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Abstract

Learning specific hands-on skills such as cook-
ing, car maintenance, and home repairs in-
creasingly happens via instructional videos.
The user experience with such videos is known
to be improved by meta-information such as
time-stamped annotations for the main steps
involved.  Generating such annotations au-
tomatically is challenging, and we describe
here two relevant contributions. First, we
construct and release a new dense video cap-
tioning dataset, Video Timeline Tags (ViTT),
featuring a variety of instructional videos to-
gether with time-stamped annotations. Sec-
ond, we explore several multimodal sequence-
to-sequence pretraining strategies that lever-
age large unsupervised datasets of videos and
caption-like texts. We pretrain and subse-
quently finetune dense video captioning mod-
els using both YouCook?2 and ViTT. We show
that such models generalize well and are
robust over a wide variety of instructional
videos.

1 Introduction

YouTube recently reported that a billion hours of
videos were being watched on the platform every
day (YouTubeBlog, 2017). In addition, the amount
of time people spent watching online videos was
estimated to grow at an average rate of 32% a year
between 2013 and 2018, with an average person
forecasted to watch 100 minutes of online videos
per day in 2021 (ZenithMedia, 2019).

An important reason for this fast-growing video
consumption is information-seeking. For instance,
people turn to YouTube “hungry for how-to and
learning content” (O’Neil-Hart, 2018). Indeed,
compared to traditional content format such as
text, video carries richer information to satisfy such

*This work was done while Gabriel Huang was an intern
at Google Research.
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Groundtruth  Varying stiching speeds
@-Pretraining  Showing other parts
MASS-Pretraining  Explaining how to do a stitch

Figure 1: Dense video captioning using ViTT—trained
models. For the given video scene, we show the ViTT
annotation (Groundtruth) and model outputs (no pre-
training and MASS-based pretraining).

needs. But as a content media, videos are also in-
herently more difficult to skim through, making
it harder to quickly target the relevant part(s) of a
video. Recognizing this difficulty, search engines
started showing links to “key moments” within
videos in search results, based on timestamps and
short descriptions provided by the content creators
themselves.! This enables users to get a quick
sense of what the video covers, and also to jump
to a particular time in the video if so desired. This
effort echoes prior work in the literature show-
ing how users of instructional videos can benefit
from human-curated meta-data, such as a timeline
pointing to the successive steps of a tutorial (Kim
et al., 2014; Margulieux et al., 2012; Weir et al.,
2015). Producing such meta-data in an automatic
way would greatly scale up the efforts of providing
easier information access to videos. This task is
closely related to the dense video captioning task
considered in prior work (Zhou et al., 2018a,c; Kr-
ishna et al., 2017), where an instructional video
is first segmented into its main steps, followed by
segment-level caption generation.

To date, the YouCook?2 data set (Zhou et al.,
2018a) is the largest annotated data set for dense

"https://www.blog.google/products/
search/key-moments-video-search/
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video captioning. It contains annotations for 2,000
cooking videos covering 89 recipes, with per-recipe
training / validation split. Restricting to a small
number of recipes is helpful for early exploratory
work, but such restrictions impose barriers to model
generalization and adoption that are hard to over-
come. We directly address this problem by con-
structing a larger and broader-coverage annotated
dataset that covers a wide range of instructional top-
ics (cooking, repairs, maintenance, etc.) We make
the results of our annotation efforts publicly avail-
able as Video Timeline Tags (ViTT)2, consisting
of around 8,000 videos annotated with timelines
(on average 7.1 segments per video, each segment
with a short free-text description).

Using YouCook2 and the new ViTT dataset
as benchmarks for testing model performance
and generalization, we further focus on the sub-
problem of video-segment—level caption genera-
tion, assuming segment boundaries are given (Hes-
sel et al., 2019; Sun et al., 2019b; Luo et al., 2020).
Motivated by the high cost of collecting human
annotations, we investigate pretraining a video seg-
ment captioning model using unsupervised signals
— ASR (Automatic Speech Recognition) tokens and
visual features from instructional videos, and un-
paired instruction steps extracted from independent
sources: RecipelM (Marin et al., 2019) and Wik-
iHow (Koupaee and Wang, 2018). In contrast to
prior work that focused on BERT-style pretraining
of encoder networks (Sun et al., 2019b,a), our ap-
proach entails jointly pretraining both multimodal
encoder and text-based decoder models via MASS-
style pretraining (Song et al., 2019). Our experi-
ments show that pretraining with either text-only
or multi-modal data provides significant gains over
no pretraining, on both the established YouCook2
benchmark and the new ViTT benchmark. The
results we obtain establish state-of-the-art perfor-
mance on YouCook2, and present strong perfor-
mance numbers on the ViTT benchmark. These
findings help us conclude that the resulting models
generalize well and are quite robust over a wide
variety of instructional videos.

2 Related Work

Text-only Pretraining. Language pretraining
models based on the Transformer neural net-

2 Available at https://github.
com/google-research-datasets/
Video-Timeline—-Tags—ViTT
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work architecture (Vaswani et al., 2017a) such as
BERT (Devlin et al., 2018), GPT (Radford et al.,
2018), RoBERTa (Liu et al., 2019), MASS (Song
et al., 2019) and ALBERT (Lan et al., 2020) have
achieved state-of-the-art results on many NLP tasks.
MASS (Song et al., 2019) has been recently pro-
posed as a joint encoder-decoder pretraining strat-
egy. For sequence-to-sequence tasks, this strategy
is shown to outperform approaches that separately
pretrain the encoder (using a BERT-style objective)
and the decoder (using a language modeling objec-
tive). UniLM (Dong et al., 2019), BART (Lewis
et al., 2019), and T5 (Raffel et al., 2019) propose
unified pretraining approaches for both understand-
ing and generation tasks.

Multimodal Pretraining. VideoBERT (Sun
et al.,, 2019b), CBT (Sun et al., 2019a) and
ActBERT (Zhu and Yang, 2020) use a BERT-style
objective to train both video and ASR text
encoders. Alayrac et al. (2016) and Miech et al.
(2020) use margin-based loss functions to learn
joint representations for video and ASR, and
evaluate them on downstream tasks such as video
captioning, action segmentation and anticipation,
and action localization. An independent and
concurrent work (UniViLM) by Luo et al. (2020)
is closely related to ours in that we share some
similar pretraining objectives, some of the
pretraining setup — HowTo100M (Alayrac et al.,
2016), and the down-stream video captioning
benchmark using YouCook2 (Zhou et al., 2018a).
The main difference is that they use BERT-style
pretraining for encoder and language-modeling
style pretraining for decoder, whereas we use
MASS-style pre-training to pretrain encoder and
decoder jointly.

Other approaches such as VIiLBERT (Lu
et al., 2019), LXMERT (Tan and Bansal, 2019),
Unicoder-VL (Li et al., 2019), VL-BERT (Su et al.,
2019), and UNITER (Chen et al., 2019) focus on
pretraining joint representations for text and image,
evaluating them on downstream tasks such as vi-
sual question answering, image-text retrieval and
referring expressions.

Dense Video Captioning. In this paper, we fo-
cus on generating captions at the segment-level,
which is a sub-task of the so-called dense video
captioning task (Krishna et al., 2017), where fine-
grained captions are generated for video segments,
conditioned on an input video with pre-defined


https://github.com/google-research-datasets/Video-Timeline-Tags-ViTT
https://github.com/google-research-datasets/Video-Timeline-Tags-ViTT
https://github.com/google-research-datasets/Video-Timeline-Tags-ViTT

Name Type # segments
Pretraining datasets

YT8M-cook  ASR+video 186 K
HowTol00M ASR+video 8.0M
RecipelM CAP-style 10.8 M
WikiHow CAP-style 1.3M
Finetuning datasets

YouCook2 ASR+video+CAP 11.5K
VIiTT-All ASR+video+CAP 88.5K

Table 1: Datasets used in this work, along with size of
the data measured by the total number of segments.

event segments. This is different from the video
captioning models that generate a single summary
for the entire video (Wang et al., 2019).

Hessel et al. (2019) make use of ASR and video
for segment-level captioning on YouCook2 and
show that most of the performance comes from
ASR. Shi et al. (2019); Luo et al. (2020) train
their dense video captioning models on both video
frames and ASR text and demonstrate the benefits
of adding ASR as an input to the model. There are
also a number of video captioning approaches that
do not use ASR directly (Zhou et al., 2018c; Pan
et al., 2020; Zheng et al., 2020; Zhang et al., 2020;
Lei et al., 2020).

Instructional video captioning data sets. In ad-
dition to YouCook2 (Zhou et al., 2018a), there
are two other smaller data sets in the instructional
video captioning category. Epic Kitchen (Damen
et al., 2018) features 55 hours of video consisting
of 11.5M frames, which were densely labeled for
a total of 39.6K action segments and 454.3K ob-
ject bounding boxes. How2 (Sanabria et al., 2018)
consists of instructional videos with video-level (as
opposed to segment-level) descriptions, authored
by the video creators themselves.

3 Data

We present the datasets used for pretraining, fine-
tuning, and evaluation in Table 1. We also describe
in detail the newly introduced dense video caption-
ing dataset, Video Timeline Tags (ViTT).

3.1 Dense Video-Captioning Datasets

Our goal is to generate captions (CAP) for
video segments. We consider two datasets with
segment-level captions for fine-tuning and evaluat-
ing ASR+Video—CAP models.

YouCook2. Up to this point, YouCook2 (Zhou
et al., 2018a) has been the largest human-annotated
dense-captioning dataset of instructional videos
publicly available. It originally contained 2,000
cooking videos from YouTube. Starting from 110
recipe types (e.g., “shrimp tempura”), 25 unique
videos per recipe type were collected; the recipe
types that did not gather enough videos were
dropped, resulting in a total of 89 recipe types in
the final dataset. In addition, Zhou et al. (2018b)
“randomly split the videos belonging to each recipe
into 67%:23%:10% as training, validation and test
sets’,” which effectively guarantees that videos in
the validation and test sets are never about unseen
recipes. Annotators were then asked to construct
recipe steps for each video — that is, identify the
start and end times for each step, and provide a
recipe-like description of each step. Overall, they
reported an average of 7.7 segments per video, and
8.8 words per description. After removing videos
that had been deleted by users, we obtained a total
of 11,549 segments.

ViTT. One limitation of the YouCook2 dataset
is the artificially imposed (almost) uniform distri-
bution of videos over 89 recipes. While this may
help making the task more tractable, it is difficult
to judge whether performance on its validation /
test sets can be generalized to unseen topics.

The design of our ViTT dataset annotation pro-
cess is aimed at fixing some of these drawbacks.
We started by collecting a large dataset of videos
containing a broader variety of topics to better re-
flect topic distribution in the wild. Specifically, we
randomly sampled instructional videos from the
YouTube-8M dataset (Abu-El-Haija et al., 2016), a
large-scale collection of YouTube videos that also
contain topical labels. Since much of prior work
in this area revolved around cooking videos, we
aimed at sampling a significant proportion of our
data from videos with cooking labels (specifically,
“Cooking” and “Recipe”). Aside from the inten-
tional bias regarding cooking videos, the rest of
the videos were selected by randomly sampling
non-cooking videos, including only those that were
considered to be instructional videos by our human
annotators.

Once candidate videos were identified, timeline
annotations and descriptive tags were collected.

3Note that no annotations are provided for the test split;
we conducted our own training/dev/test split over available
videos.
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Our motivation was to enable downstream appli-
cations to allow navigating to specific content sec-
tions. Therefore, annotators were asked to identify
the main steps in a video and mark their start time.
They were also asked to produce a descriptive-yet-
concise, free-text tag for each step (e.g., “shaping
the cookies”, “removing any leftover glass”). A
subset of the videos has received more than one
complete annotation (main steps plus tags).

The resulting ViTT dataset consists of a total of
8,169 videos, of which 3,381 are cooking-related.
A total of 5,840 videos have received only one an-
notation, and have been designated as the training
split. Videos with more than one annotation have
been designated as validation / test data. Over-
all, there are 7.1 segments per video on average
(max: 19). Given the dataset design, descriptions
are much shorter in length compared to YouCook2:
on average there are 2.97 words per tag (max: 16)
— 20% of the captions are single-word, 22% are
two-words, and 25% are three words. Note that the
average caption length is significantly shorter than
for YouCook?2, which is not surprising given our
motivation of providing short and concise timeline
tags for video navigation. We standardized the para-
phrases among the top-20 most frequent captions.
For instance, {“intro”, “introduction”} — “intro”.
Otherwise, we have preserved the original tags as-
is, even though additional paraphrasing most def-
initely exists. Annotators were instructed to start
and end the video with an opening and closing seg-
ment as possible. As a result, the most frequent
tag (post-standardization) in the dataset is “intro”,
which accounts for roughly 11% of the 88,455 seg-
ments. More details on the data collection process
and additional analysis can be found in the Supple-
mentary Material (Section A.1).

Overall, this results in 56,027 unique tags, with a
vocabulary size of 12,509 token types over 88,455
segments. In this paper, we consider two variants:
the full dataset (ViTT-All), and the cooking subset
(ViTT-Cooking).

3.2 Pretraining Datasets: ASR+Video

We consider two large-scale unannotated video
datasets for pretraining, as described below. Time-
stamped ASR tokens were obtained via YouTube
Data APL* and split into ASR segments if the
timestamps of two consecutive words are more

*nttps://developers.google.com/
youtube/v3/docs/captions

than 2 seconds apart, or if a segment is longer than
a pre-specified max length (in our case, 320 words).
They were paired with concurrent video frames in
the same segment.

YT8M-cook We extract the cooking subset of
YouTube-8M (Abu-El-Haija et al., 2016) by taking,
from its training split, videos with “Cooking” or
“Recipe” labels, and retain those with English ASR,
subject to YouTube policies. After preprocessing,
we obtain 186K ASR+video segments with an av-
erage length of 64 words (24 seconds) per segment.

HowTol00M. This is based on the 1.2M
YouTube instructional videos released by Miech
et al. (2019), covering a broad range of topics. Af-
ter preprocessing, we obtain 7.99M ASR+video
segments with an average of 78 words (28.7 sec-
onds) per segment.

3.3 Pretraining Datasets: CAP-style

We also consider two text-only datasets for pre-
training, containing unpaired instruction steps sim-
ilar in style to the target captions.

RecipelM is a collection of 1M recipes scraped
from a number of popular cooking websites (Marin
et al., 2019). We use the sequence of instructions
extracted for each recipe in this dataset, and treat
each recipe step as a separate example during pre-
training. This results in 10,767,594 CAP-style seg-
ments, with 12.8 words per segment.

WikiHow is a collection of 230,843 articles
extracted from the WikiHow knowledge base
(Koupaee and Wang, 2018). Each article comes
with a title starting with “How to”. Each associated
step starts with a step summary (in bold) followed
by a detailed explanation. We extract the all step
summaries, resulting in 1,360,145 CAP-style seg-
ments, with 8.2 words per segment. Again, each
instruction step is considered as a separate example
during pretraining.

3.4 Differences between Pretraining and
Finetuning Datasets

First, note that video segments are defined differ-
ently for pretraining and finetuning datasets, and
may not match exactly. For ASR+Video pretrain-
ing datasets, which are unsupervised, the segments
are divided following a simple heuristic (e.g., two
consecutive words more than 2 seconds apart),
whereas for finetuning ASR+Video—CAP datasets,
which are supervised, the segments are defined by
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human annotators to correspond to instruction steps.
Otherwise, the ASR data are relatively similar be-
tween pretraining and finetuning datasets, as both
come from instructional videos and are in the style
of spoken language.

Second, compared to the target captions in fine-
tuning datasets, the CAP-like pretraining datasets
are similar in spirit — they all represent summaries
of steps, but they may differ in length, style and
granularity. In particular, the CAP-like pretraining
datasets are closer in style to captions in YouCook?2,
where annotators were instructed to produce a
recipe-like description for each step. This is re-
flected in their similar average length (YouCook2:
8.8 words, RecipelM: 12.8 words, WikiHow: 8.2
words); whereas captions in ViTT are significantly
shorter (2.97 words on average).

Despite these differences — some are inevitable
due to the unsupervised nature of pretraining
datasets — the pretraining data is very helpful for
our task as shown in the experimental results.

4 Method

To model segment-level caption generation, we
adopt MASS-style pretraining (Song et al., 2019)
with Transformer (Vaswani et al., 2017b) as the
backbone architecture. For both pre-training and
fine-tuning objectives, we have considered two vari-
ants: text-only and multi-modal. They are summa-
rized in Table 2 and more details are given below.

4.1 Separate-Modality Architecture

Both ASR tokens and video segment features are
given as input in the multimodal variants. We con-
sider an architecture with a separate transformer
for each modality (text or video), see Figure 2 for
details. When available, the text and video en-
coders attend to each other at every layer using
cross-modal attention, as in VILBERT (Lu et al.,
2019). The text decoder attends over the final-layer
output of both encoders. We discuss in more detail
the differences between using a separate-modality
architecture vs. a vanilla-Transformer approach for
all modalities in Appendix A.2.

The inputs to the text encoder is the sum of three
components: text token embeddings, positional
embeddings and the corresponding style embed-
dings,’ depending on the style of the text (ASR
or Caption-like). The inputs to the video encoder

5This is similar to the way language-ID embeddings are
used in machine translation.

could be either precomputed frame-level 2D CNN
features or 3D CNN features, pretrained on the Ki-
netics (Carreira and Zisserman, 2017; Kay et al.,
2017) data set. The visual features are projected
with fully-connected layers to the same dimension
as the text embeddings.

The main architecture we consider is a 2-layer
encoder (E2), 6-layer decoder (D6) Transformer.
We use E2D6 to refer to the text-only version, and
E2vidD6 to refer to the multimodal version with
an active video encoder. We also experiment with
E2D2 and E2vidD2 (2-layer decoder).®

4.2 Pretraining with Text-only MASS

Text-only pretraining is essentially the unsuper-
vised learning of the style transfer between ASR-
style and caption-style texts using unpaired data
sources: ASR strings from video segments in
YT8M-cook or HowTol00M; and CAP-style in-
struction steps found in Recipe1M or HowTo100M.
Just like using MASS for unsupervised machine
translation involves pretraining the model on un-
paired monolingual datasets, we alternate between
ASR—ASR and CAP—CAP MASS steps during
our pretraining stage, which does not require the
“source” (ASR+Video) and “target” (CAP-style)
data to be aligned.

In an ASR—ASR step, we mask a random sub-
sequence of the ASR and feed the masked ASR
to the text encoder. The text decoder must recon-
struct the hidden subsequence while attending to
the encoder output. A CAP—CAP step works sim-
ilarly by trying to reconstruct a masked sequence
of a CAP-style text. The encoder and decoder are
trained jointly using teacher-forcing on the decoder.
We denote this text-only strategy as MASS in the
experiments.

4.3 Pretraining with Multimodal MASS

During multimodal pretraining, we alternate be-
tween text-only CAP—CAP MASS steps and mul-
timodal MASS steps. During each multimodal
MASS step ASR+video—ASR, we feed a masked
ASR to the text-encoder and the co-occurring video
features to the video-encoder. The text decoder
must reconstruct the masked ASR subsequence.
We denote this pretraining strategy as MASSvid
in the experiments. This trains cross-modal atten-
tion between the text-encoder and video-encoder

®We found in a preliminary study that using 6-layer en-
coders did not improve performance for our application.
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Figure 2: A diagram for the separate-modality architecture. It consists of a two-stream (text and video inputs)
encoder with cross-modal attention and a text-only decoder, jointly trained using the MASS objective.

at every layer, jointly with the text decoder that at-
tends to the output layer of both the text and video
encoders.’

To force more cross-modal attention between
encoder and decoder, we also investigate a strategy
of hiding the text-encoder output from the decoder
for some fraction of training examples. We refer to
this strategy as MASSdrop in the experiments.

4.4 Pretraining with Alignment and
Ordering Tasks

We also explore encoder-only multimodal pretrain-
ing strategies. We take the last-layer representation
for the CLS (beginning of sentence) token from the
encoder, and add a multi-layer perceptron on top
of it for binary predictions (Figure 2). Given a pair
of ASR and video segment, we train the encoder to
predict the following objectives:

e Segment-Level Alignment. An (ASR, video)
pair is aligned if they occur in the same pre-
training segment; negative examples are con-
structed by sampling pairs from the same
video but at least 2 segments away.

"In preliminary experiments, we had attempted to directly
adapt the MASS objective (Song et al., 2019) to video recon-
struction — by masking a subsequence of the input video
and making the video decoder reconstruct the input using the
Noise Constrastive Estimator Loss (Sun et al., 2019a). Due to
limited success, we did not further pursue this approach.

e Segment-Level Ordering. We sample (ASR,
video) pairs that are at least 2 segments away,
and train the model to predict whether the
ASR occurs before or after the video clip.

During this MASSalign pretraining stage, we
alternate between two text-only MASS steps
(CAP—CAP, ASR—ASR) and the two binary predic-
tions (Alignment and Ordering) described above.

4.5 Finetuning on Video Captioning

For text-only finetuning, we feed ASR to the text
encoder and the decoder has to predict the cor-
responding CAP (ASR—CAP). For multimodal
finetuning, we also feed additional video represen-
tations to the video encoder (ASR+video—CAP).
When finetuning a multimodal model from text-
only pretraining, everything related to video
(weights in the video encoder and any cross-modal
attention modules) will be initialized randomly. In
addition to these uni-directional (UniD) finetuning,
we also experiment with several variants of bidi-
rectional (BiD) finetuning (Table 2). For instance,
adding CAP—ASR (predicting ASR from CAP) to
text-only finetuning. In the experiments, we find
some variants of bidirectional finetuning beneficial
whether training from scratch or finetuning from a
pretrained model.
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Pretraining Objectives

Name T V Input—QOutput

MASS v X CAP—CAP, ASR—ASR

MASSvid v v CAP—CAP, ASR+video—ASR

MASSdrop v v CAP—CAP, ASR+video—ASR
. CAP—CAP, ASR—ASR,

MASSalign V" V' A SRvideo—+{0, 1}

Finetuning Objectives

Name T V Input—Output

UniD v X ASR—CAP

BiD v X ASR—CAP, CAP—ASR

UniD v v ASR+video—CAP

BiD v v ASR+video—CAP, CAP—ASR

BiDalt v v ASR+video—CAP, CAP+video—ASR

Table 2: Pretraining and Fine-tuning objectives. For
each strategy, v/ indicates whether the text (T) and
video (V) encoders are active, followed by a summary
of training objectives involved in one training step.

S Experiments

5.1 Implementation Details

We tokenize ASR and CAP inputs using byte-pair—
encoding subwords (Sennrich et al., 2015), and
truncate them to 240 subwords. We truncate video
sequences to 40 frames (40 seconds of video), com-
pute the 128-dim features proposed by Wang et al.
(2014) (which we will refer to as Compact 2D fea-
tures), and project them to the embedding space
using a two-layer perceptron with layer normaliza-
tion and GeLU activations.

We instantiate the E2xDx models defined in Sec-
tion 4.1 with 128-dimensional embeddings and
8 heads respectively for self-attention, encoder-
decoder, and cross-modal attention modules. We
define each epoch to be 3,125 iterations, where
each iteration contains one repetition of each train-
ing step as represented in Table 2. We pretrain for
200 epochs and finetune for 30 epochs.

For evaluation, we consider BLEU-4 (Pap-
ineni et al.,, 2002), METEOR (Denkowski and
Lavie, 2014), ROUGE-L (Lin and Och, 2004) and
CIDEr (Vedantam et al., 2015) metrics.

Please refer to Appendix A.3 for full implemen-
tation details, hyperparameters and computation
cost.

Notes on ViTT evaluation: With the exception
of ROUGE-L, all other metrics are sensitive to short
groundtruth. 67% of the groundtruth tags in ViTT
have less than 4 words, where a perfect prediction
will not yield a full score in, say, BLEU-4. Thus, we

focus mainly on ROUGE-L, report BLEU-1 instead
of BLEU-4 for ViTT, and provide the other two
metrics only as reference points.

We had originally decided to use videos with
multiple annotations as validation and test data, so
that we could explore evaluation with multiple ref-
erence groundtruth captions. But as annotators do
not always yield the same set of segment bound-
aries, this became tricky. Instead, we simply treat
each segment as a separate instance with one single
reference caption. Note that all segments annotated
for the same video will be in either validation or
test to ensure no content overlap.

5.2 Main Results

We run several variants of our method on
YouCook2, ViTT-All and ViTT-Cooking, using
different architectures, modalities, pretraining
datasets, pretraining and finetuning strategies.

Comparing with other methods on YouCook2
For YouCook?2, we report our method alongside
several methods from the literature (Hessel et al.,
2019; Sun et al., 2019b; Zhou et al., 2018c; Lei
et al., 2020), as well as state-of-the-art concurrent
work (Luo et al., 2020). The related work is pro-
vided for reference and to give a ballpark estimate
of the relative performance of each method, but
results are not always strictly and directly compa-
rable. Beyond the usual sources of discrepancy
in data processing, tokenization, or even different
splits, an additional source of complication comes
from the fact that videos are regularly deleted by
content creators, causing video datasets to shrink
over time. Additionally, when comparing to other
work incorporating pretraining, we could differ in
(videos available in) pretraining datasets, segmen-
tation strategies, etc. To this end, we perform an
extensive ablation study, which at least helps us
to understand the effectiveness of different compo-
nents in our approach.

Effect of pretraining The main experimental re-
sults for the three datasets we consider are summa-
rized in Table 3 (YouCook2) and Table 4 (ViTT-All
and ViTT-Cooking). Across all three datasets, the
best performance is achieved by finetuning a mul-
timodal captioning model under the Multimodal
Pretraining condition. For instance, on YouCook2,
E2vidD6-MASSvid-BiD improves over the no-
pretraining model E2vidD6-BiD by 4.37 ROUGE-L,
a larger improvement than UniViLM with pretrain-
ing (#5) vs without (#2) (Luo et al., 2020). This
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Method Input Pretraining BLEU-4 METEOR ROUGE-L CIDER
Constant Pred (Hessel et al., 2019) - - 2.70 10.30 21.70 0.15
MART (Lei et al., 2020) Video - 8.00 15.90 - 0.36
EMT (Zhou et al., 2018c) Video - 4.38 11.55 27.44 0.38
CBT (Sun et al., 2019a) Video Kinetics + HowTo100M 5.12 12.97 30.44 0.64
AT (Hessel et al., 2019) ASR - 8.55 16.93 35.54 1.06
AT+Video (Hessel et al., 2019) Video + ASR - 9.01 17.77 36.65 1.12
UniViLM #1 (Luo et al., 2020) Video - 6.06 12.47 31.48 0.64
UniViLM #2 (Luo et al., 2020) Video + ASR - 8.67 15.38 35.02 1.00
UniViLM #5 (Luo et al., 2020) Video + ASR HowTo100M 10.42 16.93 38.02 1.20
O Pretraining

E2D6-BiD ASR - 7.90 15.70 34.86 0.93
E2vidD6-BiD Video + ASR - 8.01 16.19 34.66 0.91
Text Pretraining

E2D6-MASS-BiD ASR YT8M-cook + RecipelM 10.60 17.42 38.08 1.20
E2vidD6-MASS-BiD Video + ASR  YT8M-cook + RecipelM 11.47 17.70 38.80 1.25
Multimodal Pretraining

E2vidD6-MASSalign-BiD Video + ASR  YT8M-cook + RecipelM 11.53 17.62 39.03 1.22
E2vidD6-MASSvid-BiD Video + ASR  YT8M-cook + RecipelM 12.04 18.32 39.03 1.23
E2vidD6-MASSdrop-BiD Video + ASR  YT8M-cook + RecipelM 10.45 17.74 38.82 1.22
Human (Hessel et al., 2019) Video + ASR - 15.20 25.90 45.10 3.80

Table 3: Segment-level captioning results on YouCook2. We use YT8M-cook and RecipelM for pretraining. The
numbers for the related work (first group) are directly reported from the corresponding papers. The last line is an
estimate of human performance as reported by Hessel et al. (2019), and can be taken as a rough upper bound of

the best performance achievable.

improvement also holds in ViTT-Cooking (+4.22
in ROUGE-L) and ViTT-All (+2.97 in ROUGE-L).
We do not observe consistent and significant trends
among the different multimodal pretraining strate-
gies: MASS pretraining with video (MASSvid),
with video and droptext (MASSdrop), or with
alignment tasks (MASSalign).® Furthermore, we
observe that most of the pretraining improvement is
achievable via text-only MASS pretraining. Across
all three datasets, while Multimodal Pretraining
(E2vidD6-MASSvid-BiD) is consistently better
than Text Pretraining (E2vidD6-MASS-BiD), the
differences are quite small (under one ROUGE-L
point).

It’s worthy noting that for MASSalign, the best
validation accuracies for the pretraining tasks are
reasonably high: for YT8M-cook, we observed
90% accuracy for the alignment task, and 80%
for the ordering task (for HowTo100M: 87% and
71.4%, respectively), where random guess would
yield 50%. This suggests that our video features
are reasonably strong, and the findings above are
not due to weak visual representations.

8Limited improvement with MASSalign suggests that such
alignment tasks are better suited for retrieval (Luo et al., 2020).

Effect of other modeling choices We experi-
ment with 2-layer decoder (D2) vs 6-layer decoder
(D6), combined with either unidirectional fine-
tuning (UniD) or bidirectional fine-tuning (BiD).
Table 5 shows ablation results of the four possi-
ble combinations when finetuning a multimodal
model using text-only pretraining on YouCook2 (a
more complete list of results can be found in Ap-
pendix A.5, showing similar trends). The D6xBiD
combination tends to yield the best performance,
with the differences among the four configurations
being relatively small (under one ROUGE-L point).
For visual features, we also explored using 3D fea-
tures (Xie et al., 2018) instead of 2D features dur-
ing finetuning (with no pretraining or text-only pre-
training), and do not find much difference in model
performance on YouCook2. As a result, we use the
simpler 2D features in our multimodal pretraining.
We leave more extensive experiments with visual
features as future work.

Generalization implications An important mo-
tivation for constructing the ViTT dataset and eval-
uating our models on it has been related to gener-
alization. Since the YouCook2 benchmark is re-
stricted to a small number of cooking recipes, there
is little to be understood about how well models
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VIiTT-All

ViTT-Cooking

Method Input

BLEU-1 METEOR ROUGE-L  CIDEr BLEU-1 METEOR ROUGE-L CIDEr
Constant baseline (“intro”) 1.42 3.32 11.15  0.28 1.16 2.93 10.21  0.25
O Pretraining
E2D6-BiD ASR 19.60 9.12 27.88  0.68 20.77 10.08 28.63  0.72
E2vidD6-BiD Video + ASR 19.49 9.23 28.53  0.69 20.45 9.88 28.88  0.69
Text Pretraining
E2D6-MASS-BiD ASR 21.93 10.60 3045  0.79 24.79 12.25 3240 0.88
E2vidD6-MASS-BiD Video + ASR 22.44 10.83 31.27  0.81 24.22 12.22 32.60 0.89
Multimodal Pretraining
E2vidD6-MASSalign-BiD  Video + ASR 22.31 10.66 31.13  0.79 24.92 12.25 33.09  0.90
E2vidD6-MASSvid-BiD Video + ASR 22.45 10.76 3149 0.80 24.87 1243 3297  0.90
E2vidD6-MASSdrop-BiD  Video + ASR 22.37 11.00 3140 0.82 24.48 12.22 33.10 0.89
Human Video + ASR 43.34 33.56 41.88 1.26 41.61 32.50 4159 121

Table 4: Segment-level captioning results on ViTT. For ViTT-All we pretrain on HowTol00M and WikiHow; for
ViTT-Cooking we pretrain on YT8M-cook and Recipel M. We report baseline scores for predicting the most com-
mon caption “intro”. We also estimate the human performance as a rough upper bound (details in Supplementary

Material A.1; Table 9).

Method BLEU-4 METEOR ROUGE-L CIDEr
D2-UniD 10.84 17.39 38.24 1.16
D6-UniD 11.39 18.00 38.71 1.22
D2-BiD 11.38 18.04 38.67 1.19
D6-BiD 11.47 17.70 3880 1.25
D6-BiDalt 11.07 17.68 3843 1.22
D6-BiD (S3D)  11.64 18.04 3875 1.24

Table 5: Ablation study on YouCook2. We finetune
a multimodal captioning model (E2vid) with either
2-layer decoder (D2) or 6-layer decoder (D6) using
YT8M-cook /RecipelM for MASS pretraining, com-
bined with either unidirectional (UniD) or bidirectional
(BiD) finetuning. We find no significant difference be-
tween using 2D and 3D features (marked as S3D).

trained and evaluated on it generalize. In contrast,
the ViTT benchmark has a much wider coverage
(for both cooking-related videos and general in-
structional videos), and no imposed topic overlap
between train/dev/test. As such, there are two find-
ings here that are relevant with respect to general-
ization: (a) the absolute performance of the models
on the ViTT benchmark is quite high (ROUGE-L
scores above 0.30 are usually indicative of decent
performance), and (b) the performance on ViTT
vs. YouCook? is clearly lower (31.5 ROUGE-L
vs. 39.0 ROUGE-L, reflecting the increased diffi-
culty of the new benchmark), but it is maximized
under similar pretraining and finetuning conditions,
which allows us to claim that the resulting models
generalize well and are quite robust over a wide
variety of instructional videos.
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6 Conclusions

Motivated to improve information-seeking capa-
bilities for videos, we have collected and anno-
tated a new dense video captioning dataset, ViTT,
which is larger with higher diversity compared to
YouCook2. We investigated several multimodal
pretraining strategies for segment-level video cap-
tioning, and conducted extensive ablation studies.
We concluded that MASS-style pretraining is the
most decisive factor in improving the performance
on all the benchmarks used. Even more to the
point, our results indicate that most of the perfor-
mance can be attributed to leveraging the ASR
signal. We achieve new state-of-the-art results on
the YouCook?2 benchmark, and establish strong per-
formance baselines for the new ViTT benchmark,
which can be used as starting points for driving
more progress in this direction.
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A Appendix

Supplementary Material for “Multimodal Pretrain-
ing for Dense Video Captioning”.

A.1 The ViTT dataset

Sampling video for annotation. The goal of the
VIiTT dataset design is to mirror topic distribu-
tion in the “wild”. Therefore, instead of start-
ing from specific how-to instructions and search-
ing for corresponding videos, we sampled videos
from the validation set of the YouTube-8M dataset
(Abu-El-Haija et al., 2016), a large-scale collection
of YouTube videos with topical labels, subject to
YouTube policies.

Exclusion criteria were lack of English ASR and
the topic label “Game”. The latter was motivated
by the fact that in this type of videos, the visual
information predominantly features video games,
while the ViTT dataset was intended to contain
only videos with real-world human actions. Cook-
ing videos can be easily identified by sampling
videos that came with “Cooking” or “Recipe” topic
labels. Given the convenience and the fact that
much of prior work in this area had focused on
cooking videos, approximately half of the dataset
was designed to include cooking videos only, while
the remaining videos would be randomly sampled
non-cooking videos, as long as they were verified
as instructional by human annotators.

Annotation process Annotators were presented
with a video alongside its timestamped, automatic
transcription shown in sentence-length paragraphs.
They were asked to watch the video and first judge
whether the video was instructional. For the pur-
pose of our dataset, we determine that a video is
instructional if it focuses on real-world human ac-
tions that are accompanied by procedural language
explaining what is happening on screen, in reason-
able details. Also for our purposes, instructional
videos need to be grounded in real life, with a real
person in the video exemplifying the action being
verbally described.

For videos judged to be instructional, annotators
were then asked to:

e Delimit the main segments of the video.
o Determine their start time if different from the

automatically suggested start time (explained
below).

e Provide a label summarizing or explaining the
segment.

Annotation guidelines Annotators were in-
structed to identify video segments with two poten-
tial purposes:

o Allow viewers to jump straight to the start of
a segment for rewatch.

e Present viewers with an index to decide
whether to watch the video in full or directly
skip to the segment of interest.

Our guidelines suggested a range of five to ten
segments as long as the the structure and content of
the video permitted. For short videos, the direction
was to prioritize quality over quantity and to only
define those segments that formed the narrative
structure of the video, even if the resulting number
of segments was below 5.

To help annotators determine segment start
times, transcriptions were shown in “sentences”
— we expected that sentence start times might be
good candidates for segment start times. We ob-
tained sentence boundaries automatically as fol-
lows. Given the stream of timestamped ASR to-
kens for a video, we first separated them into blocks
by breaking two consecutive tokens whenever they
were more than 2 seconds apart. We then used a
punctuation prediction model to identify sentence
boundaries in each resulting block. Each sentence
was shown with the timestamp corresponding to
its first token. Annotators were advised that tran-
scriptions had been automatically divided into para-
graphs that may or may not correspond to a video
segment — if they decided that a segment started
from a particular sentence, they could choose to
use the start time of the sentence as the start time
for the segment, or, if needed, they could put in an
adjusted start time instead.

Once the start time had been identified, anno-
tators were asked to provide a free-text label to
summarize each segment. We instructed the anno-
tators to use nouns or present participles (-ing form
of verbs) to write the labels for the video segments,
whenever possible. Additionally, we asked that the
labels be succinct while descriptive, using as few
words as possible to convey as much information
as possible.

Data statistics and post-processing The result-
ing dataset consists of 8,169 instructional videos
that received segment-level annotations, of which
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3,381 are cooking-related. Overall there are an av-
erage of 7.1 segments per video (max: 19). Given
our instructions, the descriptions are much shorter
in lengths compared to a typical captioning dataset:
on average there are 2.97 words per description
(max: 16); 20% of the captions are single-word,
22% are two-words, and 25% are three words. We
refer to these descriptions as “tags” given how short
they are.

When possible, annotators were also asked to
start and end the video with an opening and closing
segment. As a result, most annotations start with
an introduction segment: this accounts for roughly
11% of the 88455 segments in the dataset (“in-
tro”: 8%, “introduction”: 2.3%). Note that while
“intro” and “introduction” are clearly paraphrases
of each other, an automatic metric will penalize
a model predicting “intro” when the groundtruth
is “introduction”. Similarly, the ending segment
was described in several varieties: “outro’: 3.4%,
“closing”: 1%, “closure”, “conclusion”, “ending”,
“‘end of video”: each under 1%. Penalizing para-
phrases of the ground truth is an inherent weakness
of automatic metrics. To mitigate this, we decided
to reduce the chance of this happening for the most
frequent tags in the dataset. That is, in our experi-
ments, we identified three groups of tags among the
top-20 most frequent tags, and standardized them
as follows.

intro | intro, introduction, opening

outro | outro, closing, closure, conclusion,
ending, end of video, video closing

result | finished result, final result, results

Table 6: Standardization of top tags

Note that this does not mean we can solve this
problem as a classification task like in visual ques-
tion answering (VQA): overall, there are 56,027
unique tags with a vocabulary size of 12,509 for
the 88,455 segments; 51,474 tags appeared only
once in the dataset, making it infeasible to reduce
the segment-level captioning problem into a pure
classification task. Table 7 shows the top 10 most
frequent tags after standardization.

Estimate of human performance. A subset of
the candidate videos were given to three annota-
tors’, to help us understand variations in human an-
notations. 5,840 videos received dense captioning

°A small set were unintentionally given to six annotators.
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Tag % of segments
intro 114
outro 6.6
result 0.9
ingredients 0.8
listing ingredients 0.2
supplies 0.2
mixing ingredients 0.2
materials 0.1
what you’ll need 0.1
lining the eyes 0.1

Table 7: 10 most frequent tags after standardization.

from exactly one annotator and were used as train-
ing data. Videos with more than one annotation
were used as validation / test data. Note that not all
the videos with multiple timeline annotations have
exactly three sets of them — in fact, 1368 videos
received 3-way segment-level annotations. This
is because not all annotators agreed on whether
a video was instructional. Computing annotator
agreement for the annotated timelines is non-trivial.
Here we focus on an estimate of tagging agreement
when a pair of annotators agreed over the segment
start time. Specifically, we go through each video
that received multiple segment-level annotations.
For each segment where two annotators chose the
same ASR sentence as its starting point, we take the
tags they produced for this segment and consider
one of them as groundtruth, the other as predic-
tion, and add that into our pool of (groundtruth,
prediction) pairs. We can then compute standard
automatic evaluations metrics over this pool. The
results are as follows.

BLEU-1 METEOR ROUGE-L CIDEr
43.34 33.56 41.88 1.26
Table 8: Estimate of human performance for the

segment-level captioning on ViTT-All (computed over
7528 pairs).

METEOR ROUGE-L CIDEr
32.50 41.59 1.21

BLEU-1
41.61

Table 9: Estimate of human performance for the
segment-level captioning on ViTT-Cooking (computed
over 2511 pairs).

Note that METEOR, and CIDEr scores are both
penalized by the lack of n-grams for higher n. That



is, when both groundtruth and prediction are single-
word, say, “intro”, this pair will not receive a full
score from any of these metrics. But the ROUGE-L
score is in the same ballpark as estimate of human
performance in prior work (Hessel et al., 2019).
One might note that perhaps this pool of label pairs
contains a higher share of “intro”, since annota-
tors might be more likely to agree over where an
opening segment starts. Indeed, 20% of the time,
one of the tags is “intro”. Interestingly, in spite of
standardization of top tags, 14% of the time one
tag is “intro”, the other tag is not “intro”: they can
be less frequent paraphrases (e.g., “welcoming”,
“greeting”, “opening and welcoming”) or some-
thing semantically different (e.g., “using dremel
tool”).

A.2 Separated vs. Concatenated-Modality
Architecture

Prior work has explored both concatenating differ-
ent modalities and feeding them into the same mul-
timodal Transformer encoder (Sun et al., 2019b;
Hessel et al., 2019), as well as separating them
into unimodal transformers (Sun et al., 2019a; Lu
et al., 2019). We opt for the separated architec-
ture because it offers more flexibility. First, the
concatenated architecture requires embedding the
text and video features into the same space. When
the video features are projected using a simple net-
work, there is no guarantee that we can meaning-
fully project them into the text embedding space.
VideoBERT (Sun et al., 2019b) gives more flexi-
bility to the video embeddings by quantizing video
features and learning an embedding for each code-
word. However, the quantization step has sub-
sequently been claimed to be detrimental (Sun
et al., 2019a). Moreover, the concatenated archi-
tecture uses the same sets of forward and attention
weights to process text and video, and performs
layer normalization jointly between the two modal-
ities, which is not necessarily meaningful. Finally,
the separated architecture makes it easy to switch
between variable length text-only, video-only, or
text+video modalities, whereas concatenated archi-
tectures might rely on separating tokens, modalities
embeddings, and using fixed sequence lengths (Luo
et al., 2020).

A.3 Additional Implementation Details

We optimize all models on a nVidia v100 GPU us-
ing the Adam optimizer with inverse square root
schedule, batch size 32, warm-up period of 4,000
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iterations, and maximum learning rate of 0.0001,
following MASS (Song et al., 2019). The posi-
tional embeddings are initialized randomly. We
use dropout and attention dropout with probabili-
ties 0.1. With E2vidD6, pretraining takes 3-6 days
depending on the objective and bidirectional fine-
tuning takes up to 1.5 days, however those times
could be improved by optimizing the data pipeline.

A.4 Example Predictions

We show examples of good and bad predictions on
YouCook?2 (Figure 5 and ViTT-All (Figure 4 and 5).
The captions are generated by E2vidD6-BiD (no
pretraining) and E2vidD6-MASS-BiD (text-only
MASS pretraining).

A.5 Full result tables

We present here tables with all the ablation results
that we run. There are two main takeaway mes-
sages from the results involving the pretraining
approach: (a) the accuracy improvements, as mea-
sured across all the metrics we use, indicate the
value of using a pretraining approach to this prob-
lem, specifically one that is capable of leveraging
the ASR signals at both pretraining and finetuning
stages, and (b) the training speedup achieved from
pretraining is impressive, as a pretrained model con-
verges much faster than training from scratch. This
is especially visible on ViTT-All where finetun-
ing after MASS pretraining reaches best ROUGE-L
score at epoch 2, whereas it takes around 11 epochs
to converge when training from scratch.



Sample Frame

Ground Truth

-Pretraining

MASS-Pretraining

Comments

—~

Japanese Cooking 101

crush and grate the gar-
lic

crimp shut with fork

place wings on the bak-
ing sheet and cook flip-

ping

add the pork back into
the hot oil

add thyme bay leaves
onion and clam juice
and boil the mixture

cook bacon in a pot with
oil and pepper

pour dressing on top of
the salad and toss

slice the ginger into
pieces

grate garlic and add to
bowl (good)

place the filling on the
wrapper (ok)

bake the pizza in the
oven (bad)

add the rice to the pot
(bad)

add diced tomatoes
tomato puree and mix

well (bad)

add chopped tomatoes
to pan and stir (bad)

add dressing to the bowl
(good)

slice a celery (bad)

crush ginger and gar-
lic(good)

seal the edges
wrapper (good)

of the

cook the wings on the
grill (good)

place the meat on the
pan (good)

add thyme thyme onion
and clam juice to the pot
and stir (ok)

add bacon and stir (0k)

serve the soup over the
salad (bad)

slice the chicken (bad)

ginger is correct despite
not appearing in ground
truth.

pretrained model is
more specific

only pretrained model
predicted correct food

@ model hallucinates the
rice and pot

@ hallucinates a lot of
nonexistent ingredients

both models missed oil
and pepper (not men-
tioned in ASR)

pretrained model re-
ferred to dressing as
“soup”

both models had wrong
ingredients (ASR seg-
ment does not mention
what is being sliced)

Figure 3: Example good and bad predictions on YouCook?2. The pretrained model is generally but not always better.
Note that there are no “intro” or “outro”-like labels on YouCook?2 because the dataset was specifically curated to
only contain actual recipe steps.
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Sample Frame

Ground Truth

O-Pretraining

MASS-Pretraining

Comments

tightening extra loop

adding eyeshadow

showcasing the finished
look

rolling and folding the
clay

highlighting brow bone

covering the chicken and
cooking

connecting spray hose
and sprayer

implementing  second

layer

making decorative trim

checking bleach con-
tainer

demonstrating the flip

tilting board

tightening the loop
(good)

blending eye shadow
(good)

showing
look(good)

finished

rolling and blending
(ok)

applying eye shadow
(ok)

cooking the bread (bad)

connecting the new
cover (ok)

showing finished prod-
uct (ok)

cutting the edges (good)

outro (bad)

checking the battery
(bad)

setting up the oven (bad)

tightening the loop
(good)

applying eye shadow
(good)

showing
look(good)

finished

rolling and folding the
clay (good)

brushing on the
brows(good)

cooking the chicken

(good)

connecting the valve
(good)

showing second layer

(good)

cutting the fabric (good)

checking the container
(good)

flipping  the  board
(good)
turning  the  board

(good)

both models perform
well

both models perform
well

both models perform
well

MASS is a bit more spe-
cific

MASS is a bit more spe-
cific

only MASS got the right
ingredient

spray hose is more spe-
cific than valve

MASS is more specific

both models yield good
predictions

MASS is a bit more spe-
cific

@ model got influenced
by car mechanics tutori-
als

@ overfitted on cooking
videos

Figure 4: Example good predictions on ViTT-All (Part 1). The pretrained model is generally but not always better.
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Sample Frame

Ground Truth

O-Pretraining

MASS-Pretraining

Comments

securing the bar in place

starting with unlocking
bars

demonstrating tech-
nique

spritzing in additional
water

checking for leaks
displaying — materials
needed

sketching on the swirls

crimping wire and com-
pleting project

cutting with guide line

removing  the

(bad)

cover

opening the box (bad)

attaching paper (bad)

pouring water into the
water (0k)

checking for the new
new new new new new
new new new new new
new new new new (bad)

intro (bad)

drawing the lines (good)

attaching the screws

(bad)

cutting the top of the top
of the top of the top of
the top of the top (bad)

checking for the other
side (bad)

pulling the car on (bad)

stamping paper (good)

adding water to water
(ok)

checking the process
(ok)

removing paste (0k)

drawing on the eyes
(bad)

attaching the wire to the
wire (ok)

explaining process (ok)

predictions are not spe-
cific enough

predictions are incorrect
or not specific enough

the technique is about
stamping the paper

understandable but un-
grammarly

@ got into a loop, MASS
not specific enough

prediction makes sense
because narrator is dis-
playing thermal paste re-
mover

pretrained model overfit-
ted on makeup tutorials

both models have trou-
ble with the concept of
crimping a wire

@ model got into a loop,
MASS model is not spe-
cific enough

Figure 5: Example ok and bad predictions on ViTT (Part 2). The pretrained model is generally but not always

better.
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Method Input Pretraining BLEU-4 METEOR ROUGE-L CIDEr

Constant Pred (Hessel et al., 2019) - - 2.70 10.30 21.70 0.15
MART (Lei et al., 2020) Video - 8.00 15.90 - 0.36
DPC (Shi et al., 2019) Video + ASR - 2.76 18.08 - -
EMT (Zhou et al., 2018c) Video - 4.38 11.55 27.44 0.38
CBT (Sun et al., 2019a) Video Kinetics + HowTo100M 5.12 12.97 30.44 0.64
AT (Hessel et al., 2019) ASR - 8.55 16.93 35.54 1.06
AT+Video (Hessel et al., 2019) Video + ASR - 9.01 17.77 36.65 1.12
UniViLM #1 (Luo et al., 2020) Video - 6.06 12.47 31.48 0.64
UniViLM #2 (Luo et al., 2020) Video + ASR - 8.67 15.38 35.02 1.00
UniVILM #5 (Luo et al., 2020) Video + ASR HowTol100M 10.42 16.93 38.02 1.20
O Pretraining

E2D2-UniD ASR - 7.42 15.15 33.26 0.85
E2D6-UniD ASR - 7.88 15.29 34.10 0.87
E2D2-BiD ASR - 6.85 15.64 34.26 0.91
E2D6-BiD ASR - 7.90 15.70 34.86 0.93
E2vidD2-UniD Video + ASR - 7.47 15.11 34.77 0.90
E2vidD6-UniD Video + ASR - 7.61 15.57 34.28 0.89
E2vidD2-BiD Video + ASR - 8.39 15.36 34.54 0.91
E2vidD6-BiD Video + ASR - 8.01 16.19 34.66 0.91
E2vidD2-BiDalt Video + ASR - 8.12 15.83 34.83 0.93
E2vid,D6-BiDalt Video + ASR - 7.70 16.11 34.78 0.91
E2vidD2-BiD (S3D) Video + ASR - 8.04 16.17 36.01 0.96
E2vidD6-BiD (S3D) Video + ASR - 7.91 16.28 35.23 0.93
Text Pretraining

E2D2-MASS-UniD ASR YT8M-cook + RecipelM 10.52 17.14 37.39 1.14
E2D6-MASS-UniD ASR YT8M-cook + RecipelM 10.72 17.74 37.85 1.17
E2D2-MASS-BiD ASR YT8M-cook + RecipelM 10.84 17.44 37.20 1.13
E2D6-MASS-BiD ASR YT8M-cook + RecipelM 10.60 17.42 38.08 1.20
E2vidD2-MASS-UniD Video + ASR  YT8M-cook + RecipelM 10.84 17.39 38.24 1.16
E2vidD6-MASS-UniD Video + ASR  YT8M-cook + RecipelM 11.39 18.00 38.71 1.22
E2vidD2-MASS-BiD Video + ASR  YT8M-cook + RecipelM 11.38 18.04 38.67 1.19
E2vidD6-MASS-BiD Video + ASR  YT8M-cook + RecipelM 11.47 17.70 38.80 1.25
E2vid,D2-MASS-BiDalt Video + ASR  YT8M-cook + RecipelM 11.49 17.85 38.60 1.18
E2vid,D6-MASS-BiDalt Video + ASR  YT8M-cook + RecipelM 11.07 17.68 38.43 1.22
E2vidD2-MASS-BiD (S3D) Video + ASR  YT8M-cook + RecipelM 11.13 17.71 38.57 1.12
E2vidD6-MASS-BiD (S3D) Video + ASR  YT8M-cook + RecipelM 11.64 18.04 38.75 1.24
Multimodal Pretraining

E2vidD2-MASSalign-BiD Video + ASR  YT8M-cook + RecipelM 11.54 17.57 37.70 1.15
E2vidD6-MASSalign-BiD Video + ASR  YT8M-cook + RecipelM 11.53 17.62 39.03 1.22
E2vidD2-MASSvid-BiD Video + ASR  YT8M-cook + RecipelM 11.17 17.71 38.32 1.17
E2vidD6-MASSvid-BiD Video + ASR  YT8M-cook + RecipelM 12.04 18.32 39.03 1.23
E2vidD2-MASSdrop-BiD Video + ASR  YT8M-cook + RecipelM 11.21 17.99 38.72 1.23
E2vidD6-MASSdrop-BiD Video + ASR  YT8M-cook + RecipelM 10.45 17.74 38.82 1.22
Human (Hessel et al., 2019) Video + ASR - 15.20 25.90 45.10 3.80

Table 10: Video Captioning Results on YouCook2. We use YT8M-cook/RecipelM for pretraining. All video
features are Compact 2D (Wang et al., 2014) except when marked as S3D (Xie et al., 2018).
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Method Input Pretraining BLEU-1 METEOR ROUGE-L CIDEr
Constant baseline (“intro”) - - 1.42 3.32 11.15 0.28
O Pretraining

E2D2-UniD ASR - 17.94 8.55 27.06 0.64
E2D6-UniD ASR - 18.91 8.96 27.80 0.67
E2D2-BiD ASR - 18.81 8.82 27.63 0.65
E2D6-BiD ASR - 19.60 9.12 27.88 0.68
E2vidD2-UniD Video + ASR - 18.94 8.99 28.05 0.67
E2vidD6-UniD Video + ASR - 19.29 9.15 27.97 0.69
E2vidD2-BiD Video + ASR - 19.37 9.21 28.56 0.69
E2vidD6-BiD Video + ASR - 19.49 9.23 28.53 0.69
Text Pretraining

E2D2-MASS-UniD ASR HowTo100M + WikiHow 21.53 10.24 29.95 0.77
E2D6-MASS-UniD ASR HowTo100M + WikiHow 22.09 10.58 30.67 0.79
E2D2-MASS-BiD ASR HowTo100M + WikiHow 20.73 10.20 30.15 0.76
E2D6-MASS-BiD ASR HowTo100M + WikiHow 21.93 10.60 30.45 0.79
E2vidD2-MASS-UniD Video + ASR  HowTo100M + WikiHow 21.46 10.45 30.56 0.78
E2vidD6-UniD Video + ASR  HowTo100M + WikiHow 22.21 10.75 30.86 0.81
E2vidD2-MASS-BiD Video + ASR  HowTol00M + WikiHow 21.78 10.64 30.72 0.79
E2vidD6-MASS-BiD Video + ASR  HowTol100M + WikiHow 22.44 10.83 31.27 0.81
Multimodal Pretraining

E2vidD2-MASSalign-BiD  Video + ASR  HowTol00M + WikiHow 22.07 10.33 30.60 0.77
E2vidD6-MASSalign-BiD  Video + ASR  HowTol00M + WikiHow 22.31 10.66 31.13 0.79
E2vidD2-MASSvid-BiD Video + ASR  HowTol00M + WikiHow 22.15 10.75 31.06 0.80
E2vidD6-MASSvid-BiD Video + ASR  HowTo100M + WikiHow 22.45 10.76 31.49 0.80
E2vidD2-MASSdrop-BiD  Video + ASR  HowTol00M + WikiHow 21.84 10.55 31.10 0.79
E2vidD6-MASSdrop-BiD  Video + ASR  HowTol00M + WikiHow 22.37 11.00 31.40 0.82
Human estimate Video + ASR - 43.34 33.56 41.88 1.26

Table 11: Video captioning results on ViTT-All. We use HowTo100M/WikiHow for pretraining. We also estimate
human performance (details in Appendix A.1; Table 9).
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Method Input Pretraining BLEU-1 METEOR ROUGE-L CIDEr
Constant baseline (“intro”) - - 1.16 2.93 10.21 0.25
@ Pretraining

E2D2-UniD ASR - 19.73 9.43 27.95 0.69
E2D6-UniD ASR - 20.24 9.93 28.59 0.71
E2D2-BiD ASR - 19.73 9.72 27.92 0.68
E2D6-BiD ASR - 20.77 10.08 28.63 0.72
E2vidD2-UniD Video + ASR - 19.97 9.75 28.30 0.69
E2vidD6-UniD Video + ASR - 20.46 9.93 28.62 0.69
E2vidD2-BiD Video + ASR - 20.60 10.08 29.45 0.71
E2vidD6-BiD Video + ASR - 20.45 9.88 28.88 0.69
Text Pretraining

E2D2-MASS-UniD ASR YT8M-cook + RecipelM 22.89 11.53 31.62 0.84
E2D6-MASS-UniD ASR YT8M-cook + RecipelM 24.47 12.22 32.51 0.90
E2D2-MASS-BiD ASR YT8M-cook + RecipelM 22.75 11.63 31.54 0.84
E2D6-MASS-BiD ASR YT8M-cook + RecipelM 24.79 12.25 32.40 0.88
E2vidD2-MASS-UniD Video + ASR  YT8M-cook + RecipelM 23.86 11.85 32.32 0.86
E2vidD6-MASS-UniD Video + ASR  YT8M-cook + RecipelM 24.32 12.32 32.90 0.90
E2vidD2-MASS-BiD Video + ASR  YT8M-cook + RecipelM 22.93 11.68 32.15 0.87
E2vidD6-MASS-BiD Video + ASR  YT8M-cook + RecipelM 24.22 12.22 32.60 0.89
Multimodal Pretraining

E2vidD2-MASSalign-BiD  Video + ASR  YT8M-cook + RecipelM 24.02 11.91 32.73 0.86
E2vidD6-MASSalign-BiD  Video + ASR  YT8M-cook + RecipelM 24.92 12.25 33.09 0.90
E2vidD2-MASSvid-BiD Video + ASR  YT8M-cook + RecipelM 24.15 12.10 32.96 0.88
E2vidD6-MASSvid-BiD Video + ASR  YT8M-cook + RecipelM 24.87 12.43 32.97 0.90
E2vidD2-MASSdrop-BiD  Video + ASR  YT8M-cook + RecipelM 23.70 12.01 32.71 0.88
E2vidD6-MASSdrop-BiD  Video + ASR  YT8M-cook + RecipelM 24.48 12.22 33.10 0.89
Human estimate Video + ASR - 41.61 32.50 41.59 1.21

Table 12: Video captioning results on ViTT-Cooking. We use YT8M-cook and RecipelM for optional pretraining.
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