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Abstract

We present an empirical study in favor of a cas-
cade architecture to neural text summarization.
Summarization practices vary widely but few
other than news summarization can provide a
sufficient amount of training data enough to
meet the requirement of end-to-end neural ab-
stractive systems which perform content selec-
tion and surface realization jointly to generate
abstracts. Such systems also pose a challenge
to summarization evaluation, as they force con-
tent selection to be evaluated along with text
generation, yet evaluation of the latter remains
an unsolved problem. In this paper, we present
empirical results showing that the performance
of a cascaded pipeline that separately identifies
important content pieces and stitches them to-
gether into a coherent text is comparable to or
outranks that of end-to-end systems, whereas
a pipeline architecture allows for flexible con-
tent selection. We finally discuss how we can
take advantage of a cascaded pipeline in neu-
ral text summarization and shed light on im-
portant directions for future research.

1 Introduction

There is a variety of successful summarization ap-
plications but few can afford to have a large number
of annotated examples that are sufficient to meet
the requirement of end-to-end neural abstractive
summarization. Examples range from summariz-
ing radiology reports (Jing et al., 2019; Zhang et al.,
2020) to congressional bills (Kornilova and Eidel-
man, 2019) and meeting conversations (Mehdad
et al., 2013; Li et al., 2019; Koay et al., 2020). The
lack of annotated resources suggests that end-to-
end systems may not be a “one-size-fits-all” so-
lution to neural text summarization. There is an
increasing need to develop cascaded architectures
to allow for customized content selectors to be com-
bined with general-purpose neural text generators

to realize the full potential of neural abstractive
summarization.

We advocate for explicit content selection as it al-
lows for a rigorous evaluation and visualization of
intermediate results of such a module, rather than
associating it with text generation. Existing neu-
ral abstractive systems can perform content selec-
tion implicitly using end-to-end models (See et al.,
2017; Celikyilmaz et al., 2018; Raffel et al., 2019;
Lewis et al., 2020), or more explicitly, with an exter-
nal module to select important sentences or words
to aid generation (Tan et al., 2017; Gehrmann et al.,
2018; Chen and Bansal, 2018; Kryściński et al.,
2018; Hsu et al., 2018; Lebanoff et al., 2018, 2019b;
Liu and Lapata, 2019). However, content selection
concerns not only the selection of important seg-
ments from a document, but also the cohesiveness
of selected segments and the amount of text to be
selected in order for a neural text generator to pro-
duce a summary.

In this paper, we aim to investigate the feasibility
of a cascade approach to neural text summariza-
tion. We explore a constrained summarization task,
where an abstract is created one sentence at a time
through a cascaded pipeline. Our pipeline architec-
ture chooses one or two sentences from the source
document, then highlights their summary-worthy
segments and uses those as a basis for composing
a summary sentence. When a pair of sentences
are selected, it is important to ensure that they are
fusible—there exists cohesive devices that tie the
two sentences together into a coherent text—to
avoid generating nonsensical outputs (Geva et al.,
2019; Lebanoff et al., 2020). Highlighting sentence
segments allows us to perform fine-grained content
selection that guides the neural text generator to
stitch selected segments into a coherent sentence.
The contributions of this work are summarized as
follows.
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Figure 1: Model architecture. We divide the task between two main components: the first component performs
sentence selection and fine-grained content selection, which are posed as a classification problem and a sequence-
tagging problem, respectively. The second component receives the first component’s outputs as supplementary
information to generate the summary. A cascade architecture provides the necessary flexibility to separate content
selection from surface realization in abstractive summarization.

• We present an empirical study in favor of
a cascade architecture for neural text sum-
marization. Our cascaded pipeline chooses
one or two sentences from the document and
highlights their important segments; these seg-
ments are passed to a neural generator to pro-
duce a summary sentence.

• Our quantitative results show that the perfor-
mance of a cascaded pipeline is comparable to
or outranks that of end-to-end systems, with
added benefit of flexible content selection. We
discuss how we can take advantage of a cas-
cade architecture and shed light on important
directions for future research.1

2 A Cascade Approach

Our cascaded summarization approach focuses on
shallow abstraction. It makes use of text transfor-
mations such as sentence shortening, paraphrasing
and fusion (Jing and McKeown, 2000) and is in
contrast to deep abstraction, where a full seman-
tic analysis of the document is often required. A
shallow approach helps produce abstracts that con-
vey important information while, crucially, remain-
ing faithful to the original. In what follows, we
describe our approach to select single sentences
and sentence pairs from the document, highlight
summary-worthy segments and perform summary
generation conditioned on highlights.

Selection of Singletons and Pairs Our approach
iteratively selects one or two sentences from the
input document; they serve as the basis for compos-
ing a single summary sentence. Previous research
suggests that 60-85% of human-written summary

1Our code is publicly available at https://github.
com/ucfnlp/cascaded-summ

sentences are created by shortening a single sen-
tence or merging a pair of sentences (Lebanoff
et al., 2019b). We adopt this setting and present a
coarse-to-fine strategy for content selection. Our
strategy begins with selecting sentence singletons
and pairs, followed by highlighting important seg-
ments of the sentences. Importantly, the strategy
allows us to control which segments will be com-
bined into a summary sentence—“compatible” seg-
ments come from either a single document sentence
or a pair of fusible sentences. In contrast, when all
important segments of the document are provided
to a neural generator all at once (Gehrmann et al.,
2018), it can happen that the generator arbitrar-
ily stitches together text segments from unrelated
sentences, yielding a summary that contains hallu-
cinated content and fails to retain the meaning of
the original document (Falke et al., 2019; Lebanoff
et al., 2019a; Kryscinski et al., 2019).

We expect a sentence singleton or pair to be se-
lected from the document if it contains salient con-
tent. Moreover, a pair of sentences should contain
content that is compatible with each other. Given a
sentence or pair of sentences from the document,
our model predicts whether it is a valid instance
to be compressed or merged to form a summary
sentence. We follow (Lebanoff et al., 2019b) to use
BERT (Devlin et al., 2019) to perform the classi-
fication. BERT is a natural choice since it takes
one or two sentences and generates a classification
prediction. It treats an input singleton or pair of
sentences as a sequence of tokens. The tokens are
fed to a series of Transformer block layers, con-
sisting of multi-head self-attention modules. The
first Transformer layer creates a contextual repre-
sentation for each token, and each successive layer
further refines those representations. An additional

https://github.com/ucfnlp/cascaded-summ
https://github.com/ucfnlp/cascaded-summ
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Figure 2: Comparison of various highlighting strategies. Thresholding obtains the best performance.

[CLS] token is added to contain the sentence rep-
resentation. BERT is fine-tuned for our task by
adding an output layer on top of the final layer rep-
resentation hL

[CLS] for sequence s, as seen in Eq. (1).

psent(s) = σ(u>hL
[CLS]) (1)

where u is a vector of weights and σ is the sigmoid
function. The model predicts psent – whether the
sentence singleton or pair is an appropriate one
based on the [CLS] token representation. We de-
scribe the training data for this task in §3.

Fine-Grained Content Selection It is interest-
ing to note that the previous architecture can be
naturally extended to perform fine-grained content
selection by highlighting important words of sen-
tences. When two sentences are selected to gen-
erate a fusion sentence, it is desirable to identify
segments of text from these sentences that are po-
tentially compatible with each other. The coarse-to-
fine method allows us to examine the intermediate
results and compare them with ground-truth. Con-
cretely, we add a classification layer to the final
layer representation hL

i for each token wi (Eq. (2)).
The per-target-word loss is then interpolated with
instance prediction (one or two sentences) loss us-
ing a coefficient λ. Such a multi-task learning ob-
jective has been shown to improve performance on
a number of tasks (Guo et al., 2019).

phighlight(wi) = σ(v>hL
i ) (2)

where v is a vector of weights and σ is the sigmoid
function. The model predicts phighlight for each to-
ken – whether the token should be included in the
output fusion, calculated based on the given token’s
representation.

Information Fusion Given one or two sentences
taken from a document and their fine-grained high-
lights, we proceed by describing a fusion process
that generates a summary sentence from the se-
lected content. Our model employs an encoder-
decoder architecture based on pointer-generator

networks that has shown strong performance on
its own and with adaptations (See et al., 2017;
Gehrmann et al., 2018). We feed the sentence sin-
gleton or pair to the encoder along with highlights
derived by the fine-grained content selector, the
latter come in the form of binary tags. The tags
are transformed to a “highlight-on” embedding for
each token if it is chosen by the content selector,
and a “highlight-off ” embedding for each token
not chosen. The highlight-on/off embeddings are
added to token embeddings in an element-wise
manner; both highlight and token embeddings are
learned. An illustration is shown in Figure 1.

Highlights provide a valuable intermediate rep-
resentation suitable for shallow abstraction. Our
approach thus provides an alternative to methods
that use more sophisticated representations such as
syntactic/semantic graphs (Filippova and Strube,
2008; Banarescu et al., 2013; Liu et al., 2015). It is
more straightforward to incorporate highlights into
an encoder-decoder fusion model, and obtaining
highlights through sequence tagging can be poten-
tially adapted to new domains.

3 Experimental Results

Data and Annotation To enable direct compar-
ison with end-to-end systems, we conduct experi-
ments on the widely used CNN/DM dataset (See
et al., 2017) to report results of our cascade
approach. We use the procedure described in
Lebanoff et al. (2019b) to create training instances
for the sentence selector and fine-grained content
selector. Our training data contains 1,053,993 in-
stances; every instance contains one or two candi-
date sentences. It is a positive instance if a ground-
truth summary sentence can be formed by com-
pressing or merging sentences of the instance, nega-
tive otherwise. For positive instances, we highlight
all lemmatized unigrams appearing in the summary,
excluding punctuation. We further add smoothing
to the labels by highlighting single words that con-
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System R-1 R-2 R-L

SumBasic (Vanderwende et al., 2007) 34.11 11.13 31.14
LexRank (Erkan and Radev, 2004) 35.34 13.31 31.93
Pointer-Generator (See et al., 2017) 39.53 17.28 36.38
FastAbsSum (Chen and Bansal, 2018) 40.88 17.80 38.54
BERT-Extr (Lebanoff et al., 2019b) 41.13 18.68 37.75
BottomUp (Gehrmann et al., 2018) 41.22 18.68 38.34

BERT-Abs (Lebanoff et al., 2019b) 37.15 15.22 34.60
Cascade-Fusion (Ours) 40.10 17.61 36.71
Cascade-Tag (Ours) 40.24 18.33 36.14

GT-Sent + Sys-Tag 50.40 27.74 46.25
GT-Sent + Sys-Tag + Fusion 51.33 28.08 47.50
GT-Sent + GT-Tag 74.80 48.21 67.40
GT-Sent + GT-Tag + Fusion 72.70 48.33 67.06

(SYSTEM SENTS) A Duke student has admitted to hanging a noose
made of rope from a tree near a student union, university officials said
Thursday. The student was identified during an investigation by cam-
pus police and the office of student affairs and admitted to placing the
noose on the tree early Wednesday, the university said.

(CASCADE-FUSION) A Duke student was identified during an investiga-
tion by campus police and the office of student affairs and admitted to
placing the noose on the tree early Wednesday.

(GT SENTS) In a news release, it said the student was no longer on cam-
pus and will face student conduct review. Duke University is a private
college with about 15,000 students in Durham, North Carolina.

(GT SENTS + FUSION) Duke University student was no longer on cam-
pus and will face student conduct review.

(REFERENCE) Student is no longer on Duke University campus and will
face disciplinary review.

Table 1: (LEFT) Summarization results on CNN/DM test set. Our cascade approach performs comparable to strong
extractive and abstractive baselines; oracle models using ground-truth sentences and segment highlights perform
the best. (RIGHT) Example source sentences and their fusions. Dark highlighting is content taken from the first
sentence, and light highlighting comes from the second. Our Cascade-Fusion approach effectively performs entity
replacement by replacing “student” in the second sentence with “a Duke student” from the first sentence.

nect two highlighted phrases and by dehighlight-
ing isolated stopwords. At test time, four highest-
scored instances are selected per document; their
important segments are highlighted by content se-
lector then passed to the fusion step to produce a
summary sentence each. The hyperparameter λ for
weighing the per-target-word loss is set to 0.2 and
highlighting threshold value is 0.15. The model
hyperparameters are tuned on the validation split.

Summarization Results We show experimental
results on the standard test set and evaluated by
ROUGE metrics (Lin, 2004) in Table 1. The perfor-
mance of our cascade approaches, Cascade-Fusion
and Cascade-Tag, is comparable to or outranks
a number of extractive and abstractive baselines.
Particularly, Cascade-Tag does not use a fusion
step (§2) and is the output of fine-grained content
selection. Cascade-Fusion provides a direct com-
parison against BERT-Abs (Lebanoff et al., 2019b)
that uses sentence selection and fusion but lacks a
fine-grained content selector.

Our results suggest that a coarse-to-fine content
selection strategy remains necessary to guide the
fusion model to produce informative sentences. We
observe that the addition of the fusion model has
only a moderate impact on ROUGE scores, but the
fusion process can reorder text segments to create
true and grammatical sentences, as shown in Ta-
ble 1. We analyze the performance of a number
of oracle models that use ground-truth sentence
selection (GT-Sent) and tagging (GT-Tag). When
given ground-truth sentences as input, our cascade

models achieve ∼10 points of improvement in all
ROUGE metrics. When the models are also given
ground-truth highlights, they achieve an additional
20 points of improvement. In a preliminary ex-
amination, we observe that not all highlights are
included in the summary during fusion, indicating
there is space for improvement. These results show
that cascade architectures have great potential to
generate shallow abstracts and future emphasis may
be placed on accurate content selection.

How much should we highlight? It is important
to quantify the amount of highlighting required for
generating a summary sentence. Highlighting too
much or too little can be unhelpful. We experiment
with three methods to determine the appropriate
amount of words to highlight. Probability Thresh-
olding chooses a set threshold whereby all words
that have a probability higher than the threshold are
highlighted. When Proportional to Input is used,
the highest probability words are iteratively high-
lighted until a target rate is reached. The amount of
highlighting can be proportional to the total num-
ber of words per instance (one or two sentences) or
per document, containing all sentences selected for
the document.

We investigate the effect of varying the amount
of highlighting in Figure 2. Among the three meth-
ods, probability thresholding performs the best, as
it gives more freedom to content selection. If the
model scores all of the words in sentences highly,
then we should correspondingly highlight all of the
words. If only very few words score highly, then
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we should only pick those few.
Highlighting a certain percentage of words tend

to perform less well. On our dataset, a thresh-
old value of 0.15–0.20 produces the best ROUGE
scores. Interestingly, these thresholds end up high-
lighting 58–78% of the words of each sentence.
Compared to what the generator was trained on,
which had a median of 31% of each sentence high-
lighted, the system’s rate of highlighting is higher.
If the model’s highlighting rate is set to be similar
to that of the ground-truth, it yields much lower
ROUGE scores (cf. threshold value of 0.3 in Fig-
ure 2). This observation suggests that the amount
of highlighting can be related to the effectiveness
of content selector and it may be better to highlight
more than less.

4 Conclusion

We present a cascade approach to neural abstrac-
tive summarization that separates content selection
from surface realization. Importantly, our approach
makes use of text highlights as intermediate rep-
resentation; they are derived from one or two sen-
tences using a coarse-to-fine content selection strat-
egy, then passed to a neural text generator to com-
pose a summary sentence. A successful cascade
approach is expected to accurately select sentences
and highlight an appropriate amount of text, both
can be customized for domain-specific tasks.
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