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Abstract

Word embedding methods have become the de-
facto way to represent words, having been suc-
cessfully applied to a wide array of natural lan-
guage processing tasks. In this paper, we ex-
plore the hypothesis that embedding methods
can also be effectively used to represent spa-
tial locations. Using a new dataset consisting
of the location trajectories of 729 students over
a seven month period and text data related to
those locations, we implement several strate-
gies to create location embeddings, which we
then use to create embeddings of the sequences
of locations a student has visited. To identify
the surface level properties captured in the rep-
resentations, we propose a number of probing
tasks such as the presence of a specific location
in a sequence or the type of activities that take
place at a location. We then leverage the rep-
resentations we generated and employ them in
more complex downstream tasks ranging from
predicting a student’s area of study to a stu-
dent’s depression level, showing the effective-
ness of these location embeddings.

1 Introduction

Due to the rising adoption of smartphones over the
past decade, the number of services with full or
partial information about people’s spatial mobility
has skyrocketed. Inspired by the natural language
processing (NLP) literature, we investigate vari-
ous properties of location embeddings. We explore
whether valuable information is encoded in indi-
vidual location embeddings, as well as embeddings
that encompass a sequence of locations. We be-
gin by exploring whether they are able to represent
aspects such as location presence or location func-
tionality. Ultimately, we test the hypothesis that if
enough underlying information is encoded, embed-
ding models should aid in predicting user-centered
descriptors, such as area of study, academic status,
or mental health.

Location data can be used by university admin-
istrators for applications that improve student life.
From the frequency and the type of locations ac-
cessed in one’s daily routine, we may be able to
identify someone who is depressed or someone
who is overworked. Importantly, opt-in frame-
works can be established to supplement existing
counseling and advising offices, allowing for early
intervention in the case of mental health and aca-
demic concerns. With proper privacy safeguards
in place, such models could readily be applied on
most university campuses, as WiFi connection data
(from which we infer location) is likely already
available. In addition, universities could use this
data in an aggregate form to better understand stu-
dent life and well-being, and find ways to promote
healthy and engaging behaviors on campus. Such
aggregate location information can also be used by
architectural firms or municipalities to help with
the selection of buildings’ locations, architecture,
and design; with road and pedestrian traffic opti-
mization; or for emergency response.

We also know that such data is already avail-
able to large technology companies that track their
users, and it is important to spread awareness about
the personal information that can be gleaned. Re-
search like ours helps inform users about privacy
concerns, and may open up a path to stricter legis-
lation regarding the use of such data in the future.
While we envision numerous positive applications
of these methods, there are clear privacy drawbacks
that the public should be aware of in the current
technological environment.

Our work focuses on building an understanding
of what information is encoded in location em-
beddings. In addition to creating embeddings us-
ing location trajectories, we propose an alternative
method that synthesizes text from online sources
to build representations that we hypothesize will
better encode certain properties of locations. We
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show that using dense location embeddings that
incorporate both movement patterns and text data
improves our ability to model downstream tasks.
We see that although we are not able to recover as
much surface level information from embeddings
of location sequences as we are from a simpler
representation, the additional semantic information
that is encoded allows us to better predict some
user attributes.

2 Related Work

Embedding Evaluation and Probing. Word em-
beddings are now widely used to create word
representations using methods such as word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), ELMo (Peters et al., 2018), and BERT
(Devlin et al., 2019). BERT and ELMo can be
used to create contextualized word embeddings, in
which the vector representing an individual word
varies depending on the context in which it ap-
pears. Previous methods including word2vec and
GloVe did not make this distinction; adding con-
text helped BERT achieve state-of-the-art results
on many downstream NLP tasks. One traditional
benchmark for word embeddings is performance
on synthetic tasks, such as word similarity and
word analogy tasks (Mikolov et al., 2013; Penning-
ton et al., 2014). However, word embeddings are
widely used because of their superior performance
on a variety of downstream NLP tasks when com-
pared to other word representations. Performance
on downstream tasks has been used to evaluate
sentence embeddings, however such approaches
cannot gauge the content that is actually captured
in the embeddings. To systematically ascertain
what information is encoded in sentence vectors,
researchers have turned to probing tasks (Shi et al.,
2016; Adi et al., 2017; Conneau et al., 2018). These
are meant to address the question “what informa-
tion is encoded in a sentence vector” at a higher
level.

In our work, we find inspiration in the research
by Conneau et al. (2018), who propose a formal-
ized evaluation technique for sentence embeddings
using a suite of ten classification tasks focusing on:
(1) surface information (e.g., length, word content),
(2) syntactic information (e.g., bigram shift, tree
depth), and (3) semantic information (e.g., tense).
The deep learning methods gave the best results
overall, but the bag-of-vectors approach was a solid
baseline for the word content task, where it outper-

formed the deep learning models.

Applications of Embeddings for Location Data.
Liu et al. (2016) were among the first to use the
skip-gram model on location data. They use loca-
tions visited before and after a target location as
context to create location embeddings. These are
then used in a personalized location recommenda-
tion system. Feng et al. (2017) similarly create
embeddings of check-in data, but use the CBOW
model. Their application task is reversed, predict-
ing future visitors for a location instead of predict-
ing locations that a user will visit. Chang et al.
(2018) also predict next check-ins for users using a
model based on skip-gram. Their work is uniquely
related to ours in that they also build prediction
of the text content of check-ins into the objective
function. Zhu et al. (2019) trained a skip-gram
model to build location embeddings, and use them
to understand the flow between urban locations.
Crivellari and Beinat (2019) explore location em-
beddings from the perspective of geoinformatics,
paving the way for our probing tasks.

The work of Solomon et al. (2018) is most simi-
lar to our own. They use GPS data from cell phones
as input to create embeddings and use data from a
university setting. Our work differs in that we use
the skip-gram model and incorporate text-based
embeddings. We also propose probing tasks to
better understand the embeddings that we create,
and predict additional user attributes from our new
dataset that go beyond demographic information.

3 Data

3.1 Student and Location Data

Our dataset consists of location data collected from
729 undergraduate university students who agreed
to participate in our study in 2018 and 2019 over
a period of seven months.1 Two-thirds of the stu-
dents participated during the winter semester, and
the other third during the fall semester. Dataset
statistics are presented in Table 1.

Due to the sensitivity and scope of the data, it is
infeasible for our study to include other universi-
ties; nonetheless, we believe that similar patterns
would hold on other campuses as well. Because
of privacy concerns, we are not able to publicly
release this dataset.

1The data was collected as part of a study that underwent
a full board review and was approved by the IRB at the Uni-
versity of Michigan (study number HUM00126298). All par-
ticipants in the study have signed an informed consent form.
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Number of Participants 729
Valid Location Visits After Pre-Processing 478,329
Unique Locations 194
Mean Locations per Participant 656.2
Mean Locations per Day 4.7

Table 1: Statistical summary of the location dataset.

While most similar research uses GPS (Solomon
et al., 2018), mobile check-ins (Feng et al., 2017;
Liu et al., 2016), or cell phone pings (Zhu et al.,
2019) for location tracking, we collect location data
from WiFi access logs. WiFi access logs provide a
strong and unbiased location signal on campus, as
most students carry their smart phones with them
at all times; however, a downside is that we do
not have location data for large time chunks when
students are not connected to the campus WiFi.

The original data consists of 20,766,750 WiFi
session updates across all the students. We only
consider connections with uninterrupted updates
from a single building (without a connection to a
network in another building) for at least ten min-
utes. This ensures that a student’s location will not
be mapped to multiple points during overlapping
time spans, and that locations where a student does
not spend a notable amount of time are excluded.
After collecting this list of locations, start, and stop
times, we perform a merging operation on the data,
sorted by start time. If spans for the same location
occur consecutively in the series with start and stop
times less than 30 minutes apart, those spans are
merged together.

After this pre-processing, we are left with
478,329 valid location spans with start and stop
times. Since our dataset covers a single campus
(194 locations), each location was manually labeled
with its functionality, for a total of thirteen func-
tionalities. The five most frequent are: class, study,
dorm, lab, and library. While there are 194 loca-
tions in the location dataset, we utilize 132 in our
analysis because this set of locations appears in
all of the text-based datasets (described in Section
3.2); the ones that are left out are not among the
most frequently visited.

In addition to location data, we collected a rich
dataset containing information about the 729 stu-
dents, consisting of a series of extensive surveys
taken by the students throughout the semester and
academic data from the registrar. From the sur-
vey data, we use information on class year, gen-
der, depression, and sleep satisfaction. From the

Campus
Dataset Website Reddit Twitter

Overall Tokens 581K 882K 655K
Unique Tokens GloVe 9K 11K 18K
Median Instances Per Loc. 3.5 20.0 166.5
Start Date (year-month) N/A 2011-05 2010-09
End Date (year-month) 2019-05 2019-07 2019-08

Table 2: Statistical information about text datasets.

academic data, we utilize the GPA and the school
where the student is enrolled. These combined data
sources are used for our downstream classification
tasks. We chose students for the study covering all
undergraduate class years, genders, and academic
disciplines.

3.2 Text Data

In addition to location trajectories, we use text data
from three sources (campus website, Reddit, Twit-
ter) that illustrate various ways in which text can
be used to represent places. Statistics of the text
datasets are shown in Table 2.

Campus Website. With this dataset, we capture
how people formally define locations. The univer-
sity hosts a building search website that links to
pages containing information about campus build-
ings, including the departments hosted inside. We
manually link the locations in our dataset with
building pages on this site, then scrape the first
Google search result constrained within the uni-
versity domain for each listed department, and use
that text to represent the location. In addition to
the departments, some pages directly link to a web-
site (e.g., a gym links to recreational sports), from
which we also scrape text.

Reddit. With this dataset, we capture how people
informally discuss locations. From the university
Reddit page, we search for building names. We in-
crease the search term list using OpenStreetMap,2

which lists alternate names for many buildings. We
include text from posts and comments that specifi-
cally mention a building.

Twitter. With this dataset, we capture how people
express themselves in various locations. We collect
tweets that have been geotagged with GPS points
within 0.05 kilometers of campus buildings.

2https://www.openstreetmap.org/
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4 Representing Locations

We use location trajectories and text data to cre-
ate vector representations of locations and, subse-
quently, embeddings of sequences of locations that
are visited by a single person. After pre-processing
using the method described in Section 3.1, the lo-
cation input data consists of a series of sorted, non-
overlapping locations for a number of users with
start and end times. We discuss multiple methods
to create vector representations based on this data.

4.1 Location Trajectory-Based
Representations

To create embeddings of locations, we make use
of the temporal nature of the location trajectories
to create a sequence of names of locations visited
by a user over a period of time (e.g., the seven
month period of our data collection, see Section
3.1). A skip-gram model is trained to use a location
to predict locations around it in a user’s schedule,
creating location embeddings that we expect will
encode semantic information about locations.3

We represent each hour during the data collec-
tion period as a distinct token in the input trajecto-
ries. If a user has visited a single location in one
hour, that location will be used in the slot for the
hour; if they visited multiple locations, their pre-
dominant location will be used. If we do not have
any location data for the user during that hour, we
use the EXTERNAL token. This approach gives
an exact meaning to the distance between locations
in a sequence, while a raw sequence would ignore
gaps in the data. The approach of using one to-
ken per set time interval is also used in Zhu et al.
(2019). We refer to the method as Loc2V, and show
a visualization in Figure 1.

4.2 Text-Based Representations

In addition to creating location representations
from trajectories in the physical world, we explore
the idea of using relevant text to define locations.
Such text can reveal information about locations
that may not be discernible from location trajecto-
ries, e.g. that people meet friends in a certain place.
Therefore, for the same locations that appear in

3We use the default window size of 5 and generate em-
beddings with 25 dimensions. While 25 dimensions is fairly
small in the context of word embeddings, since our dataset
has fewer than two hundred locations that we seek to embed,
higher values cannot be considered as leading to a dimension-
ality reduction. We use a negative sampling value of 20, as is
suggested by Mikolov et al. (2013) for small datasets.

Figure 1: A sample sequence of locations, and the cor-
responding sequences that are used as Loc2V input.

our trajectories, we collect textual data that enables
us to derive text-based representations from three
sources as described in Section 3.2.

Using each textual data source, we map a loca-
tion name to a set of relevant words. We calcu-
late tf.idf (Salton and Buckley, 1988) weights for
each word, then use those weights to compute a
weighted average of pre-trained word embeddings.
Because our datasets are primarily from social me-
dia, we use pre-trained GloVe embeddings that
were obtained from Twitter data.4 The resulting
vector is used as a location representation.

4.3 Combining Representations

We hypothesize that trajectory based and text-based
representations may encode different aspects of
locations. Therefore, in addition to representing
locations using text and physical trajectories, we ex-
periment with combining the two. Our first method
concatenates embedding vectors created from phys-
ical trajectories and vectors created from text data.
Our second method performs retrofitting on top of
text-based vectors. In the context of embeddings,
“retrofitting” describes the process of modifying
vectors that have already been created to better en-
code additional criteria. We find inspiration in the
method from Faruqui et al. (2015), which retrofits
word embeddings to a graph representing a seman-
tic lexicon. In our work, we retrofit text embed-
dings to the graph that represents the transitions
between locations; the nodes are locations, and the
edges are weighted by the number of times there
was a transition between those two locations in our
dataset.

The retrofitting method takes a matrix Q̂, the
initial vectors, and updates matrix Q (initialized to
Q̂) using a location transition graph. The objective

4https://nlp.stanford.edu/projects/glove/
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Figure 2: Comparison of the concatenation and
retrofitting methods.

function incorporates the set of edges E, bringing
vectors that share an edge closer together in the
vector space:

Ψ(Q) =
∑n

i=1

[
αi ‖qi − q̂i‖2 +

∑
(i,j)∈E βij ‖qi − qj‖

2
]

An iterative method is used to update matrix Q:

qi =

∑
j:(i,j)∈E βijqj + αiq̂i∑

j:(i,j)∈E βij + αi

We perform ten iterations, as was done in previ-
ous work. The parameters α and β control the rela-
tive importance of the two components (initial vec-
tors and location graph). In their implementation,
Faruqui et al. set αi = 1 and βij = degree(i)−1.
As the graph we use is weighted, we introduce a
weighted version that incorporates edge weights
W , using a weighted inverse degree for β.

The retrofitting method enhances the text-based
information by adding the assumption that loca-
tions that are visited sequentially are similar (in the
sense that a person who visits one would visit the
other), bringing them closer in the vector space.
This method aims to infuse the text-based rep-
resentations with information related to the co-
occurrence of locations in a student’s trajectory;
locations that co-occur may be suggestive of, for in-
stance, areas of campus that tend to be visited by en-
gineering students. It is not used on the trajectory-
based representations, as these already incorporate
location transitions.

Figure 2 compares the concatenation and
retrofitting methods. As outlined above, the con-
catenation method directly combines the two vec-
tors into one with the same content, while the
retrofitting method takes information from a graph
structure representing trajectories into account to
create a modified version of the original vector.

Figure 3: Fictional examples of locations visited by stu-
dents; a larger pin reflects more time spent at a location.

4.4 Representing a Sequence of Locations

To represent a sequence of locations, we use a vec-
tor representing the locations that a person has vis-
ited in a month, instead of the individual locations.
We settled on this time interval since a shorter time
span (such as a day) contains very little predictive
information, while a longer span (one semester)
groups together distinct time spans that may lead
to divergent behaviors, such as exam periods. We
create a sequence embedding by taking a weighted
average of the location vectors included in the se-
quence, using the time spent at each location as
weights, thus increasing the importance of loca-
tions at which the person spent more time.

5 Probing Location Representations

While some of the methods we use (i.e., skip-gram)
have been used in the past to represent locations
for certain tasks, there has been less work study-
ing them intrinsically. We propose surface level
tasks to probe the properties encoded in location
embeddings, which are important to gain a deeper
understanding of the type of information they cap-
ture. We split surface level tasks into two cate-
gories: those that focus on individual locations and
those that focus on location sequences. In addition
to these surface level tasks, we propose a set of
downstream prediction tasks to validate the utility
of such embeddings.

5.1 Surface Level Location Tasks

With these tasks, we examine two properties that
should be encoded in location representations: lo-
cation functionality and physical proximity. To
directly compare how well each method encodes
these semantic properties, we propose a metric to
measure each property. We are inspired by Ye and
Skiena (2019), who use similar methods to analyze
properties of name embeddings (representations of
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people’s names). We borrow their method of analy-
sis, measuring overlaps in the N nearest neighbors
for various values of N , but they analyze a differ-
ent property, namely the gender associated with the
name.

Functionality Overlap. Each location in our
dataset is annotated with its functionality, including
two functionalities for mixed-use buildings, e.g.,
a class building that also contains labs. For each
location, we calculate the percentage of its nearest
neighbors in the vector space that share at least one
functionality; a higher value indicates that the em-
beddings more distinctly capture functionality. We
compute nearest neighbors using cosine similarity.

Physical Distance. We compute the distance in
kilometers between a location and its nearest neigh-
bors, and average the distances. This allows us
to measure exactly how far a location is from its
nearest neighbors; a lower number for this metric
correlates with an increased physical proximity.

5.2 Surface Level Sequence Tasks
Our surface level sequence tasks are inspired by the
methodology proposed by Conneau et al. (2018) to
probe sentence embeddings. Many of those tasks
focus on syntax, which is not relevant for our use
case, but we adapt their task for location-presence
and propose probing for functionality-presence.

Location Presence. We propose a binary location-
presence classification task (LocPres). We create
classifiers for each location, predicting if the loca-
tion appears in a sequence. We average the results
across all locations with at least one hundred posi-
tive and negative examples (resulting in being able
to assess 83 locations out of 132).

Functionality Presence. We also propose a
functionality-presence task (FuncPres). Given a
sequence embedding, we predict if it includes lo-
cations of a certain functionality. We use a binary
classification setup that mirrors the one used for
the location-presence task. We treat the classifica-
tion of either the primary or secondary function-
alities assigned to locations as correct. As with
the location-presence task, we average results over
all functionalities with at least one hundred train-
ing instances from each class (accounting for 11
functionalities out of 13).

5.3 Downstream Application-Based Tasks
In addition to surface level tasks, we want to un-
derstand what other human-centric information is

encoded in location sequence embeddings. Our
hypothesis is that the way in which students spend
their time may be indicative of certain information
about them; an example of students’ diverse be-
havior on campus is shown in Figure 3. Using the
dataset described in Section 3.1, we propose seven
classification tasks: five tasks with two classes (ma-
jor depression, all depression, gender, sleep satis-
faction, and GPA), one task with three classes (to
predict which school a student is enrolled in, e.g.
business or engineering), and one task with four
classes (to predict class year).

Sleep satisfaction is reported in a survey (Sec-
tion 3.1) on a five-point Likert scale; the top three
responses are mapped to a positive class, and the
bottom two to a negative class. As semester GPA
is continuous, we formulate the binary classifica-
tion as less than or greater than 3.5 (between A-
and B+). Depression is measured using the stan-
dard PHQ-8 survey; using a clinically validated
algorithm (Kroenke et al., 2001), we classify major
depression (binary), along with major and other
depression (a weaker diagnosis); we label the for-
mer as “major depression” and the latter as “all
depression.” For the other tasks, we filter out un-
derpopulated classes, going from 18 to three classes
for school, from five to two for gender, and from
five to four for class year. We use a classification
approach over regression because we hope that this
work can be used to identify at-risk students.

6 Experimental Setup

We perform 10-fold cross validation on 729 in-
stances, where each instance represents a student.
Preliminary classification experiments were con-
ducted on a small subset using SVM with linear
and RBF kernels, random forests, decision trees,
and Naı̈ve Bayes, yet linear SVM had the most
robust performance. Accordingly, our experiments
consist of classification tasks using linear SVM.
As many of the classes are unbalanced, we more
heavily weight updates for the minority class(es)
by modifying the loss function to use a weight that
is inversely proportional to the class’s prevalence.

To predict a student attribute, we create one vec-
tor for each month of data collection pertaining to
each student, using the process described in Sec-
tion 4.4. Our training framework is illustrated in
Figure 4. We start by feeding the sequence vectors
through a SVM classifier, which predicts month-
level labels. These are then concatenated to form a
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Figure 4: The framework for downstream prediction
tasks.

student instance and are passed to a meta-classifier
that decides the final class label for that student.
We use the meta-classification approach to allow
the first classifier more data to learn from; without
this approach, the number of input samples is rel-
atively small (729). The process for surface level
sequence tasks is similar, but no meta-classifier is
used, as the gold standard labels have a month-level
granularity.

7 Results and Discussion

Figure 5 and Tables 3 and 5 show the results ob-
tained for the probing tasks. In addition to the
loc2vec trajectory and text-based models, we run
our experiments with two combination models, us-
ing the methods discussed in Section 4.3. We em-
ploy the Reddit variation for these combination
models due to its strong performance on down-
stream tasks; we incorporate one model using con-
catenation and a model using retrofitting. We refer
to these models as “Loc2V-Reddit,” and “Reddit-
Retrofit,” respectively.

We compare our classification performance
against a random baseline. In order to introduce
a stronger supervised baseline for our methods,
we employ simpler location representations, in the
form of one-hot vectors, which are passed as in-
put in our supervised evaluation framework (Figure
4). We take the mean of those one-hot vectors to
create month sequence vectors as we do for the
embeddings.

7.1 Surface Level Location Tasks
For these tasks, we include an overall average base-
line, where we compute the metric for all loca-

Figure 5: Results on surface level location tasks.

tions. The results, shown in Figure 5, lead to
two unsurprising findings: text-based methods are
better at encoding functionality, and the methods
rooted in physical location are better at encoding
distance. The results are somewhat skewed for
the text-based representations such as “Campus-
Website,” as some locations share a single page;
however, this effect alone does not entirely explain
the performance of that model on the functionality
overlap task, as it is outperformed on the physical
distance task.

One fascinating result is that the Twitter embed-
dings offer the best performance on the physical
distance task by a method that does not utilize phys-
ical trajectories, which may be because this data is
collected using geotags. People may tweet as they
move between buildings, blurring the line between
tweets in adjacent locations. We also observe that
the methods that account for physical trajectories
and text data can outperform those that use only
text data; this is especially clear from the results for
Loc2V-Reddit, which show stronger performance
than Loc2Vec and Reddit individually for function-
ality overlap, and slightly stronger performance
than Reddit for physical distance. This demon-
strates one way in which we can create more robust
representations of locations.

7.2 Surface Level Sequence Tasks

Overall, we note that all of our methods are eas-
ily able to surpass the random baseline. However,
when it comes to the supervised one-hot vectorial
representation, we see that traditional ways of rep-
resenting text are able to best encode surface level
information. This is because the sparse one-hot
representation explicitly encodes information nec-
essary for solving each task; location-presence is
denoted by a value greater than one for the par-
ticular dimension, and functionality-presence is
denoted by a value greater than one for various
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Loc Pres Func Pres

Random Baseline 41.0 45.0
One-Hot Avg 61.4 62.6

Loc2V 54.8 55.6

Twitter 56.9 57.8
Reddit 56.9 58.3
Campus-Website 55.8 57.8

Loc2V-Reddit 57.9 59.7
Reddit-Retrofit 55.2 56.5

Table 3: Macro F1 scores (%) on surface level sequence
tasks.

Task # Cls Inst % in minority class

Class Year 4 721 22.33
Gender 2 714 49.44
School 3 522 9.77
Sleep 2 729 41.02
GPA 2 729 38.13
All Depression 2 729 18.93
Major Depression 2 729 11.66

Table 4: Class balance for downstream tasks. Instances
are reported after filtering small classes.

dimensions.
We find that the text-based methods lead

to stronger performance, as compared to their
location-trajectory-based counterpart. This con-
firms that the superior encoding of functionality
discussed in Section 7.1 is still discernible with
aggregated sequence vectors.

Among all of our proposed methods, the con-
catenation of trajectory-embeddings and text-based
embeddings (Loc2V-Reddit) leads to the strongest
results on these tasks. The results on both tasks
are completely unmatched by the other methods,
indicating that the additional semantic information
from concatenation leads to stronger representa-
tions.

7.3 Downstream Tasks

We evaluate our embedding methods on the seven
downstream tasks introduced in Section 5.3: class
year, gender, school enrollment, sleep satisfaction,
GPA, all depression, and major depression. These
tasks were designed to demonstrate the utility of
various location representations in predicting a di-
verse set of attributes. The overall results for each
model are listed in Table 5; we use macro F1 score
as our metric. Table 4 shows the size of the mi-
nority class for each task. This imbalance and our

relatively small data size made it challenging to
achieve strong results on some tasks, although we
generally were able to improve upon the baselines.
Across all the tasks, predicting depression has the
most potential for real-world impact, but also show-
cases the most imbalanced data distribution. With
more data, we believe that patterns could be learned
in a more robust way.

For the task of school prediction, we greatly im-
prove upon the random baseline even though the
data is very imbalanced; this could be because this
attribute is clearly linked to where people go on
campus, as is class year. For example, freshmen
typically live in dorms and eat in dining halls, while
seniors often live off campus; computer science stu-
dents attend classes in different places than English
students. The strong performance on the gender
prediction task may be explained by the real-world
bias entailed in the school of enrollment; e.g., fewer
women are enrolled in engineering, so they are less
likely to visit engineering buildings. The strong
performance on predicting class year with one-hot
encodings can be directly linked to the surface level
task improvement: freshmen are more likely to visit
certain types of locations like dorms (functionality-
presence); performance is best among freshmen.

Among text-based methods, we see that the Red-
dit embeddings enable the best performance on
most downstream tasks. Reddit contains the most
expressive language compared to the other venues,
because its users are able to write at length with-
out a strict character limit or other formalities im-
posed by media such as Twitter. Furthermore, from
manually examining a sample of the posts, the
community seems to primarily encompass current
and former undergraduate students, therefore estab-
lishing a community that is above all else a place
for students to share and discuss their daily lives.
Meanwhile, the tweets that we link to locations
may encompass musings from faculty or visiting
scholars, and brief statements that are unrelated
to campus life. The campus website data is the
furthest from the student experience, as it is de-
void of any dynamic content, written in the dry
format of informational style. As a result, it seems
intuitive that Reddit, in addition to providing def-
initional information about locations (e.g., there
are many posts comparing and discussing dormi-
tories), also provides student’s emotional perspec-
tives on them. We hypothesize that this closeness
to student thoughts and feelings is what yields bet-
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Depression
Class Year Gender School Sleep GPA All Major

Random Baseline 25.0 50.0 30.0 50.0 49.0 45.0 41.0
One-Hot Avg 52.1 56.8 61.8 49.4 51.8 48.2 46.6

Loc2V 50.8 61.0 62.0 52.9 51.9 49.6 43.6

Twitter 49.4 57.4 65.4 49.3 51.9 48.5 44.8
Reddit 50.2 59.8 66.3 52.7 49.1 50.5 47.7
Campus-Website 48.8 58.1 60.1 46.4 51.9 49.4 42.9

Loc2V-Reddit 50.3 59.4 64.5 53.7 52.7 50.8 44.7
Reddit-Retrofit 50.2 60.8 66.0 52.6 47.7 48.7 39.6

Table 5: Macro F1 scores (%) on downstream tasks.

ter performance when predicting student attributes,
compared to the other text-based methods.

Overall, while results vary between different
tasks, we find that a method that accounts for both
physical location trajectories and text data describ-
ing locations (Loc2V-Reddit) has a strong overall
performance. Notably, it is the best performing
model on three tasks and achieves large improve-
ments over the supervised baseline on two addi-
tional tasks. Such a model should be considered in
future work on location embeddings because of its
robustness on varied tasks.

8 Conclusions

In this paper, we addressed the task of building and
probing location embeddings. We investigated sev-
eral strategies to construct them, as well as a suite
of probing tasks to understand the type of informa-
tion encoded within. First, we showed that while
all embedding methods encode both physical dis-
tance and functionality, methods using trajectories
yield better spatial representations and methods us-
ing text data better encode location functionality.
We showed that, like in the case of sentence embed-
dings from natural language, sequence embeddings
of location data are able to encode surface level
information (location-presence, and functionality-
presence), as well as information that can be effec-
tively used in downstream tasks. Overall, we found
that an embedding model that accounts for both
location trajectories and text related to locations
(Loc2V-Reddit) gives the best performance over a
diverse range of downstream tasks, from prediction
of depression or sleep to prediction of academic
area of study.

Importantly, we also found that embeddings
of locations tend to underperform more tradi-
tional one-hot encodings on surface-level tasks,

yet they generally outperform these representa-
tions on downstream tasks. This suggests that
while such embeddings do not explicitly record
distinct locations that people visit (thus being more
privacy preserving and counteracting negative ac-
tions like stalking), they may be more effective
for downstream applications that can yield positive
outcomes, such as population-level mental health
tracking or opt-in tracking for individuals who are
in therapy.

Our code is publicly available at http://lit.
eecs.umich.edu/downloads.html.
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