Self-Supervised Learning for Pairwise Data Refinement

Gustavo Hernandez Abrego, Bowen Liang, Wei Wang, Zarana Parekh,
Yinfei Yang, Yunhsuan Sung
Google Research, Mountain View, CA. USA

{gustavoha, bowenl, wangwe, zarana, yinfeiy, yhsung}@google.com

Abstract

Pairwise data automatically constructed from
weakly supervised signals has been widely
used for training deep learning models. Pair-
wise datasets such as parallel texts can have
uneven quality levels overall, but usually con-
tain data subsets that are more useful as learn-
ing examples. We present two methods to
refine data that are aimed at obtaining that
kind of subsets in a self-supervised way. Our
methods are based on iteratively training dual-
encoder models to compute similarity scores.
We evaluate our methods on de-noising paral-
lel texts and training neural machine transla-
tion models. We find that: (i) The self-super-
vised refinement achieves most machine trans-
lation gains in the first iteration, but following
iterations further improve its intrinsic evalua-
tion. (ii) Machine translations can improve the
de-noising performance when combined with
selection steps. (iii) Our methods are able to
reach the performance of a supervised method.
Being entirely self-supervised, our methods
are well-suited to handle pairwise data without
the need of prior knowledge or human annota-
tions.

1 Introduction

Deep learning models are widely adopted and have
demonstrated their usefulness in many areas and
applications. Despite their diversity, one common
characteristic of these models is the large number
of parameters that need to be adjusted during train-
ing (some recent models that have billions of pa-
rameters include TS (Raffel et al., 2019) and GPT-
2 (Radford et al., 2019)). This leads to the need
of collecting large amounts of training examples.
Pairwise data, that captures the relationship in two
modalities, is used to train deep learning models
such as Neural Machine Translation (NMT) (Wu
et al., 2016), Question Answering (Wang et al.,
2007), Image Captioning (Sharma et al., 2018), etc.
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To train this kind of models, large-scale data can
often be obtained from weak signals like text co-
occurrence (Yang et al., 2018) or dictionary n-gram
matching (Uszkoreit et al., 2010). For example,
in the machine translation community, the large
amount of multilingual text available on the inter-
net has naturally led to the idea of using internet
data to train NMT models (Resnik, 1999). This
approach has proven advantageous but it has the
drawback that data mined this way is intrinsically
noisy (Resnik and Smith, 2003). Despite the poor
quality, usually this kind of data contains a helpful
subset that can be recovered through a process of
data cleaning or refinement. Data cleaning could
be implemented with linguistic knowledge such as
its script, vocabulary, syntax, etc. Alternatively, a
model can be trained on “clean” or “trusted” pairs
that are verified through manual annotation. Both
options can be highly effective, but the former is
limited in scope and error-prone, while the latter
can be costly due to the number of required anno-
tated examples.

In this paper we introduce two self-supervised
methods to obtain data subsets from noisy pairwise
data that can be helpful to train dual-encoder (D-E)
and neural machine translation (NMT) models. As
noisy pairwise data, in our experiments we use par-
allel texts mined from the internet. Our methods
do not require external knowledge (e.g. syntactic
rules), language-dependent heuristics (e.g. script
verification) or synthetic positive or negative train-
ing examples. By eliminating the need of anno-
tations, our methods directly address the data la-
belling bottleneck. Our methods employ D-E mod-
els (Gillick et al., 2018) to learn a shared embedded
space from the co-located text in the sentence pairs
mined from the internet. Following Chidambaram
et al. (2018) we use the embedding distance in the
learned space as a measure of cross-lingual simi-
larity between sentences. Our hypothesis is that
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if higher scores are associated with cross-lingual
similarity, pairs with higher scores will be closer
to be actual translations of each other and, in that
case, may be part of the data subset useful to train
the models.

In our experiments, our methods show effec-
tive refining parallel texts mined from the internet.
Much of the gains in the downstream evaluation
are achieved in the first iteration of the method,
but later iterations keep improving the D-E models.
Despite being self-supervised, our methods show
competitive performance when compared against a
de-noising method that uses supervision.

2 Related Work

One line of the research that directly relates to our
work is corpus filtering for training NMT models.
Below we classify the related work into two cat-
egories depending on the amount of supervision
needed (e.g. high quality parallel texts).

(Semi-)Supervised Methods Some data de-
noising methods simply use filtering rules or heuris-
tics such as language identification of both the
source and target texts, vocabulary checks, lan-
guage model (syntactic) verification, and so on. In
contrast to rule-based approaches, approaches like
Chen and Huang (2016) and Wang et al. (2018c)
train classifiers to distinguish in-domain vs. out-
of-domain (or clean vs. noisy) data with a small
parallel corpus, while other approaches build refer-
ence models on larger amounts of high-quality data
(Junczys-Dowmunt, 2018; Defauw et al., 2019).
There are approaches that combine rules and heuris-
tics with probabilistic models to determine the
amount of noise in each sentence pair. In some
cases these systems are designed as targeted ef-
forts to denoise a particular dataset. Bicleaner
(Sanchez-Cartagena et al., 2018), in relationship
to the ParaCrawl (Espla et al., 2019) data, is an
example of that approach.

Unsupervised Methods In contrast to the super-
vised methods, unsupervised methods do not re-
quire good-quality data to be available. Recent
work (Zhang et al., 2020) leverages pre-trained
language models and synthetic data (Vyas et al.,
2018), in place of true supervision. Some efforts
focus on using monolingual corpora and align them
through bootstrapping in order to generate sentence
pairs (Tran et al., 2020; Ruiter et al., 2020), while
others train a model with noisy data directly to gen-

erate embeddings and score the data (Chaudhary
et al., 2019). Wang et al. (2018b) use two NMT
models taken from two training epochs to decide
which data to use in order to improve the training
efficiency and to show a de-noising effect. Our
methods here try to take advantages of all of these
approaches. Koehn et al. (2018) and Koehn et al.
(2019) summarize findings of the WMT corpus
filtering efforts, though our work here primarily ex-
amines a self-supervised method in the context of
de-noising, rather than on a targeted filtering effort.
Our methods are unsupervised. We use dual-
encoder models, rather than an encoder-decoder
architecture, to model pairwise data and let the
model self-supervise itself or, further, be co-trained
with an NMT model to refine the training data.

3 Dual-Encoder Model

Dual-encoder (D-E) models have demonstrated to
be an effective learning framework applied to both
supervised (Henderson et al., 2017; Gillick et al.,
2019) and unsupervised tasks (Cer et al., 2018; Chi-
dambaram et al., 2018). A multi-task D-E model
consists of two encoders and a combination func-
tion for each of the tasks. In the context of the D-E
framework, the selection of bilingual text can be
interpreted as a ranking problem where, with y; as
the true target of source sentence xz;, P(y;|x;) is
ranked above all the other target candidates in ).
P(y;|x;) can be expressed as a log-linear model
but, for practical reasons, we approximate the full
set of target candidates )’ with a sample (Hender-
son et al., 2017). When training in a batch, P(y;|x;)
can be approximated as:

e®(@iyi)
P(yi|z;) ~

1
e®(@iyi) 1+ Eﬁlemﬁegﬁ(%’yn) M

where N is the size of a batch and ¢ is a similar-
ity function. In such a way, model training can be
done by optimizing a log-likelihood loss function:

L=

1N b (@597)
N Zi:l log e¢(miayi)+z7]:]:17n¢i e¢(ﬂ°i,yn) (2)

Based on the results of Yang et al. (2019a) with
additive margin softmax (Wang et al., 2018a), we
modify our loss function to include margin m:
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Figure 1: D-E model training with hard negatives. The encoders with the same color share parameters. The dot
product scoring function makes it easy to compute pairwise scores by doing matrix multiplications. The highlighted
diagonal indicates the dot products of the source and target texts. The additive margin softmax is applied at every

row (source—target) and column (target—source).
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When using the dot product as similarity func-
tion ¢, a single matrix multiplication can be used
to efficiently compute scores for all the examples
in the batch. When set to learn from clean cross-
lingual paired texts, a D-E model can be used to
learn strong cross-lingual embeddings for bitext
retrieval as shown in Guo et al. (2018) and Yang
et al. (2019a). The challenge is to learn similar
embeddings when training D-E models on noisy
data.
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In our experiments we use D-E models with hard
negatives sampling (Guo et al., 2018). Similar to
Yang et al. (2019a), our models are trained bidi-
rectional so the rankings in both directions, source
to target and target to source, are optimized. But
in contrast to Yang et al. (2019a) we do not share
the parameters between the source and target en-
coders. In our initial experiments training NMT
models we found that, under noisy conditions, there
is improvement of close to 1 BLEU point when
using D-E models that use specific encoders for
each language. Figure 1 illustrates our training
approach. For our encoders we use 3-layer trans-
formers (Vaswani et al., 2017) in the encoders with
hidden layers of size 512 and 8 attention heads.
We build vocabularies for each language sepa-
rately. Given the noise in the data, the vocabularies

Model Configuration

might not include all words in the source or target
languages. We control the prevalence of words
in the expected language with the vocabulary size.
Our reasoning is that large vocabularies are more
likely to include words in languages other than
the expected. 200k most frequent words are used
and 200k extra buckets are reserved for the out-
of-vocabulary words found in the training. We
use character- and word-level features to model
the source and target inputs. For character-level
representations, we decompose each word into all
character n-grams within a range. For word-level
representation, we sum the embeddings for its char-
acter n-grams and its word embedding. The final
sentence representation is the output of the trans-
former layers as a 500-dimensional vector. We train
the D-E models using SGD for 40M steps with a
learning rate of 0.001. A fixed value of margin 0.2
is used in equation 3.

4 Our Approach: Self-Supervised
Learning for Data Refinement

4.1 Training with Hard Negatives

As described in equation 1, and illustrated in fig-
ure 1, for every source sentence we use all target
sentences, except its own, as negatives in a batch.
We also augment the batch with hard negatives to
improve the contrast between true translations and
any other random sentence pairing. We mine the
hard negatives using a separate D-E model to re-
trieve, for every sentence, the top N candidates that
are not its counterpart in the pair. It is important
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Figure 2: [Iterative filtering (IF)]: the scores of the dual-encoder are used to select the training material for the
next model. [Machine translation iterative filtering (MT-IF)]: The D-E model is used to score the forward-
translations from the NMT model, only the top-ranking sentence pairs are used to train the next NMT model.

to notice that the hard negatives in our method are
retrieved, not generated or synthesized. We mine
the hard negatives offline from the sentences in the
ParaCrawl v1.0 data, or from the translations only
when using translations as target sentences. Our
negative-mining D-E has DNN layers, instead of
transformer ones, with a reduced embedding size
(25-dimensional). We mine hard negatives for both
the source and target sentences. As shown in figure
1, the hard negatives are specific to each one of
the sentence pairs but, when added to the batch,
we use them as additional random negatives for all
the other source sentences in the batch. We use a
batch size of 128 examples and 5 hard-negatives
per example. We augment the batch row-wise with
hard negatives mined for the target sentences, and
column-wise with hard negatives for the source.

In our self-supervised approach, we train D-E
models with one dataset and use the models that we
train to score the same data. Our hypothesis is that
the scores are useful to rank the data in a way that
makes it easy to filter out the noise. It is natural to
believe that, in principle, a data-model cycle like
this may not lead to much improvement because
the trained models tend memorize the training data,
including the noise. We break this cycle by adding
a selection step to the process and avoiding to train
the models with the same examples all the time. We
propose a self-supervised method for pairwise data
refinement based on data “iterative filtering” (IF).
With this method we refine data that we use to train
NMT models. By including the downstream task
in our method, we formulate a second method as

an extension of the first one. We regard this second
method as “machine translation-iterative filtering’
(MT-IF). Both methods are illustrated in figure 2.

>

4.2 Iterative Filtering

We use the dot product between source and target
embeddings as proxy of cross-lingual similarity.
Once we score and select data to train one model,
we can use that model to score and select data for
the next one in an iterative way. The details of this
method are shown in figure 2a and explained in
algorithm 1.

We bootstrap this method by training an initial
D-E model with all the pre-filtered data. It is im-
portant to notice that in each iteration we train the
D-E model with a subset of the data (the selected
data), but we score the entire set. This allows the
method to recover useful data that may have been
discarded in earlier iterations.

Algorithm 1 Iterative filtering

T < selection threshold
D-E = TrainDualEncoder(data)
while D-E improves do
scored data = Score(data; D-E)
ranked data = Rank(scored data)
selected data = Select(ranked data; 7)
D-E = TrainDualEncoder(selected data)
end while

A A R ST
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4.3 Machine Translation Iterative Filtering

In this method, the D-E model selects data to train
an NMT model, rather than to train another D-E
model. The NMT model then produces translations
to train the D-E model. This way, the D-E and
NMT models boost each other in a “co-training”
way. The key to this method is to use the NMT
model to generate the training data for the D-E
model in order to improve its de-noising capabili-
ties. Algorithm 2 explains this idea and figure 2b
illustrates it.

As before, in every iteration the whole dataset
is scored and ranked so sentence pairs that ranked
low early on can be recovered in later iterations.
In principle, forward-translation does not seem to
be a good way to generate training data. One can
anticipate that the models are prone to mimic the
training data, including the noise. Just as in our first
method, we break the cycle by adding a selection
step based on the D-E scores and using only the
top-ranking data to train the next NMT model.

S Experimental Setup

Machine Translation Model To assess if we
can recover useful subsets from noisy data, we
train Transformer-Big (Vaswani et al., 2017) NMT
models using data refined with our methods. To
train the models, we split the source and target texts
into pieces using bilingual sentence piece models
(Kudo and Richardson, 2018) that were trained
with the ParaCrawl v1.0 data only. We train for a
maximum of 200k steps using (Shazeer and Stern,
2018) and pick the best checkpoint according to
the performance on a validation set. The models
are trained on Google’s Cloud TPU v3 with batch
size 3072. In all our experiments, the configuration
of the NMT models is kept the same with the only
difference being the training data.

Algorithm 2 Machine translation iterative filtering

1: 7 < selection threshold

2: NMT = TrainNMT(data)

3: while D-E improves or NMT improves do
4:  translated data = Translate(data; NMT)
D-E = TrainDualEncoder(translated data)
scored data = Score(data; D-E)

ranked data = Rank(scored data)

selected data = Select(ranked data; 7)

9:  NMT = TrainNMT(selected data)

10: end while

en-fr en-de
All sentence pairs 4235M 4,591 M
Pre-filtered 289 M 282 M
70th percentile (for NMT) 87TM 85 M
80th percentile (for D-E) 58 M 56 M

Table 1: Number of sentence pairs in the ParaCrawl
v1.0 data, and after prefiltering and selection.

Data In our experiments we use two language
pairs: English to French (en-fr) and English to Ger-
man (en-de). We use ParaCrawl v1.0 (Espla et al.,
2019) as training data. We apply light-weight pre-
filtering steps to remove sentence pairs that: (i) are
duplicated, (ii) have identical source and target
texts, (iii) have empty sentences, or (iv) have a
large difference in the number of tokens. For the
last case, we compute the ratio of source over tar-
get tokens as: p = Ziig with ng and nr being
the number of tokens in the source and in the tar-
get respectively, and « a token count tolerance.
With an « of 15, we discard a sentence pair if p is
greater than 1.5. Similarly for the ratio of target
over source tokens. We use WMT newstest 2012-
2013 (Bojar et al., 2014) as the development set and
we evaluate on two sets: WMT newstest 2014 and
news discussion test 2015 for en-fr; WMT newstest
2014 and 2015 for en-de.

Evaluation As described in section 3, we trained
the D-E models as rankers. Thus, we use the BUCC
2018 mining task (Zweigenbaum et al., 2018) as
an intrinsic metric for the model. The task data
consists of corpora for four language pairs includ-
ing fr-en and de-en. For each language pair, the
shared task provides a monolingual corpus for each
language and a ground truth list containing true
translation pairs. The task is to construct a list of
translation pairs from the monolingual corpora, and
evaluate them in terms of the F1 compared to the
ground truth.

To test the end-performance of the NMT models
in terms BLEU scores, we compute the detokenized
and case-sensitive BLEU scores against the original
references using an in-house reimplementation of
the mteval-v14.pl script.

Iterative Selection In our experiments we ran 3
iterations of the /F method and 3 iterations of the
MT-IF one.

To define the value of the selection thresholds,
we conducted initial experiments to explore the
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impact of the threshold when selecting the data to
train the D-E models. Figure 3 shows the BUCC
results, in terms of the best F1 measure and the
area under the precision-recall curve (AUCPR), for
D-E models trained with data selected using differ-
ent thresholds. Even though there is not a single
threshold that works best for both languages, mod-
els trained with data selected from the 70th or 80th
percentiles produce the best results. Using either
very low (below 0.2) or very high thresholds (above
0.95) leads to D-E models with lower results. We
set the selection thresholds for the data to train
the D-E models and to train the NMT models sep-
arately. For the former we use data on the 80th
percentile, and on the 70th percentile for the latter.
Our intuition was that we can be more stringent
when selecting data to train the D-E because only
high-ranking examples may be true translations to
learn from. Table 1 shows the number of sentences
in the ParaCrawl v1.0 en-fr and en-de datasets and
the amount of sentences that the pre-filtering and se-
lection steps, at the different thresholds, let through.
The large number of sentence pairs that are elim-
inated via pre-filtering give an indication of how
much noise there is in the data. It is worth noticing
that the subset of data that we deem “useful” is two
orders of magnitude smaller than the original data.

6 Results

6.1 Intrinsic Dual-Encoder Evaluation

Table 2 shows the BUCC mining task results for the
D-E models trained with our methods in terms of F1

AUCPR/Best F1
1.0 1 —o- en-fr AUCPR
-+ en-fr Best F1
0.8 - —o— en-de AUCPR
- en-de Best F1
0.6
[ = RPRR = SO
0.4 oo O’--E.
o . .E
0.2 1 m ® >‘o'-."
’ = o .
P -0
0 T T ° 1

0 0.2 0.4 0.6 0.8 1.0
Threshold (7)

Figure 3: BUCC mining results of dual encoder mod-
els trained with data selected at different thresholds.

and AUCPR. As baseline we include the results of a
D-E model trained with all the ParaCrawl v1.0 data
after pre-filtering. The baseline performs poorly in
both en-fr and en-de. The D-E models trained with
the IF data produce good mining results starting
from the very initial models, i.e. when using D-E
models trained using hard negatives but no selec-
tion yet. The significant gains of I Fj over the base-
line confirm our observations about the positive im-
pact of hard negatives in cross-lingual tasks (Guo
et al., 2018). In subsequent iterations (indices 1 to
3 in table 2) selection is used and the D-E models
show steady improvement. The improvement in the
AUCPR and F1 of the D-E models trained with the
MT-IF data is quite remarkable. The performance
for models trained with data from the first iteration
of this method surpass the performance of models
trained with the the third iteration of the /F data
and keep improving, but seem to plateau around
the second iteration. For reference, we include in
table 2 the AUCPR and F1 from embeddings gen-
erated with the public “universal-sentence-encoder-
multilingual-large” v2 (Yang et al., 2019b) from
TFHub' to show the performance of a D-E model
trained on multiple large and non-public industry
datasets. As expected, training on this kind of data
is far better than de-noising, but the evaluation
shows that our methods do a good job refining data,
especially considering how much noise there is in
the ParaCrawl datasets to start with.

6.2 Translation Evaluation

To illustrate the end-performance of our methods,
table 3 shows the BLEU scores (Papineni et al.,
2002) of NMT models trained with data subsets
selected with our methods. The D-E models used
to score the data in each iteration correspond to
the same models reported in table 2. As baseline
we use an NMT model trained with all the sen-
tence pairs just after pre-filtering, i.e. selection
is not used yet. For both our methods the NMT
models show considerable improvement over the
baseline. It is interesting that the initial NMT (I F
in table 3), shows good improvement in spite of
using a D-E whose only difference over baseline
is the use of hard negatives. There is also notice-
able improvement between the I Fjy and I F results
pointing to the fact that our process of scoring,
ranking and selection is also useful to improve the

"https://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/2
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Method

en-fr en-de

AUCPR BestF1 AUCPR BestF1

Pre-filtered data (baseline) 0.068 0.149 0.020 0.069
1Fy 0.246 0.330 0.094 0.179
IF; 0.380 0.445 0.291 0.359
1K, 0.570 0.600 0.372 0.415
1F; 0.622 0.642 0.390 0.432
MT-IF; 0.641 0.673 0.545 0.566
MT-IF, 0.664 0.697 0.600 0.620
MT-IF3 0.676 0.707 0.593 0.608
USE multi-lingual 0.824 0.812 0.861 0.815

Table 2: BUCC mining results of the dual-encoder models. The index in each experiment denotes the iteration.
The USE multi-lingual model was trained using non-public industry datasets.

Method en-fr en-de
newstest2014 newsdiscusstest2015 newstest2014 newstest2015

Pre-filtered data (baseline) 0.303 0.297 0.196 0.239
1Fy 0.324 0.315 0.237 0.276
IF; 0.342 0.343 0.239 0.281
15, 0.340 0.352 0.237 0.279
1F3 0.342 0.348 0.236 0.283
Forward-translated data 0.305 0.306 0.203 0.243
MT-TF; 0.342 0.346 0.237 0.280
MT-IF, 0.343 0.348 0.235 0.283
MT-IFy 0.346 0.349 0.236 0.286

Table 3: BLEU scores of the trained NMT models and the baseline models. The index in each experiment denotes

the iteration.

NMT models. The second half of table 3 shows the
BLEU scores when the NMT models are added to
the refinement process in the M7-IF method. For
a better reference, we train an NMT model with
forward-translated sentence pairs using the base-
line NMT model. Crucially, there is no selection on
the forward-translated data to train this model. This
NMT model does not show improvement relative
to the baseline NMT model and confirms that dis-
tilling new training examples from forward trans-
lations provides little or no gain. In contrast to the
BUCC evaluation from table 2, the downstream
task does not seem to require several iterations to
show good results. The BLEU scores of later iter-
ations in the process only improve marginally as
opposed to the steady improvement observed in the
BUCC task.

6.3 Supervised vs Self-Supervised

We use Bicleaner to compare our methods against
a supervised approach on the task of de-noising
the ParaCrawl data, with the important caveat that

en-fr en-de
70th percentile after lang ID 29M 27M
Bicleaner v1.2 25M 17M

Table 4: Number of sentence pairs of selected data
after language identification and in Bicleaner v1.2.

Bicleaner is not only supervised but tailored to de-
noise this data. In that sense, our method would be
in disadvantage especially because our D-E models
were not trained with any signal related to the iden-
tity of the language. To add this missing component
to our method, we use language identification as a
post-processing step on the refined data. We use
a pre-trained language identification method from
Zhang et al. (2018) to filter out pairs where the
source or target texts do not match the expected
language. As around 30% of the training data gets
discarded (table 1 vs table 4), the scores of the re-
maining data need to be re-ranked in preparation
for the selection step. We train new NMT models
using only the sentence pairs that get ranked in the
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70th percentile and filtered by the language iden-
tification. We compare the models against similar
NMT models trained with the Bicleaner v1.2 data
downloaded from the ParaCrawl website?. Table 4
shows the number of sentence pairs used to train
the NMT models after applying language identifi-
cation and in the Bicleaner v1.2 data.

To isolate the effects of language identification,
we compare NMT models trained with data from
our methods against similar models trained with
data that went through language identification also
but, as in previous baselines, no selection was used.

As shown in Table 5, using language identifica-
tion on the training data boosts the performance.
The NMT models trained with the data refined with
our methods still show considerable improvement
over not using selection, making evident that there
is still much room for data refinement after lan-
guage identification. Our method shows very com-
petitive results against the NMT models trained us-
ing the Bicleaner v1.2 data, surpassing the BLEU
scores in en-fr and getting very similar performance
in en-de. It is interesting that, with the addition of
language identification, our self-supervised method
can remove noise just as effectively as a targeted
effort to denoise the ParaCrawl data.

6.4 Iterative Data Refinement

To verify the effectiveness of our methods in find-
ing useful subsets contained in the noisy data, we
analyze the results of our models when scoring true
sentence pairs versus scoring pairs that are not ac-
tual translations. For this analysis, we leverage the
BUCC mining task and compute the dot products
of “ground truth” pairs using our D-E models. Fig-
ure 4 shows box plots of the dot products for both
en-fr and en-de BUCC data. For reference, we com-
pute the dot products of the “nearest negative” of
each source sentence. We reuse the retrieval results
from the D-E intrinsic evaluation (subsection 6.1)
to define the nearest negative as the target sentence
with the highest dot product that is not its actual
translation. This leads to 9,086 ground truth and
nearest negative dot products for en-fr and 9,580
for en-de whose distributions are displayed in the
box plots in figure 4. Starting with the baseline
D-E models, the dot products of the ground truth
and the nearest negative are very close in value.
This is evident by the fact that their difference (also
plotted in figure 4) is very close to 0. The differ-

*https://paracrawl.eu/v1
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ence starts to grow with the 1y models, showing
that hard-negatives are useful to increase the sep-
aration between the dot products of both classes.
For the I F' method, the difference between ground
truth and nearest negative keeps growing steadily
with every iteration. This confirms the progression
observed in the AUCPR and F1 measures in table
2. For the MT-1F models, the score difference
between ground truth and nearest negative is al-
ready significant in the first iteration, but it does
not progress much further in later iterations. This
also confirms the observations for these models in
the BUCC mining results from table 2. The fact
that the dot products of our models show good lev-
els of separation of each class corroborate, from
the data analysis standpoint, that both our methods
are effective in separating useful data samples from
the noisy dataset.

6.5 Discussion

Intrinsic vs downstream evaluations Our self-
supervised methods seem to naturally improve the
quality of the refined data, as measured by the re-
sults of the BUCC parallel text mining task. How-
ever, most of the BLEU score gains are achieved
on the first iteration. One possible explanation is
that the BUCC evaluation is a closer match to the
ranking task used to train the D-E model. Another
possibility is that, given that different sequences
can produce the same BLEU scores, there may be
improvements in the translation quality that the
BLEU scores do not reflect. Making the method
more aware of the downstream translation task and
gaining insight into the translation quality are inter-
esting lines of future work.

Language identification impact In noisy data,
language identification seems to play a significant
role. In our experiments we applied it as a post-
process but we are interested in applying it as part
of the pre-filtering process, or integrated as part of
our scoring models in the future.

Breaking the data-model memorization cycle
Training NMT models directly with translated data
did not produce gains over the baseline. But we
found significant gains when instead we used the
translated data to train D-E models and used the
models to score and select data to in turn train the
NMT models. We see this as confirmation that it
is possible to break the data-model memorization
cycle by co-training models using different training
goals.



en-fr

en-de

Method newstest2014 newsdiscusstest2015 newstest2014 newstest2015
Pre-filtered data lang ID 0.336 0.346 0.239 0.279
Bicleaner v1.2 data 0.363 0.370 0.274 0.316
IF 0.369 0.373 0.263 0.306
1K, 0.369 0.369 0.267 0.308
IFs 0.366 0.372 0.269 0.314
MT-TFy 0.361 0.365 0.263 0.308
MT-IF, 0.363 0.370 0.262 0.303
MT-IF3 0.360 0.364 0.259 0.303

Table 5: BLEU scores of the NMT models using language identification and compared against Bicleaner.

BUCC en-fr

AR ARENS
‘ERERRERE

—— ground truth
nearest negative
—— ground truth - nearest negative

baseline IF0  IF1  IF2  IF3 MTJFL MTJF2 MT-IF3

BUCC en-de
10

“ g Bl gk

—— ground truth
nearest negative
—— ground truth - nearest negative

bascline IFO  IF1  IF2  IF3 MTJUF1 MTF2 MTF3

Figure 4: Dot product distributions for the ground truth and nearest negative from the BUCC mining task. The box
plots represent the (5,25,50,75,95)-percentile of the dot product distribution for each method and iteration.

7 Conclusions

We introduced two self-supervised methods to re-
fine pairwise data aimed at selecting useful sub-
sets from noisy data. In our experiments we used
parallel texts mined from the internet as example
of the weakly constructed pairwise data to refine.
Our methods do not require linguistic knowledge
or human annotated data. They use iterative se-
lection of the data to train two kinds of models.
Our first method is based on self-boosting dual-
encoder models iteratively. We applied this method
to denoise data to train NMT models. Our second
method integrates the NMT models into the iter-
ative process to generate translations that, after a
selection step, are used to train the dual-encoder
models. Our results show that most of the gains in
terms of BLEU score can be achieved in the first
iteration of our methods, but later iterations keep
improving the performance of the dual-encoder
models in the BUCC evaluation. In our experi-
ments, using translated text in combination with a
selection step helped to improve the de-noising ca-
pabilities of the dual-encoder models. We observed
that selection is effective to break the model-data
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memorization cycle. One characteristic that our
self-supervised methods do not seem to capture
well is an indication of the language identity. If we
use language identification on the denoised data as
a post-processing step, the performance, in terms of
BLEU scores, turns very competitive against super-
vised targeted efforts tailored to remove noise from
the dataset. These results encourage us to pursue fu-
ture lines of work that include using cross-attention
in the pairwise data to better capture the relation-
ship in the pairs. Also, specific to parallel sentences
mined from the internet, we would like to explore
ways to include language identification in the mod-
els. On the other hand, it seems natural to leverage
the self-supervision characteristics of our methods
and apply them to language pairs where noisy inter-
net data may be available but annotated data is not.
Lastly, we are interested in expanding our methods
to other pairwise data such as text-image pairs.
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