-
ing machine-translated intermediate-training data,
and evaluated on the available target-task lan-
guages. Surprisingly, even when evaluating in-
language, using target-language intermediate-task
data does not consistently outperform using En-
glish intermediate-task data in any of the interme-
diate tasks on average.

In general, cross-lingual transfer to XNLI is neg-
ative regardless of the intermediate-task or the tar-
get language. In contrast, we observe mostly pos-
itive transfer on BUCC, and Tatoeba, with a few
notable exceptions where models fail catastroph-
ically. TyDiQA exhibits positive transfer where
the intermediate- and target-task languages aligned:
intermediate training on Russian or German helps
TyDiQA performance in that respective language,
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whereas intermediate training on English hurts non-
English performance somewhat. For the remaining
tasks, there appears to be little correlation between
performance and the alignment of intermediate-
and target-task languages. English language QQP
already has mostly negative transfer to all target
tasks except for BUCC and Tatoeba (see Table 2),
and also shows a similar trend when translated into
any of the three target languages.

We note that the quality of translations may af-
fect the transfer performance. While validation
performance on the translated intermediate tasks
(Table 15) for MNLI and QQP is only slightly
worse than the original English versions, the per-
formance for the Russian and Swahili HellaSwag
is much worse and close to chance. Despite this,
intermediate-task training on Russian and Swahili
HellaSwag improve performance on PAN-X and
TyDiQA, while we see generally poor transfer
performance from QQP. The interaction between
translated intermediate-task data and transfer per-
formance continues to be a complex open ques-
tion. Artetxe et al. (2020a) found that translating
or back-translating training data for a task can im-
prove zero-shot cross-lingual performance for tasks
such as XNLI depending on how the multilingual
datasets are created. In contrast, we train on trans-
lated intermediate-task data and then fine-tune on
a target task with English training data (exclud-
ing BUCC2018 and Tatoeba). The authors of the
XTREME benchmark have also recently released
translated versions of all the XTREME task train-
ing data, which we hope will prompt further inves-
tigation into this matter.

4 Related work

Sequential transfer learning using pretrained
Transformer-based encoders (Phang et al., 2018)
has been shown to be effective for many text clas-
sification tasks. This setup generally involves fine-
tuning on a single task (Pruksachatkun et al., 2020;
Vu et al., 2020) or multiple tasks (Liu et al., 2019a;
Wang et al., 2019b; Raffel et al., 2020), sometimes
referred to as the intermediate task(s), before fine-
tuning on the target task. We build upon this line
of work, focusing on intermediate-task training for
improving cross-lingual transfer.

Early work on cross-lingual transfer mostly re-
lies on the availability of parallel data, where one
can perform translation (Mayhew et al., 2017) or
project annotations from one language into another

(Hwa et al., 2005; Agić et al., 2016). For depen-
dency parsing, McDonald et al. (2011) use delexi-
calized parsers trained on source languages and la-
beled training data for parsing target-language data.
Agić (2017) proposes a parser selection method to
select the single best parser for a target language.

For large-scale cross-lingual transfer outside
NLU, Johnson et al. (2017) train a single mul-
tilingual neural machine translation system with
up to 7 languages and perform zero-shot transla-
tion without explicit bridging between the source
and target languages. Aharoni et al. (2019) ex-
pand this approach to cover over 100 languages
in a single model. Recent works on extending
pretrained Transformer-based encoders to multi-
lingual settings show that these models are effec-
tive for cross-lingual tasks and competitive with
strong monolingual models on the XNLI bench-
mark (Devlin et al., 2019b; Conneau and Lample,
2019; Conneau et al., 2020; Huang et al., 2019a).
More recently, Artetxe et al. (2020a) showed that
cross-lingual transfer performance can be sensitive
to translation artifacts arising from a multilingual
datasets’ creation procedure.

Finally, Pfeiffer et al. (2020) propose adapter
modules that learn language and task representa-
tions for cross-lingual transfer, which allow adap-
tation to languages not seen during pretraining.

5 Conclusion

We evaluate the impact of intermediate-task train-
ing on zero-shot cross-lingual transfer. We investi-
gate 9 intermediate tasks and how intermediate-task
training impacts the zero-shot cross-lingual transfer
to the 9 target tasks in the XTREME benchmark.

Overall, intermediate-task training signifi-
cantly improves the performance on BUCC and
Tatoeba, the two sentence retrieval target tasks
in the XTREME benchmark, across almost every
intermediate-task configuration. Our best mod-
els obtain 5.9 and 23.9 point gains on BUCC and
Tatoeba, respectively, compared to the best avail-
able XLM-R baseline scores (Hu et al., 2020). We
also observed gains in question-answering tasks,
particularly using SQuAD v1.1 and v2.0 as inter-
mediate tasks, with absolute gains of 2.1 F1 for
XQuAD, 0.8 F1 for MLQA, and 10.4 for F1 Ty-
DiQA, again over the best available baseline scores.
We improve over XLM-R by 5.4 points on aver-
age on the XTREME benchmark. Additionally,
we found multi-task training on all 9 intermedi-
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ate tasks to slightly outperform individual inter-
mediate training. On the other hand, we found
that neither incorporating multilingual MLM into
the intermediate-task training phase nor translating
intermediate-task data consistently led to improved
transfer performance.

While we have explored the extent to which En-
glish intermediate-task training can improve cross-
lingual transfer, a clear next avenue of investigation
for future work is how the choice of intermediate-
and target-task languages influences transfer across
different tasks.
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A Implementation Details

A.1 Intermediate Tasks

For intermediate-task training, we use a learning
rate of 1e-5 without MLM, and 5e-6 with MLM.
Hyperparameters in the Table 4 were chosen based
on intermediate task validation performance in an
preliminary search. We use a warmup of 10% of the
total number of steps, and perform early stopping
based on the first 500 development set examples of
each task with a patience of 30. For CCG, where
tags are assigned for each word, we use the repre-
sentation of first sub-word token of each word for
prediction.

Task Batch size # Epochs

ANLI+ 24 2
MNLI 24 2
CCG 24 15
CommonsenseQA 4 10
Cosmos QA 4 15
HellaSwag 24 7
QQP 24 3
SQuAD 8 3
MLM 8 -
Multi-task Mixed 3

Table 4: Intermediate-task training configuration.

A.2 XTREME Benchmark Target Tasks

We follow the sample implementation for the
XTREME benchmark unless otherwise stated. We
use a learning rate of 3e-6, and use the same opti-
mization procedure as for intermediate tasks. Hy-
perparameters in the Table 5 follow the sample im-
plementation. For POS and NER, we use the same
strategy as for CCG for matching tags to tokens.
For BUCC and Tatoeba, we extract the represen-
tations for each token from the 13th self-attention
layer, and use the mean-pooled representation as
the embedding for that example, as in the sample
implementation. Similarly, we follow the sample
implementation and set an optimal threshold for
each language sub-task for BUCC as a similarity
score cut-off for extracting parallel sentences based
on the development set and applied to the test set.

We randomly initialize the corresponding output
heads for each task, regardless of the similarity
between intermediate and target tasks (e.g. even
if both the intermediate and target tasks train on
SQuAD, we randomly initialize the output head in
between phases).

Task Batch size # Epochs

XNLI (MNLI) 4 2
PAWS-X 32 5
XQuAD (SQuAD) 16 2
MLQA (SQuAD) 16 2
TyDiQA 16 2
POS 32 10
NER 32 10
BUCC - -
Tatoeba - -

Table 5: Target-task training configuration.

B Per-Language Results
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ar bg de el en es fr hi ru sw th tr ur vi zh Avg

XLM-R 79.8 82.7 83.8 81.3 89.3 84.4 83.7 77.3 79.2 72.4 77.1 78.9 72.6 80.0 79.6 80.1

W
ith

ou
tM

LM

ANLI+ 77.5 82.5 82.3 80.8 87.6 83.5 83.6 76.5 79.1 70.4 77.3 78.0 73.5 79.2 79.3 79.4
MNLI 78.4 82.8 83.0 81.3 88.2 84.0 83.6 77.2 79.5 69.4 77.6 77.9 73.2 79.8 79.1 79.7
QQP 77.1 81.0 81.6 81.6 86.1 83.6 82.0 75.4 78.5 69.6 76.9 77.1 72.7 79.2 78.6 78.7
SQuAD v2.0 77.9 81.3 81.7 79.9 85.6 83.5 81.8 75.5 78.5 70.6 77.2 77.2 73.7 78.9 79.6 78.9
SQuAD v1.1 77.1 82.1 81.8 79.9 87.1 82.8 82.7 75.5 78.6 71.3 76.3 77.3 71.2 79.2 78.6 78.8
HellaSwag 78.6 82.6 83.5 80.6 88.5 83.7 83.1 77.4 78.2 72.0 77.4 78.7 73.5 80.0 79.4 79.8
CCG 77.3 81.9 81.7 79.8 88.1 82.9 83.2 75.4 78.8 69.9 76.5 76.9 71.4 79.7 78.6 78.8
Cosmos QA 77.1 81.1 81.7 80.1 87.4 83.2 81.7 74.3 77.7 72.0 75.2 76.7 71.1 78.3 78.4 78.4
CSQA 77.3 80.8 81.9 80.0 87.5 83.5 82.5 76.3 78.4 70.6 76.3 77.5 72.5 79.6 78.5 78.9
Multi-task 76.9 82.2 82.9 81.0 88.5 84.4 82.5 75.8 79.1 71.1 77.1 79.1 72.0 79.6 79.2 79.4

W
ith

M
LM

ANLI+ 78.5 82.8 83.8 81.5 89.2 84.1 82.5 76.5 79.2 72.7 77.4 78.6 72.7 80.7 80.1 80.0
MNLI 78.0 82.9 83.1 81.1 88.8 84.3 83.4 76.7 80.3 72.2 78.4 79.3 73.4 80.5 80.2 80.2
QQP 78.0 81.7 83.3 80.8 88.6 84.5 82.9 75.9 78.3 72.2 77.7 78.6 72.7 79.9 78.9 79.6
SQuAD v2.0 77.5 82.8 83.3 80.4 88.8 83.6 82.7 76.0 79.6 71.6 77.0 78.7 72.9 79.9 78.9 79.6
SQuAD v1.1 77.9 81.7 82.2 79.7 87.0 82.8 82.1 74.4 78.4 71.2 76.6 78.1 71.3 79.0 78.6 78.7
HellaSwag 79.3 83.5 83.7 81.8 89.6 84.5 84.1 78.2 79.9 72.9 78.1 80.1 74.5 81.3 80.7 80.8
CCG 77.9 82.5 82.4 80.8 87.1 83.8 82.6 76.6 78.9 72.0 76.7 78.2 72.2 80.2 78.4 79.4
Cosmos QA 78.1 82.7 82.7 80.4 87.6 83.9 82.9 76.2 79.5 73.7 77.8 79.0 72.7 80.4 79.6 79.8
CSQA 79.0 83.4 83.7 81.2 89.0 83.8 83.3 76.9 79.9 72.3 78.0 79.1 73.3 80.4 80.6 80.2

Table 6: Full XNLI Results

de en es fr ja ko zh Avg

XLM-R 88.1 93.4 89.2 89.3 81.8 81.8 82.0 86.5

W
ith

ou
tM

LM

ANLI+ 88.0 94.1 89.6 90.7 82.0 82.2 81.9 87.0
MNLI 89.0 95.0 90.7 90.9 82.9 83.8 84.2 88.1
QQP 83.9 93.0 87.7 88.7 79.2 78.6 79.7 84.4
SQuADv2.0 88.9 95.2 91.7 91.3 84.7 84.5 85.4 88.8
SQuADv1.1 89.4 94.2 91.1 91.1 83.8 83.5 83.9 88.1
HellaSwag 88.4 95.0 90.2 91.1 84.8 84.6 84.5 88.4
CCG 83.5 92.3 86.5 88.1 78.0 77.0 78.6 83.5
Cosmos QA 88.4 93.8 90.4 90.3 84.3 84.3 85.0 88.1
CSQA 85.9 93.7 88.6 89.8 81.7 80.4 81.5 86.0
Multi-task 89.0 95.0 90.2 91.1 83.8 83.5 85.5 88.3

W
ith

M
LM

ANLI+ 88.1 94.5 90.1 90.4 84.0 84.2 84.2 87.9
MNLI 90.1 95.5 91.3 91.3 84.4 84.1 84.5 88.7
QQP 88.6 94.3 89.8 90.6 81.7 82.8 82.3 87.1
SQuADv2.0 88.9 95.0 91.7 92.0 85.2 83.9 84.7 88.8
SQuADv1.1 89.0 93.8 90.3 88.9 82.7 82.2 82.2 87.0
HellaSwag 90.3 95.0 91.0 90.5 84.9 85.9 84.8 88.9
CCG 87.5 93.3 88.3 88.4 81.5 81.2 81.3 85.9
Cosmos QA 88.1 94.0 89.4 90.0 82.5 82.4 82.3 87.0
CSQA 88.7 94.1 89.1 89.8 82.5 82.9 82.2 87.0

Table 7: Full PAWS-X Results
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af ar bg de el en es et eu fa fi fr he hi hu id it

XLM-R 87.7 56.3 87.9 88.6 85.6 95.9 89.8 87.6 72.8 70.0 84.9 65.5 68.1 73.2 81.3 81.7 88.8

W
ith

ou
tM

LM

ANLI+ 87.9 57.6 88.3 88.8 85.6 95.7 89.4 87.3 73.4 72.0 84.9 65.4 70.9 70.1 82.9 81.0 88.3
MNLI 87.9 56.6 87.8 88.5 84.6 96.2 88.9 86.9 70.4 69.5 84.1 51.8 70.1 72.4 81.2 81.1 88.6
QQP 83.9 52.6 86.0 85.3 81.7 93.7 87.7 82.1 70.1 66.7 79.3 62.5 61.1 62.5 78.3 79.2 86.8
SQuADv2.0 87.5 58.0 88.0 87.9 83.6 96.2 88.7 86.6 69.9 69.1 83.9 51.8 71.3 69.7 82.6 81.0 89.0
SQuADv1.1 87.7 58.1 88.6 88.4 85.8 95.7 89.4 87.2 73.4 70.1 84.3 65.1 70.9 72.2 81.8 81.3 88.5
HellaSwag 88.3 57.3 88.5 88.7 85.6 96.5 89.2 87.6 72.6 69.5 84.7 52.5 69.6 74.8 81.6 81.1 89.6
CCG 88.2 56.2 86.5 89.4 85.9 95.8 87.8 87.9 73.7 69.1 85.6 53.5 68.8 75.1 81.8 80.8 86.8
Cosmos QA 88.4 56.4 86.2 88.0 84.4 95.9 88.9 87.1 73.5 71.2 84.5 65.3 67.5 75.6 81.1 81.0 88.8
CSQA 87.1 55.7 87.6 87.8 85.8 95.4 88.6 87.3 76.4 69.3 84.7 64.6 65.3 67.6 81.2 80.9 86.6
Multi-task 87.7 58.5 89.7 88.8 85.2 96.3 89.4 87.1 67.7 71.6 84.7 52.7 71.0 68.2 81.5 80.7 89.8

W
ith

M
LM

ANLI+ 87.9 58.4 88.3 88.9 86.3 95.8 90.3 87.8 76.4 72.5 85.1 53.3 69.0 72.5 82.4 80.7 88.6
MNLI 89.1 57.2 87.6 88.6 85.1 96.2 88.8 88.0 73.4 69.5 85.1 52.7 68.0 76.9 80.6 80.4 88.7
QQP 87.7 56.3 87.6 88.6 84.2 95.9 89.6 88.1 76.3 71.2 84.5 59.7 67.5 78.0 81.8 81.2 88.8
SQuADv2.0 88.5 57.8 87.8 88.5 85.8 96.2 89.0 86.1 74.7 71.0 84.6 49.1 68.2 73.2 81.4 80.8 85.8
SQuADv1.1 88.0 55.1 88.6 88.9 85.3 95.7 89.7 85.7 73.5 70.2 83.5 64.5 66.7 74.4 79.7 81.5 86.8
HellaSwag 88.3 58.0 87.8 88.3 85.7 96.4 87.2 86.8 74.0 70.2 84.3 51.5 70.9 74.8 79.9 81.0 88.4
CCG 88.1 54.5 86.7 89.2 86.3 95.9 87.5 87.6 77.2 71.4 84.0 64.4 66.3 76.7 81.1 81.4 89.0
Cosmos QA 87.5 57.8 87.7 88.6 85.5 95.8 89.5 88.1 71.7 70.1 84.9 64.4 68.9 76.6 81.0 80.0 88.3
CSQA 87.6 55.9 87.4 88.7 85.1 95.6 88.5 87.2 76.4 70.4 84.2 65.1 68.2 68.3 81.6 81.2 88.4

ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh Avg

XLM-R 31.9 - 50.4 80.0 90.1 90.2 89.5 67.1 90.0 - - 76.0 65.6 56.4 - 40.9 75.7

W
ith

ou
tM

LM

ANLI+ 19.4 - 50.7 79.6 90.1 89.7 90.0 69.2 86.6 - - 75.0 66.2 55.3 - 27.2 74.8
MNLI 38.1 - 50.7 79.1 90.4 89.7 89.4 69.4 86.7 - - 74.8 67.6 54.4 - 48.6 75.4
QQP 6.2 - 45.9 73.5 88.4 88.2 86.6 65.1 81.7 - - 71.5 59.1 54.5 - 12.0 70.1
SQuADv2.0 39.4 - 50.8 80.5 90.3 90.1 89.1 68.5 86.1 - - 74.1 60.6 54.1 - 45.3 75.0
SQuADv1.1 30.9 - 49.7 78.7 90.5 89.7 89.3 66.8 84.9 - - 74.4 65.4 56.2 - 37.7 75.3
HellaSwag 31.1 - 50.5 83.7 90.1 89.8 89.5 69.7 86.2 - - 74.2 67.4 54.5 - 35.1 75.2
CCG 17.8 - 50.3 81.0 90.1 88.0 88.9 66.8 88.4 - - 75.9 70.7 55.5 - 23.1 74.1
Cosmos QA 16.4 - 50.3 77.7 89.9 89.7 89.4 67.9 88.1 - - 76.5 69.2 56.3 - 23.2 74.4
CSQA 32.4 - 49.3 82.8 89.4 88.5 88.5 66.9 86.3 - - 74.5 63.5 56.0 - 29.6 74.5
Multi-task 36.4 - 50.7 79.6 90.0 89.8 88.9 68.4 86.2 - - 74.4 62.2 55.5 - 44.3 75.1

W
ith

M
LM

ANLI+ 39.0 - 51.2 80.7 90.2 90.0 89.8 68.7 87.6 - - 76.4 66.2 56.7 - 45.7 76.1
MNLI 30.1 - 51.0 80.1 90.0 88.8 89.1 68.8 85.5 - - 75.1 69.6 55.4 - 38.4 75.1
QQP 27.6 - 50.8 81.0 90.1 89.5 89.4 67.2 88.0 - - 76.2 70.3 56.5 - 34.0 75.4
SQuADv2.0 35.3 - 51.0 80.2 89.9 88.1 89.3 67.1 84.3 - - 75.5 68.8 56.9 - 39.0 75.0
SQuADv1.1 16.3 - 49.7 79.4 90.2 90.0 89.2 68.0 83.3 - - 75.8 64.6 57.3 - 19.0 73.8
HellaSwag 35.4 - 50.9 78.4 90.0 87.9 89.3 68.7 86.4 - - 75.4 69.3 54.8 - 43.6 75.3
CCG 25.7 - 50.7 86.1 89.8 88.8 88.4 68.0 86.6 - - 76.2 68.2 55.5 - 23.9 75.0
Cosmos QA 16.5 - 51.0 80.9 89.7 88.9 89.0 67.4 87.9 - - 76.3 70.1 56.0 - 19.6 74.5
CSQA 30.8 - 51.8 80.5 90.5 89.6 89.0 66.8 86.5 - - 74.8 61.9 56.3 - 31.3 74.8

Table 8: Full POS Results. kk, th, tl and yo do not have development set data.
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af ar bg bn de el en es et eu fa fi fr he hi hu id it ja jv ka

XLM-R 77.7 47.1 81.9 74.9 78.6 76.3 81.6 74.7 77.2 61.2 58.2 78.3 78.3 50.2 68.7 80.6 53.7 80.8 15.6 56.2 61.4

W
ith

ou
tM

LM

ANLI+ 75.4 52.7 78.1 72.7 76.4 76.3 80.9 71.6 72.8 52.2 60.7 75.8 77.4 49.1 69.6 79.6 52.7 78.9 13.1 54.3 62.1
MNLI 76.9 48.3 80.5 72.8 77.7 77.9 84.2 76.9 78.5 62.1 58.3 78.7 81.1 55.1 69.0 81.1 55.7 80.8 16.4 54.2 68.1
QQP 73.8 40.9 75.5 66.0 71.3 71.6 75.8 65.5 69.3 55.5 49.9 73.1 72.8 42.6 59.8 74.3 49.2 75.9 5.7 54.4 51.1
SQuADv2.0 76.0 48.0 81.1 71.8 78.4 78.2 84.3 74.7 78.4 53.9 56.9 78.9 82.5 56.0 68.9 79.8 56.4 80.8 18.1 61.8 67.3
SQuADv1.1 79.1 52.6 80.1 75.5 77.8 78.1 80.8 75.3 76.7 54.3 61.9 78.7 78.4 52.8 65.6 80.3 54.6 80.8 18.7 52.1 62.4
HellaSwag 77.0 54.9 82.7 76.6 79.1 78.9 84.3 77.8 78.0 58.8 65.0 77.5 80.3 57.0 71.2 81.8 54.3 81.4 19.6 56.9 70.6
CCG 77.4 51.5 78.7 72.5 78.4 76.2 80.8 73.0 78.0 56.9 62.1 78.2 77.3 48.6 67.3 79.7 54.9 79.9 15.9 60.3 58.9
Cosmos QA 76.6 49.3 79.2 76.0 77.8 76.1 81.2 73.2 76.6 59.8 55.8 77.8 77.0 46.8 67.8 79.4 53.2 80.0 14.1 55.5 57.8
CSQA 77.6 46.1 78.9 75.4 78.4 76.2 81.3 77.3 75.2 59.8 61.9 78.0 78.2 48.9 67.6 79.6 55.6 80.1 11.6 53.8 57.7
Multi-task 78.5 49.2 82.0 73.3 78.9 80.1 84.5 76.6 78.5 59.4 49.4 79.1 81.2 56.4 70.6 81.0 57.0 80.7 20.7 64.7 68.6

W
ith

M
LM

ANLI+ 76.4 51.5 80.7 73.3 79.2 77.8 84.3 75.4 78.0 57.7 49.7 77.6 80.1 54.8 68.9 80.8 54.8 80.5 14.4 54.9 64.5
MNLI 78.0 52.3 81.7 73.0 79.6 78.1 84.4 77.2 79.4 59.6 60.6 79.2 81.4 55.1 68.6 81.0 51.3 81.0 14.0 62.0 64.3
QQP 77.1 46.7 79.0 72.9 79.4 76.3 81.9 74.2 78.7 61.8 66.0 78.3 78.0 50.4 69.1 81.6 53.2 80.1 15.1 62.6 60.7
SQuADv2.0 78.0 46.5 82.8 71.7 79.0 77.3 84.2 74.8 79.0 61.6 63.3 79.5 80.0 57.6 67.5 81.9 62.0 80.7 20.0 62.3 68.2
SQuADv1.1 77.7 58.0 81.4 75.2 78.0 77.4 82.1 69.6 76.1 54.1 58.4 77.5 78.7 54.8 67.5 78.8 49.9 79.5 14.5 55.9 68.3
HellaSwag 78.7 47.0 81.8 73.8 79.7 78.2 84.8 73.6 79.2 55.8 55.6 78.2 79.4 55.0 69.8 81.3 54.1 81.3 18.5 58.1 67.5
CCG 74.5 46.4 76.7 74.5 76.9 75.7 80.5 72.6 77.7 58.9 59.6 77.7 77.0 48.1 66.3 80.1 53.4 78.7 13.8 57.1 58.2
Cosmos QA 78.2 39.1 80.0 73.8 79.0 77.2 81.4 70.3 78.8 65.4 48.9 78.7 77.7 48.3 68.0 80.8 55.1 81.2 13.2 58.9 59.0
CSQA 77.4 48.8 78.9 73.9 78.8 76.3 81.9 75.2 79.5 66.7 58.6 79.6 78.5 47.7 68.2 81.0 55.3 81.3 12.2 60.4 58.9

kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh Avg

XLM-R 48.7 54.5 58.8 61.8 54.1 53.7 83.2 80.7 69.3 69.8 58.2 50.8 2.2 73.2 81.1 67.0 74.9 33.2 23.6 62.8 -

W
ith

ou
tM

LM

ANLI+ 50.2 52.6 61.2 63.0 66.8 46.5 81.8 78.7 67.0 66.9 55.0 52.1 2.5 71.2 78.0 67.3 73.9 43.3 18.9 62.0 -
MNLI 51.7 58.8 64.8 61.3 69.8 54.9 83.0 80.8 70.2 70.3 59.3 55.4 1.0 74.8 80.5 56.9 78.1 38.9 25.2 64.2 -
QQP 50.4 40.1 51.2 51.4 61.4 32.5 78.2 73.0 50.8 65.1 47.3 41.4 1.6 67.4 72.3 57.2 67.9 43.9 8.6 55.9 -
SQuADv2.0 49.9 58.1 61.6 62.5 72.1 50.0 83.1 82.3 70.8 65.4 62.6 53.6 0.6 74.8 80.0 63.2 78.9 41.2 22.5 64.1 -
SQuADv1.1 51.8 57.1 61.7 59.8 50.4 52.2 83.3 80.8 69.8 69.2 58.3 49.5 0.8 71.6 79.1 58.6 76.3 47.5 26.2 63.0 -
HellaSwag 50.5 58.4 56.6 66.6 72.8 59.4 83.2 82.5 70.8 69.9 63.7 53.0 1.1 75.1 78.0 70.0 75.0 42.1 29.7 65.5 -
CCG 52.4 52.7 57.7 59.6 52.3 50.0 82.5 79.0 67.1 67.0 55.3 49.1 2.6 70.0 81.0 65.3 74.2 37.6 23.3 62.1 -
Cosmos QA 48.4 52.4 60.3 62.1 56.9 50.2 82.8 79.5 67.4 67.8 57.2 51.4 1.3 74.6 80.7 60.8 74.9 34.8 19.5 61.8 -
CSQA 49.7 52.0 59.1 62.9 62.4 46.1 82.5 80.3 65.4 69.0 57.1 51.2 1.8 73.1 80.2 73.3 73.5 35.3 19.3 62.3 -
Multi-task 53.2 57.8 60.8 61.0 69.3 54.2 83.8 80.8 69.4 70.6 58.9 53.7 2.2 75.2 77.2 57.7 75.6 46.1 30.4 64.7 -

W
ith

M
LM

ANLI+ 52.9 56.8 60.0 61.1 75.4 49.5 83.4 80.9 68.3 71.0 57.2 49.8 0.9 74.5 79.0 59.8 76.3 31.7 22.5 63.2 -
MNLI 54.7 57.5 63.5 63.3 66.3 49.6 83.4 81.1 70.3 72.2 57.0 53.5 1.1 74.1 80.9 61.1 75.1 43.4 22.8 64.3 -
QQP 49.9 54.5 63.3 64.6 54.7 49.0 82.9 78.9 68.7 70.9 58.0 50.7 1.1 74.0 82.3 70.2 77.1 40.3 24.9 63.5 -
SQuADv2.0 52.1 60.8 65.1 63.2 54.7 54.8 83.4 80.9 71.6 72.6 63.0 54.1 0.4 75.3 80.4 59.8 77.6 33.6 28.0 64.7 -
SQuADv1.1 51.6 57.7 62.7 60.2 62.2 52.9 81.8 77.7 71.4 68.5 59.7 49.9 1.5 72.9 78.1 54.2 71.5 34.3 22.4 62.6 -
HellaSwag 53.6 58.9 62.5 63.2 72.4 54.7 82.8 80.9 71.3 70.6 59.5 52.0 2.4 73.6 80.1 58.4 78.3 36.8 24.9 64.2 -
CCG 54.6 53.5 60.6 62.8 69.1 41.6 80.7 78.1 65.4 68.1 55.1 51.6 1.3 68.7 79.8 61.9 68.8 37.9 19.8 61.6 -
Cosmos QA 49.7 52.5 55.7 60.2 52.1 48.1 82.9 78.9 67.1 66.6 55.3 47.7 0.9 74.7 80.8 59.5 74.0 34.9 19.3 61.3 -
CSQA 52.2 54.4 60.4 61.1 52.9 47.8 83.4 80.7 68.5 69.0 57.9 50.1 1.4 73.6 81.5 63.2 74.0 43.6 19.3 62.9 -

Table 9: Full NER Results

ar de el en es hi ru th tr vi zh Avg

XLM-R 72.5 / 53.4 77.7 / 61.2 77.6 / 59.2 86.3 / 74.2 80.0 / 61.0 73.7 / 57.5 77.7 / 59.8 72.8 / 62.3 72.6 / 54.8 77.6 / 58.0 68.7 / 58.2 76.1 / 60.0

W
ith

ou
tM

LM

ANLI+ 72.9 / 55.0 77.2 / 60.7 75.8 / 58.3 84.9 / 73.1 78.4 / 59.5 73.1 / 56.9 76.8 / 59.9 73.0 / 63.3 72.1 / 55.0 78.0 / 57.6 68.3 / 59.0 75.5 / 59.8
MNLI 70.7 / 53.2 77.4 / 60.2 76.8 / 59.1 84.2 / 72.6 80.3 / 62.5 72.2 / 55.9 77.8 / 61.3 72.9 / 63.5 71.9 / 56.3 78.1 / 59.7 68.0 / 60.0 75.5 / 60.4
QQP 68.4 / 50.4 73.2 / 56.5 73.3 / 55.9 82.3 / 70.6 75.4 / 57.3 68.5 / 52.5 74.2 / 57.5 68.6 / 60.2 68.3 / 51.4 72.9 / 53.4 66.3 / 58.0 72.0 / 56.7
SQuADv2.0 73.8 / 56.0 79.5 / 62.0 78.6 / 60.6 86.7 / 75.5 81.5 / 63.6 72.7 / 56.2 79.2 / 61.8 71.0 / 56.8 75.0 / 59.1 78.6 / 58.9 68.8 / 57.6 76.9 / 60.7
SQuADv1.1 75.9 / 59.9 80.3 / 63.6 80.3 / 62.1 88.3 / 77.4 81.8 / 63.2 76.1 / 59.2 80.0 / 64.1 75.6 / 65.5 75.8 / 59.2 80.5 / 61.2 70.8 / 61.3 78.7 / 63.3
HellaSwag 73.9 / 56.9 78.7 / 61.3 77.9 / 58.8 86.1 / 75.6 79.6 / 60.1 74.3 / 57.5 78.5 / 62.8 73.6 / 64.5 73.5 / 56.6 78.8 / 59.1 69.2 / 59.4 76.7 / 61.1
CCG 71.5 / 54.2 76.3 / 58.5 75.9 / 58.2 84.2 / 72.3 79.0 / 60.1 72.3 / 54.9 76.7 / 60.0 71.2 / 60.9 71.7 / 55.3 76.4 / 56.9 67.9 / 58.2 74.8 / 59.0
Cosmos QA 73.2 / 53.8 78.1 / 62.2 77.3 / 58.3 86.7 / 75.4 79.9 / 61.9 74.2 / 57.7 77.9 / 59.4 72.3 / 61.5 73.3 / 55.6 78.2 / 58.0 68.3 / 58.5 76.3 / 60.2
CSQA 72.6 / 53.4 79.5 / 62.4 78.3 / 59.4 87.1 / 76.1 81.0 / 62.9 74.9 / 58.5 77.6 / 60.3 69.7 / 58.9 73.4 / 56.5 78.2 / 58.1 67.5 / 57.3 76.3 / 60.3
Multi-task 73.2 / 56.4 79.1 / 61.8 78.3 / 60.0 85.5 / 74.2 81.1 / 62.9 74.0 / 56.5 77.7 / 61.7 71.6 / 61.8 73.7 / 57.6 78.8 / 59.1 68.1 / 57.0 76.5 / 60.8

W
ith

M
LM

ANLI+ 72.1 / 52.4 77.3 / 59.8 76.1 / 57.6 85.8 / 74.1 78.7 / 58.8 72.9 / 55.3 76.9 / 59.4 73.0 / 63.4 72.3 / 55.3 78.5 / 57.8 70.9 / 61.0 75.9 / 59.5
MNLI 72.5 / 54.8 78.4 / 60.7 77.8 / 60.4 86.4 / 75.5 80.4 / 61.3 73.6 / 56.6 78.2 / 61.7 73.9 / 64.5 72.5 / 57.5 79.0 / 60.3 69.0 / 59.7 76.5 / 61.2
QQP 72.8 / 55.3 78.8 / 61.6 76.9 / 58.8 85.9 / 74.4 79.8 / 61.2 73.9 / 56.3 78.1 / 61.3 72.0 / 61.0 73.4 / 57.7 78.2 / 59.0 67.6 / 57.2 76.1 / 60.4
SQuADv2.0 72.3 / 55.0 79.0 / 63.3 76.9 / 58.6 85.3 / 73.9 80.3 / 61.9 73.1 / 56.9 77.8 / 61.7 72.5 / 61.1 72.8 / 55.8 77.8 / 58.2 68.4 / 58.6 76.0 / 60.4
SQuADv1.1 73.3 / 56.1 79.0 / 62.9 78.8 / 60.5 86.6 / 75.5 80.7 / 62.4 74.6 / 57.2 79.2 / 62.8 71.2 / 58.9 73.8 / 56.3 79.4 / 60.6 69.3 / 59.6 76.9 / 61.2
HellaSwag 73.3 / 56.2 77.4 / 59.7 78.0 / 58.7 85.1 / 73.6 79.8 / 61.2 74.7 / 57.6 77.9 / 61.0 72.7 / 61.8 73.2 / 57.6 77.8 / 58.8 67.7 / 58.3 76.1 / 60.4
CCG 71.8 / 53.2 77.4 / 60.5 75.7 / 56.9 84.8 / 72.9 79.3 / 60.1 73.1 / 55.8 75.8 / 57.1 70.3 / 58.3 71.7 / 55.6 77.2 / 57.0 66.9 / 57.4 74.9 / 58.6
Cosmos QA 72.5 / 53.9 77.2 / 61.2 76.9 / 59.1 85.1 / 72.9 79.2 / 60.6 73.4 / 57.5 76.4 / 57.7 72.0 / 61.7 72.1 / 55.1 77.4 / 57.6 68.6 / 59.0 75.5 / 59.6
CSQA 73.0 / 54.0 77.6 / 60.7 77.4 / 58.7 86.2 / 74.5 80.3 / 61.1 73.1 / 57.3 77.8 / 59.9 71.4 / 59.6 72.1 / 55.0 77.9 / 58.7 71.2 / 60.7 76.2 / 60.0

Table 10: Full XQuAD Results
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ar de en es hi vi zh Avg

XLM-R 62.7 / 42.4 69.1 / 52.0 81.6 / 68.6 72.2 / 53.0 68.0 / 50.7 69.5 / 47.6 67.9 / 46.2 70.1 / 51.5

W
ith

ou
tM

LM

ANLI+ 64.1 / 43.9 66.8 / 49.8 82.5 / 69.4 71.9 / 52.6 69.2 / 50.5 70.5 / 49.7 66.9 / 44.8 70.3 / 51.5
MNLI 64.2 / 43.5 68.1 / 51.8 82.7 / 70.0 73.7 / 54.8 70.3 / 52.7 68.9 / 49.5 67.1 / 46.0 70.7 / 52.6
QQP 60.5 / 39.7 62.4 / 45.5 79.0 / 66.0 70.7 / 51.6 62.9 / 45.4 67.0 / 47.6 63.5 / 41.1 66.6 / 48.1
SQuADv2.0 66.1 / 45.3 68.2 / 50.2 83.5 / 71.1 73.6 / 55.4 68.5 / 51.5 71.7 / 52.4 68.2 / 46.4 71.4 / 53.2
SQuADv1.1 67.4 / 46.4 69.6 / 52.9 84.1 / 70.8 75.3 / 56.8 72.5 / 54.8 70.9 / 51.7 69.4 / 47.0 72.8 / 54.4
HellaSwag 64.2 / 43.1 68.8 / 52.3 83.5 / 70.9 73.0 / 53.6 69.2 / 51.7 69.8 / 48.7 68.5 / 46.2 71.0 / 52.4
CCG 62.7 / 41.6 67.5 / 50.4 82.9 / 70.0 72.9 / 54.6 66.1 / 50.1 68.9 / 48.9 66.4 / 45.6 69.6 / 51.6
Cosmos QA 63.8 / 43.9 68.2 / 50.4 82.2 / 69.0 72.9 / 54.2 69.4 / 51.7 70.8 / 50.1 66.6 / 44.4 70.6 / 52.0
CSQA 64.0 / 43.9 68.8 / 52.0 83.4 / 70.6 75.2 / 55.0 69.1 / 51.5 72.6 / 52.1 69.2 / 46.6 71.8 / 53.1
Multi-task 65.1 / 44.1 70.2 / 54.9 82.9 / 69.4 75.2 / 56.4 70.1 / 52.3 72.0 / 51.7 68.6 / 46.2 72.0 / 53.6

W
ith

M
LM

ANLI+ 62.7 / 41.8 68.5 / 51.4 82.1 / 69.0 73.6 / 54.2 66.7 / 48.7 69.5 / 49.3 66.2 / 44.2 69.9 / 51.2
MNLI 62.9 / 41.0 69.2 / 53.5 82.6 / 69.4 74.3 / 54.4 68.0 / 50.7 70.5 / 50.5 68.0 / 45.8 70.8 / 52.2
QQP 64.6 / 44.9 68.1 / 51.2 83.2 / 70.4 74.0 / 55.6 70.4 / 53.1 69.1 / 49.3 68.3 / 45.6 71.1 / 52.9
SQuADv2.0 64.7 / 43.9 66.6 / 51.0 82.1 / 69.6 73.1 / 55.2 70.2 / 53.1 69.0 / 51.1 68.6 / 47.2 70.6 / 53.0
SQuADv1.1 64.4 / 43.3 68.0 / 50.0 83.1 / 70.0 75.2 / 56.2 68.5 / 51.9 71.2 / 51.9 66.8 / 44.6 71.0 / 52.6
HellaSwag 64.7 / 44.3 68.4 / 52.3 83.3 / 70.4 73.9 / 55.0 69.5 / 52.1 69.9 / 47.9 67.7 / 44.8 71.1 / 52.4
CCG 60.4 / 41.4 66.5 / 50.8 81.8 / 68.6 72.8 / 54.2 66.2 / 48.7 67.7 / 46.2 64.5 / 44.6 68.6 / 50.7
Cosmos QA 63.4 / 43.1 69.0 / 51.0 81.9 / 68.9 72.3 / 53.6 66.3 / 48.9 69.1 / 47.6 66.0 / 45.2 69.7 / 51.2
CSQA 64.3 / 43.7 69.5 / 51.8 82.6 / 69.4 73.4 / 54.4 68.0 / 50.7 70.9 / 48.7 67.7 / 45.8 70.9 / 52.1

Table 11: Full MLQA Results

ar bn en fi id ko ru sw te Avg

XLM-R 64.5 / 46.9 59.5 / 41.6 70.4 / 56.6 64.9 / 49.2 75.1 / 59.8 54.7 / 39.5 65.4 / 43.6 67.2 / 48.7 68.8 / 48.3 65.6 / 48.2

W
ith

ou
tM

LM

ANLI+ 67.3 / 47.8 54.9 / 37.2 71.0 / 57.3 64.7 / 47.8 74.9 / 57.5 54.5 / 41.3 62.4 / 33.0 67.2 / 47.3 68.2 / 46.9 65.0 / 46.2
MNLI 67.8 / 49.7 60.6 / 40.7 71.6 / 57.7 66.5 / 48.6 76.6 / 61.9 55.3 / 42.4 63.9 / 39.0 66.9 / 48.5 71.0 / 51.4 66.7 / 48.9
QQP 63.2 / 44.4 43.8 / 26.5 64.4 / 52.7 56.3 / 39.9 71.6 / 57.0 47.5 / 32.6 57.4 / 38.2 54.5 / 36.5 45.5 / 26.2 56.0 / 39.3
SQuADv2.0 76.5 / 59.8 77.7 / 63.7 76.1 / 63.2 78.3 / 64.3 83.1 / 69.9 68.1 / 56.5 73.0 / 51.5 79.1 / 67.1 79.2 / 61.1 76.8 / 61.9
SQuADv1.1 76.1 / 60.0 75.6 / 61.9 77.6 / 66.6 76.0 / 61.3 82.5 / 68.3 63.7 / 51.4 71.1 / 44.7 76.5 / 63.5 79.0 / 61.6 75.3 / 59.9
HellaSwag 69.9 / 49.4 60.6 / 42.5 72.2 / 59.1 63.0 / 44.1 76.7 / 60.4 54.7 / 39.1 61.4 / 33.0 66.3 / 48.3 70.6 / 47.8 66.1 / 47.1
CCG 63.6 / 41.8 54.1 / 37.2 68.5 / 55.9 59.6 / 41.7 73.2 / 57.5 50.8 / 37.7 60.2 / 33.4 66.8 / 49.7 66.2 / 43.8 62.6 / 44.3
Cosmos QA 71.7 / 51.9 65.9 / 48.7 73.3 / 61.6 66.7 / 50.9 78.5 / 63.4 52.6 / 36.6 66.2 / 44.1 68.0 / 51.3 74.5 / 54.7 68.6 / 51.5
CSQA 70.9 / 52.1 67.8 / 49.6 74.6 / 60.9 69.6 / 52.6 77.0 / 60.2 60.8 / 46.4 63.6 / 36.0 70.8 / 53.5 73.3 / 54.7 69.8 / 51.8
Multi-task 73.3 / 52.3 66.7 / 48.7 75.6 / 63.6 74.7 / 59.6 81.7 / 67.3 60.2 / 46.4 71.0 / 43.0 76.0 / 64.3 77.2 / 58.4 72.9 / 56.0

W
ith

M
LM

ANLI+ 67.1 / 48.9 59.5 / 42.5 72.2 / 58.9 67.2 / 51.4 76.8 / 60.7 54.9 / 42.0 62.4 / 35.3 70.3 / 52.1 70.4 / 53.1 66.8 / 49.4
MNLI 67.3 / 49.7 60.0 / 41.6 71.2 / 59.3 66.8 / 50.4 78.1 / 62.1 56.4 / 42.0 62.2 / 33.9 68.5 / 50.7 70.0 / 48.4 66.7 / 48.7
QQP 67.8 / 49.0 55.7 / 37.2 69.8 / 56.1 64.1 / 47.1 74.2 / 58.6 49.0 / 34.4 60.0 / 34.5 64.5 / 45.7 70.1 / 45.6 63.9 / 45.3
SQuADv2.0 76.9 / 60.5 70.1 / 54.9 76.6 / 64.5 74.4 / 59.6 83.4 / 69.7 61.6 / 48.6 71.3 / 45.2 74.0 / 61.5 76.7 / 59.3 73.9 / 58.2
SQuADv1.1 77.0 / 59.3 68.5 / 51.3 75.4 / 64.3 77.2 / 63.4 83.3 / 71.0 63.7 / 51.8 71.7 / 47.9 73.1 / 56.5 76.4 / 59.0 74.0 / 58.3
HellaSwag 68.8 / 50.4 62.6 / 47.8 70.9 / 56.8 64.0 / 48.6 77.4 / 61.8 54.6 / 40.9 61.2 / 31.7 68.2 / 49.5 71.4 / 50.5 66.6 / 48.7
CCG 68.1 / 49.1 57.5 / 39.8 69.0 / 55.9 65.9 / 48.6 76.5 / 61.9 55.0 / 39.9 61.6 / 31.9 67.5 / 49.3 56.3 / 30.3 64.2 / 45.2
Cosmos QA 66.6 / 46.6 56.8 / 37.2 71.5 / 58.0 64.2 / 45.0 75.0 / 57.0 56.3 / 41.3 63.6 / 39.0 69.0 / 51.1 63.6 / 46.3 65.2 / 46.8
CSQA 68.8 / 50.4 60.2 / 43.4 71.3 / 59.1 67.6 / 50.5 76.9 / 59.8 54.0 / 41.3 63.5 / 38.1 69.5 / 52.9 72.8 / 54.1 67.2 / 49.9

Table 12: Full TyDiQA Results
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de fr ru zh Avg

XLM-R 77.7 62.7 79.2 66.5 71.5

W
ith

ou
tM

LM

ANLI+ 94.6 89.8 93.5 88.6 91.6
MNLI 94.2 90.2 93.5 89.9 92.0
QQP 94.2 91.0 93.3 88.5 91.8
SQuADv2.0 94.0 89.8 93.0 89.9 91.7
SQuADv1.1 94.2 90.5 93.1 87.0 91.2
HellaSwag 94.6 91.9 93.9 88.9 92.3
CCG 88.3 82.9 86.6 78.0 83.9
Cosmos QA 94.1 90.2 93.2 88.6 91.5
CSQA 95.1 90.6 93.5 89.1 92.1
Multi-task 94.3 90.4 93.4 87.0 91.3

W
ith

M
LM

ANLI+ 93.4 88.0 92.9 86.5 90.2
MNLI 92.7 89.0 93.2 86.1 90.3
QQP 90.8 86.9 90.6 83.6 88.0
SQuADv2.0 92.8 87.0 91.4 85.8 89.2
SQuADv1.1 92.9 89.5 92.7 85.3 90.1
HellaSwag 92.6 87.5 91.4 86.6 89.5
CCG 87.6 78.5 87.6 75.7 82.4
Cosmos QA 91.8 86.9 91.7 88.4 89.7
CSQA 86.1 80.8 87.9 81.6 84.1

Table 13: Full BUCC Results

af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

XLM-R 30.5 20.4 39.0 13.3 63.9 18.9 48.0 25.8 19.9 42.0 41.5 48.1 28.0 38.3 42.5 47.0 42.3 41.8 10.2

W
ith

ou
tM

LM

ANLI+ 78.8 74.0 88.0 72.3 97.4 82.4 91.2 70.9 53.3 91.5 88.6 89.8 82.1 92.8 86.2 92.1 82.6 88.7 31.7
MNLI 79.6 70.7 84.8 71.2 96.6 82.5 93.1 74.3 59.2 90.0 89.0 89.6 81.8 91.7 86.0 91.7 86.3 89.5 30.7
QQP 80.4 74.9 87.3 74.3 96.5 84.1 93.8 74.7 60.2 91.0 90.3 89.9 86.0 93.3 88.4 92.1 86.3 89.9 35.6
SQuADv2.0 73.7 67.7 84.2 63.2 96.0 74.3 89.2 70.5 54.0 87.9 85.5 87.1 77.1 88.0 83.5 89.5 80.2 86.4 32.2
SQuADv1.1 76.9 68.9 85.7 65.7 96.4 76.3 89.5 76.9 58.4 88.0 88.5 88.5 77.3 89.9 84.0 90.4 83.0 88.7 30.2
HellaSwag 78.9 75.4 89.9 75.4 97.7 84.8 93.1 79.8 64.8 91.8 92.0 92.2 84.9 93.4 89.5 92.1 86.7 91.6 37.1
CCG 71.9 59.1 82.1 62.5 95.5 74.4 87.0 67.3 49.0 84.7 82.6 84.4 77.2 85.4 80.7 87.2 79.1 78.7 24.9
Cosmos QA 78.6 70.6 86.6 71.0 96.4 80.5 91.8 77.6 60.7 89.8 91.3 89.4 83.0 91.5 87.7 91.4 83.7 88.2 37.1
CSQA 79.5 74.5 87.7 74.0 96.9 83.6 92.9 79.1 65.8 90.0 92.0 90.7 83.1 92.2 88.4 91.8 85.4 88.9 33.7
Multi-task 81.2 71.9 88.0 73.6 97.1 82.9 92.6 73.1 58.6 90.4 89.6 89.6 84.1 92.6 87.2 92.6 83.9 91.0 34.1

W
ith

M
LM

ANLI+ 78.6 65.2 86.6 67.8 97.0 78.2 90.2 79.1 59.3 89.3 89.1 90.4 78.7 89.3 86.5 91.0 84.6 87.0 26.3
MNLI 77.3 65.2 83.8 64.9 97.2 76.1 92.1 77.7 57.3 88.1 88.8 87.5 81.0 89.0 87.1 90.5 82.6 85.6 27.3
QQP 74.4 61.3 83.7 64.6 96.2 75.7 88.1 76.7 59.4 86.3 87.0 86.9 76.6 85.9 84.2 89.8 79.8 84.0 28.8
SQuADv2.0 70.8 57.6 80.9 52.7 96.6 63.4 84.5 71.5 47.4 85.4 86.9 85.1 71.9 85.2 83.9 90.4 78.1 83.2 16.1
SQuADv1.1 79.2 67.7 86.5 71.4 96.7 80.4 91.6 83.1 66.3 90.8 91.1 89.8 77.5 92.3 87.4 91.8 84.6 87.4 26.3
HellaSwag 57.1 45.2 69.4 40.4 89.7 57.8 73.4 64.0 42.2 77.1 76.4 76.5 62.6 75.1 76.2 82.5 69.7 77.5 22.0
CCG 71.9 52.3 80.4 51.0 95.0 72.6 86.0 73.5 51.0 83.3 84.1 81.8 71.3 79.1 81.6 87.2 78.7 76.2 12.7
Cosmos QA 69.7 63.7 84.0 58.8 95.1 74.2 84.6 76.5 58.6 85.7 85.2 84.5 76.2 87.1 84.7 88.5 81.4 85.5 24.9
CSQA 54.3 45.3 63.6 33.5 87.0 50.5 70.0 58.8 35.7 74.1 71.0 70.7 58.2 70.2 72.5 80.4 64.2 75.5 16.6

ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh Avg

XLM-R 11.8 17.4 35.5 19.4 15.2 52.6 47.2 42.1 7.9 9.1 19.7 27.4 10.3 37.8 22.5 38.3 41.2 31.0 -

W
ith

ou
tM

LM

ANLI+ 76.9 67.3 84.6 90.8 80.5 93.6 91.0 90.5 30.8 76.5 85.5 91.2 59.9 87.9 79.7 94.6 93.0 80.8 -
MNLI 77.9 67.7 84.3 89.8 80.4 92.5 91.3 89.2 32.8 70.0 78.2 86.7 60.9 88.8 74.5 92.5 91.2 80.2 -
QQP 78.7 69.4 86.4 92.9 82.9 93.3 92.5 91.6 35.1 81.4 90.6 90.0 64.6 91.4 81.7 95.0 92.3 82.7 -
SQuADv2.0 67.0 63.0 80.8 82.8 71.6 89.7 90.4 86.9 27.7 60.9 74.4 80.7 54.2 85.9 70.6 92.5 89.3 76.1 -
SQuADv1.1 70.9 63.7 83.3 87.3 74.7 91.7 90.2 89.1 31.5 60.6 77.8 82.3 59.3 88.3 68.3 92.8 90.8 77.9 -
HellaSwag 80.8 72.0 86.5 92.1 81.1 93.2 91.9 92.0 35.1 79.2 87.2 89.6 64.5 90.6 82.4 95.1 92.6 83.3 -
CCG 65.1 56.9 76.8 82.5 70.3 88.9 88.8 84.5 24.9 60.3 65.4 72.8 53.3 82.6 64.7 89.7 84.8 72.9 -
Cosmos QA 75.7 69.9 83.6 90.1 78.7 92.0 91.3 89.7 34.1 72.3 84.6 89.1 59.7 89.6 79.8 93.3 90.9 80.9 -
CSQA 80.8 70.3 85.5 91.7 82.7 93.3 91.4 90.4 35.9 73.3 84.6 89.4 65.4 90.2 77.1 94.8 92.9 82.2 -
Multi-task 78.7 68.2 85.0 91.4 80.4 92.1 92.0 90.2 34.4 68.7 83.8 89.1 62.3 88.9 77.6 95.0 92.8 81.2 -

W
ith

M
LM

ANLI+ 70.6 64.7 83.6 88.9 75.6 92.0 91.0 88.1 29.0 70.0 76.9 84.7 51.6 88.0 71.7 93.6 91.6 78.5 -
MNLI 67.7 63.3 81.8 84.3 75.0 90.8 90.5 87.8 29.7 62.2 73.5 85.2 53.4 87.6 71.2 93.3 88.5 77.4 -
QQP 66.0 64.2 80.2 82.0 70.6 89.4 89.8 86.7 30.5 60.9 76.1 83.6 52.3 84.9 72.7 90.5 88.0 76.0 -
SQuADv2.0 53.8 54.8 77.5 72.5 61.5 90.0 87.0 87.2 20.3 41.7 51.7 80.5 38.0 81.8 63.3 90.6 89.1 70.4 -
SQuADv1.1 73.2 66.8 83.9 89.8 78.9 93.0 90.4 89.7 33.8 76.2 85.0 90.0 54.5 90.0 78.6 93.6 90.9 80.6 -
HellaSwag 38.5 43.1 70.5 63.2 39.7 79.1 78.4 80.0 19.2 30.9 55.6 66.6 33.1 71.5 49.8 80.4 77.7 61.4 -
CCG 58.3 51.3 74.6 76.3 58.4 89.0 86.9 82.9 23.3 46.9 60.3 72.6 40.9 82.5 55.8 87.9 80.3 69.4 -
Cosmos QA 63.3 56.0 80.7 79.0 63.1 89.4 87.2 86.1 26.2 55.7 71.8 80.5 44.6 83.0 63.7 91.0 85.1 73.8 -
CSQA 33.4 36.2 65.9 47.0 30.9 76.6 74.7 75.5 19.0 28.3 49.6 64.1 26.0 64.1 53.0 78.4 75.1 56.9 -

Table 14: Full Tatoeba Results
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en 87.1 88.0 71.6
Translated to de 82.2 84.6 55.1
Translated to ru 70.1 83.8 27.4
Translated to sw 70.8 79.3 25.1

Table 15: Intermediate task performance on trained and evaluated on translated data. We report the median result
for English (original) task data.


