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Abstract

Predicting the quality of machine transla-
tion has traditionally been addressed with
language-specific models, under the assump-
tion that the quality label distribution or lin-
guistic features exhibit traits that are not
shared across languages. An obvious disadvan-
tage of this approach is the need for labelled
data for each given language pair. We chal-
lenge this assumption by exploring different
approaches to multilingual Quality Estimation
(QE), including using scores from translation
models. We show that these outperform single-
language models, particularly in less balanced
quality label distributions and low-resource
settings. In the extreme case of zero-shot QE,
we show that it is possible to accurately predict
quality for any given new language from mod-
els trained on other languages. Our findings
indicate that state-of-the-art neural QE models
based on powerful pre-trained representations
generalise well across languages, making them
more applicable in real-world settings.

1 Introduction

Quality Estimation (QE) (Blatz et al., 2004a; Spe-
cia et al., 2009) is the task of predicting the quality
of an automatically generated translation at test
time, when no reference translation is available for
comparison. Instead of reference translations, QE
turns to explicit quality indicators that are either
provided by the Machine Translation (MT) system
itself (the so-called glass-box features) or extracted
from both the source and the target texts (the so-
called black-box features) (Specia et al., 2018b).

In the current QE approaches, black-box fea-
tures are learned representations extracted by fine-
tuning pre-trained multilingual or cross-lingual sen-
tence encoders such as BERT (Devlin et al., 2018),
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XLM-R (Conneau et al., 2019) or LASER (Artetxe
and Schwenk, 2019). These supervised approaches
have led to the state-of-the-art (SOTA) results in
this task (Kepler et al., 2019; Fonseca et al., 2019),
similarly to what has been observed for a myriad
of other downstream natural language processing
applications that rely on cross-lingual sentence sim-
ilarity. Glass-box features are usually obtained by
extracting various types of information from the
MT system, e.g. lexical probability or language
model probability in the case of statistical MT sys-
tems (Blatz et al., 2004b), or more recently softmax
probability and attention weights from neural MT
models (Fomicheva et al., 2020). Glass-box ap-
proach is potentially useful for low resource or zero-
shot scenarios as it does not require large amounts
of labelled data for training, but it does not perform
as well as SOTA supervised models.

QE is therefore generally framed as a supervised
machine learning problem, with models trained
on data labelled for quality for each language pair.
Training data publicly available to build QE models
is constrained to very few languages, which has
made it difficult to assess how well QE models
generalise across languages. Therefore QE work
to date has been addressed as a language-specific
task.

The recent availability of multilingual QE data
in a diverse set of language pairs (see Section 4.1)
has made it possible to explore the multilingual
potential of the QE task and SOTA models. In this
paper, we posit that it is possible and beneficial to
extend SOTA models to frame QE as a language-
independent task.

We further explore the role of in-language super-
vision in comparison to supervision coming from
other languages in a multi-task setting. Finally,
we propose for the first time to model QE as a
zero-shot cross-lingual transfer task, enabling new
avenues of research in which multilingual models
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can be trained once and then serve a multitude of
languages.

The main contributions of this paper are: (i)
we propose new multi-task learning approaches
for multilingual QE (Section 3); (ii) we show that
multilingual system outperforms single language
ones (Section 5.1.1), especially in low-resource and
less balanced label distribution settings (Section
5.1.3), and – counter-intuitively – that sharing a
source or target language with the test case does
not prove beneficial (Section 5.1.2); and (iii) we
study black-box and glass-box QE in a multilingual
setting and show that zero-shot QE is possible for
both (Section 5.1.3 and 5.2).

2 Related Work

QE Early QE models were trained upon a set of
explicit features expressing either the confidence
of the MT system, the complexity of the source
sentence, the fluency of the translation in the target
language or its adequacy with regard to the source
sentence (Specia et al., 2018b). Current SOTA
models are learnt with the use of neural networks
(NN) (Specia et al., 2018a; Fonseca et al., 2019).
The assumption is that representations learned can,
to some extent, account for source complexity, tar-
get fluency and source-target adequacy. These are
fine-tuned from pre-trained word representations
extracted using multilingual or cross-lingual sen-
tence encoders such as BERT (Devlin et al., 2018),
XLM-R (Conneau et al., 2019) or LASER (Artetxe
and Schwenk, 2019).

Kim et al. (2017) propose the first breakthrough
in neural-based QE with the Predictor-Estimator
modular architecture. The Predictor model is an
encoder-decoder Recurrent Neural Network (RNN)
model trained on a huge amount of parallel data
for a word prediction task. Its output is fed to the
Estimator, a unidirectional RNN trained on QE
data, to produce the quality estimates. Kepler et al.
(2019) use a similar architecture where the Predic-
tor model is replaced by pretrained contextualised
word representations such as BERT (Devlin et al.,
2018) or XLM-R (Conneau et al., 2019). Despite
achieving strong performances, such models are
resource heavy and need to be fine-tuned for each
language-pair under consideration.

In a very different approach, Fomicheva et al.
(2020) propose exploiting information provided
by the NMT system itself. By exploring uncer-
tainty quantification methods, they show that the

confidence with which the NMT system produces
its translation correlates well with its quality. Al-
though not performing as well as SOTA supervised
models, their approach has the main advantage to
be unsupervised and not rely on labelled data.

Multilinguality Multilinguality allows training
a single model to perform a task from and to mul-
tiple languages. This principle has been success-
fully applied to NMT (Dong et al., 2015; Firat
et al., 2016b,a; Nguyen and Chiang, 2017). Aha-
roni et al. (2019) stretches this approach by translat-
ing up to 102 languages from and to English using
a Transformer model (Vaswani et al., 2017). They
show that multilingual many-to-many models are
effective in low resource settings. Multilinguality
also allows for zero-shot translation (Johnson et al.,
2017). With a simple encoder-decoder architec-
ture and without explicit bridging between source
and target languages, they show that their model is
able to build a form of inter-lingual representation
between all involved language pairs.

Shah and Specia (2016) is the only work in QE
that attempted to explore models for more than one
language. They use multitask learning with annota-
tors or languages as multiple tasks. In a traditional
black-box feature-based approach with Gaussian
Processes as learning algorithm, their results sug-
gest that adequately modelling the additional data
is as important as the additional data itself. The
multilingual models led to marginal improvements
over bilingual ones. In addition, the experiments
were only conducted with English translation into
two closely related languages (French and Span-
ish).

3 Multilingual QE

In this section, we describe the QE models we
propose and experiment with. They build upon pre-
trained representations and represent the SOTA in
QE, as we will show in Section 5.

Pre-trained contextualised representations
such as BERT (Devlin et al., 2018) and XLM-R
(Conneau et al., 2019) are deep contextualised
language models based on the transformer
neural architecture (Vaswani et al., 2017). These
models are pre-trained on a large amount of
texts in multiple languages and optimised with
self-supervised loss functions. They use shared
subword vocabularies that directly support more
than a hundred languages without the need for
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Figure 1: Baseline QE model.

any language-specific pre-processing. We explore
QE models built on top of XLM-R, a pre-trained
contextualised language model that achieves SOTA
performance on multiple benchmark datasets.

Baseline QE model (BASE) Given a source sen-
tence sX in language X and a target sentence sY

in language Y , we model the QE function f by
stacking a 2-layer multilayer perceptron (MLP) on
the vector representation of the [CLS] token from
XLM-R:

f(sX , sY ) =W2 ·ReLU(

W1 · Ecls(s
X , sY ) + b1

) + b2

(1)

where W2 ∈ R1×4096, b2 ∈ R, W1 ∈ R4096×1024

and b1 ∈ R4096. Ecls is a function that extracts
the vector representation of the [CLS] token af-
ter encoding the concatenation of sX and sY with
XLM-R and ReLU is the Rectified Linear Unit acti-
vation function. We explore two training strategies:
The bilingual (BL) strategy trains a QE model for
every language pair while the multilingual (ML)
strategy trains a single multilingual QE model for
all language pairs, where the training data is sim-
ply pooled together without any language identifier.
We note that this multilingual model here corre-
sponds to a pooled, single-task learning approach.

Multi-task Learning QE Model (MTL) Multi-
task learning has shown promising results in dif-
ferent NLP tasks (Ruder, 2017). Here, we want to
explore whether having parameter sharing across
languages is beneficial, and to what extent hav-
ing language-specific predictors can boost perfor-
mance. Therefore, we experiment with a sim-
ple multi-task approach where we concurrently
optimise multiple QE BASE models that use a
language-specific (LS) training strategy. To allow
for testing in zero-shot conditions, we also train

Figure 2: Multi-task learning QE model (MTL) with a
shared XLM-R encoder.

a language-agnostic (LA) component, which re-
ceives sampled data from every language. We refer
to these two models as MTL-LA and MTL-LS.
As seen in Figure 2, the MTL-LS submodels and
MTL-LA submodel share a common XLM-R en-
coder, while each submodel has its own dedicated
language-specific MLP. The intuition of this ap-
proach is that it can result in improved learning
efficiency and prediction accuracy by exploiting
the similarities and differences in the QE tasks for
different language directions (Thrun, 1996; Bax-
ter, 2000). At training time, we iterate through
the MTL-LS submodels in a round-robin fashion
and alternate between training the MTL-LA sub-
model and training the chosen MTL-LS submodel.
At test time, we can evaluate a test set with either
the MTL-LA submodel or the MTL-LS submodel
trained on the same language pair as the test set.

4 Experimental Setup

4.1 QE Dataset

We use the official data from the WMT 2020 QE
Shared Task 11. This dataset contains sentences
extracted from Wikipedia (Fomicheva et al., 2020)
and Reddit for Ru-En, translated to and from En-
glish for a total of 7 language pairs. The lan-
guage pairs are divided into 3 categories: the
high-resource English–German (En-De), English–
Chinese (En-Zh) and Russian–English (Ru-En)
pairs; the medium-resource Romanian–English
(Ro-En) and Estonian–English (Et-En) pairs; and

1http://statmt.org/wmt20/
quality-estimation-task.html

http://statmt.org/wmt20/quality-estimation-task.html
http://statmt.org/wmt20/quality-estimation-task.html
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the low-resource Sinhala–English (Si-En) and
Nepali–English (Ne-En) pairs. Each translation
was produced with SOTA transformer-based NMT
models and manually annotated for quality using
an annotation scheme inspired by the Direct Assess-
ment (DA) methodology proposed by Graham et al.
(2013). Specifically, translations were annotated
on a 0-100 scale, where the 0-10 range represents
an incorrect translation; 11-29, a translation with
few correct keywords, but the overall meaning is
different from the source; 30-50, a translation with
major mistakes; 51-69, a translation which is un-
derstandable and conveys the overall meaning of
the source but contains typos or grammatical er-
rors; 70-90, a translation that closely preserves the
semantics of the source sentence; and 90-100, a
perfect translation. Figure 3 shows the distribution
of DA scores for the different language pairs.

Figure 3: Distribution of DA judgments for different
language pairs.

4.2 Settings

We train and test our models in the following con-
ditions:

Data splits we use the training and development
sets provided for the WMT2020 shared task on
QE.2 Since the test set is not publicly available, we
further split the 7,000-instance training set for each
language pair by using the first 6,000 instances
for training and the last 1,000 instances for devel-
opment, and report results on the official (1,000)
development set.

Training details We optimise our models with
Adam (Kingma and Ba, 2015) and use the same

2http://www.statmt.org/wmt20/
quality-estimation-task.html

learning rate (1e−6) for all experiments. We use
a batch size of 8 and train on Nvidia V100 GPUs
for 20 epochs. Each model is trained 5 times with
different random seeds.

Evaluation All results in this paper are in terms
of the average Pearson’s correlation for predicted
QE scores against gold QE scores over the 5 differ-
ent runs. Pearson correlation is the standard metric
for this task, but we also compute error using Root
Mean Squared Error (RMSE) (see Appendix).

5 Results

In what follows, we pose and discuss various hy-
potheses on multilinguality for QE. First we focus
on our black-box approach from Section 3 (Section
5.1). Second, we examine the behavior of a glass-
box approach which does not directly model the
source and target texts in multilingual settings (Sec-
tion 5.2). In all cases, we define TrainL as the set
of language pairs used for training the QE model,
and TestL as the set of language pairs used at test
time.

5.1 Black-box QE Approach

5.1.1 Multilingual models are better than
bilingual models

As we can see from the results in Table 13, the aver-
age Pearson’s correlation scores of the multilingual
models are always higher the bilingual ones, in
some cases by a large margin. This is particularly
true for En-De where the best BL model performs
at Pearson’s correlation of 0.39, while both BASE-
ML and MTL-LA achieve 0.47, which is a 20.5%
relative improvement over the best BL model. Fur-
thermore, the average score of Base-ML across all
TestL is 0.69, 0.03 (4.5%) higher than the average
score (0.66) of the best BASE-BL scores across all
TestL (diagonal in the top part of Table 1). The
results clearly show that multilingual models gen-
erally outperform bilingual models, even when the
latter are optimised individually for different TestL.
An interesting observation in Table 1 is that some
BASE-BL models trained on different TrainL than
TestL can perform almost as well as the models
trained on the same TrainL as TestL. For example,

3The best results for BASE-BL are underlined and bold
marks the best results across all models. Significant improve-
ments over BASE BL are marked with *. We use the Hotelling-
Williams test for dependent correlations to compute signifi-
cance of the difference between correlations (Williams, 1959)
with p-value < 0.05.

http://www.statmt.org/wmt20/quality-estimation-task.html
http://www.statmt.org/wmt20/quality-estimation-task.html
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Model Strategy TrainL TestL

En-De En-Zh Et-En Ro-En Si-En Ne-En Ru-En Avg

BASE BL

En-De 0.39 (-0.17) (-0.39) (-0.51) (-0.32) (-0.51) (-0.35) 0.34
En-Zh (-0.02) 0.47 (-0.19) (-0.36) (-0.16) (-0.24) (-0.17) 0.50
Et-En (-0.10) (-0.08) 0.75 (-0.20) (-0.07) (-0.10) (-0.08) 0.57
Ro-En (-0.10) (-0.14) (-0.02) 0.89 (-0.02) (-0.04) (-0.08) 0.60
Si-En (-0.13) (-0.13) (-0.08) (-0.15) 0.66 (-0.05) (-0.07) 0.57
Ne-En (-0.10) (-0.11) (-0.06) (-0.08) (-0.01) 0.77 (-0.08) 0.60
Ru-En (-0.04) (-0.09) (-0.19) (-0.26) (-0.11) (-0.16) 0.70 0.54

ML All 0.47* 0.49 0.78* 0.89 0.70* 0.78 0.73 0.69

MTL

LS All 0.45 0.48 0.77 0.89 0.66 0.79 0.72 0.68
LA All 0.47* 0.49 0.76 0.89 0.66 0.78 0.72 0.68

LS En-* 0.41 0.46 - - - - - -
LA En-* 0.45 0.46 - - - - - -

LS *-En - - 0.78* 0.90 0.69 0.79 0.73 -
LA *-En - - 0.78* 0.89 0.69 0.78 0.73 -

‡ BERT-BiRNN (Fomicheva et al., 2020) 0.27 0.37 0.64 0.76 0.47 0.55 - -
‡WMT20 QE Shared Task 1 Leaderboard (June 2020) 0.47 0.48 0.79 0.90 0.65 0.79 0.78 0.69

Table 1: Results for BASE and MTL QE models. We train different BASE-BL models for every language pair
and a single BASE-ML model on all language pairs. We also train a single MTL QE model consists of multiple
MTL-LS and MTL-LA submodels. For each TestL, we evaluate it with the MTL-LS submodel trained on the same
language pair. We bold the best results across all models. Significant improvements over BASE BL are marked
with *. ‡ identifies systems trained on the full 7,000-instance training set with performances reported on the official
test set of the WMT’20 QE Shared Task 1 (https://competitions.codalab.org/competitions/24447),
which we assume to come from the same distribution as the dev set.

a BASE-BL model trained on En-Zh and tested on
En-De performs at average Pearson’s correlation
of 0.37, which is only 0.02 below the best result.
We hypothesize that XLM-R might be capturing
certain traits in TrainL that can generalise well to
other TestL, i.e. the complexity of source sentences
or the fluency of the target sentences (Sun et al.,
2020).

5.1.2 There is little benefit from specialisation

Here we investigate whether having specialised
language-specific sub-models which can benefit
from the shared supervision from other languages
while keeping their focus on a language-specific
task can help to improve performance. Further-
more, it is possible that multi-task learning works
better when language pairs share certain charac-
teristics. Therefore, we also investigate whether
combining language pairs that share either source
or target languages can be more beneficial. For
that, we use the MTL models but with a reduced
set of languages.

From the results in Table 1, we observe that
language-specialised predictors do not help im-
prove performance. There is no clear advantage in
using the multi-task learning QE approach (MTL-

LS and MTL-LA) where each language pair is
treated as a separate task; over the simple single-
task multi-lingual learning approach (BASE-ML),
despite the former having more parameters and
language-specific MLP layers.

In the table, we compare MTL models trained
on language pairs that share the source language
(En-*) or the target language (*-En) against MTL
models trained on all languages (All). As we can
see from the results, the MTL model trained on En-
* perform worse than the MTL model trained on all
language pairs. In contrast, the MTL model trained
on *-En performs a little bit better than the MTL
model trained on all language pairs on 4 out of the
5 language pairs and is comparable to Base-ML on
those language directions.

5.1.3 Multilingual models help zero- and
few-shot QE

To test whether a multilingual model for QE can
generalise beyond the language pairs observed dur-
ing training, we also conduct experiments vary-
ing amounts of in-language data (i.e. 0% –zero-
shot, 5%, 10%, 25%, 50%, 75% and 100%). We
build and compare BASE-BL and BASE-ML mod-
els. We train BASE-BL models only on the sub-

https://competitions.codalab.org/competitions/24447
https://competitions.codalab.org/competitions/24447
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TestL

% in-lang Model Strategy En-De En-Zh Et-En Ro-En Si-En Ne-En Ru-En Avg

0 BASE ML 0.45 0.42 0.75 0.80 0.68 0.76 0.68 0.65

5 BASE BL 0.13 0.39 0.65 0.70 0.58 0.63 0.63 0.53
ML 0.38 0.44 0.74 0.85 0.67 0.76 0.71 0.65

10 BASE BL 0.24 0.43 0.69 0.85 0.56 0.68 0.64 0.58
ML 0.37 0.46 0.75 0.87 0.64 0.77 0.71 0.65

25 BASE BL 0.27 0.45 0.70 0.87 0.61 0.72 0.70 0.62
ML 0.40 0.46 0.75 0.88 0.66 0.76 0.71 0.66

50 BASE BL 0.33 0.47 0.74 0.88 0.62 0.74 0.69 0.64
ML 0.41 0.48 0.76 0.89 0.69 0.77 0.72 0.67

75 BASE BL 0.39 0.47 0.75 0.88 0.64 0.76 0.70 0.66
ML 0.46 0.49 0.78 0.89 0.70 0.78 0.71 0.69

100 BASE BL 0.39 0.47 0.75 0.89 0.66 0.77 0.70 0.66
ML 0.47 0.49 0.78 0.89 0.70 0.78 0.73 0.69

Table 2: Results of BASE QE models for different portions of training data (%data). For BASE-ML, we train
the models on subsampled training data in the test language pair and all training data in other language pairs. For
BASE-BL, we train the models on only subsampled training data in the test language pair. We underline the best
results for each %data setting.

sampled in-language training data and train BASE-
ML on both sub-sampled in-language training data
and all training data in other language pairs. In
other words, we want to know whether multilin-
gual QE helps if we have limited or no training
data in our desired test language pair. Results are
shown in Table 2. For ease of visualisation, we
also plot the Pearson’s correlation results against
the percentage of in-language training data in Fig-
ure 4. As seen in Table 2, the multilingual model
performs better than the bilingual models on all
language pairs for every configuration of training
data. Moreover, in 3 out of 7 cases, the zero-shot
models perform better than the fully-trained bilin-
gual models. This provides strong evidence that
the QE task can be solved in a multilingual way,
without loss of performance compared to bilingual
performance. It also shows strong evidence for the
zero-shot applicability of our models.

5.2 Glass-box QE Approach

Having pre-trained representations can help build
state-of-the-art multilingual systems. However,
these representations are costly to compute in prac-
tice, which limits their applicability for building
QE systems for real-time scenarios. Glass-box ap-
proaches to QE extract information from the NMT
system itself to predict quality, without directly re-
lying on the source and target text or using any ex-
ternal resources. To test how well this information
can generalise across different languages, we lever-
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Figure 4: Results of BASE QE models for various zero-
shot and few-shot cross-lingual transfer settings. The
solid lines represent the BASE ML models while the
dashed lines are the BASE BL models.

age existing work on glass-box QE by Fomicheva
et al. (2020) that explores NMT output distribution
to capture predictive uncertainty as a proxy for MT
quality. We use the following 5 best-performing
glass-box indicators from their work:

• Average NMT log-probability of the trans-
lated sentence;

• Variance of word-level log-probabilities;

• Entropy of NMT softmax output distribution;

• NMT log-probability of translations generated
with Monte Carlo dropout (Gal and Ghahra-
mani, 2016);4

4This method consists in performing several forward
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TrainL TestL
En-De En-Zh Et-En Ro-En Si-En Ne-En

En-De 0.24 (-0.25) (-0.36) (-0.22) (-0.24) (-0.32)

En-Zh (+0.08) 0.44 (-0.05) (-0.04) (-0.03) (-0.08)

Et-En (+0.07) (-0.03) 0.61 (-0.02) (-0.02) (-0.06)

Ro-En (+0.05) (-0.05) (-0.03) 0.76 (-0.02) (-0.06)

Si-En (+0.06) (-0.04) (-0.04) (-0.03) 0.54 (-0.03)

Ne-En (-0.00) (-0.09) (-0.09) (-0.09) (-0.04) 0.58

All langs 0.32 0.44 0.60 0.75 0.55 0.56

Best feature 0.26 0.32 0.64 0.69 0.51 0.60

Table 3: Pearson correlation for regression models based on glass-box features trained on each language pair and
evaluated either on the same language pair or other language pairs. For testing on a different language pair we
report the difference in Pearson correlation with respect to training and testing on the same language pair. For
comparison we show the correlation individual best performing feature with no learning involved.

• Lexical similarity between MT hypotheses
generated with Monte Carlo dropout.

We train an XGboost regression model (Chen
and Guestrin, 2016)5 to combine these features to
predict DA judgments and test the performance
of the model in multilingual settings. Table 3
shows Pearson correlation for the regression mod-
els trained on each language pair and evaluated
either on the same language pair or other language
pairs.6 The ’All langs’ row indicates the results
when training on all language pairs, whereas ’Best
feature’ indicates the correlation obtained by the
best performing feature individually. Comparing
these results to the results for pre-trained represen-
tations in Table 1 we can make three observations.

5.2.1 Glass-box features are more
comparable across languages

First, although the correlation is generally lower
for the glass-box approach, performance degrada-
tion when testing on different language pairs is
smaller. For all language pairs except English-
German, we observe a relatively small decrease
in performance (up to 0.09) when training and test
language pairs are different. This suggests that the
indicators extracted from the NMT model are more

passes through the network, collecting posterior probabili-
ties generated by the model with parameters perturbed by
dropout and using the resulting distribution to approximate
model uncertainty.

5We chose a regression model over an NN given the
smaller number of features available.

6These experiments do not include Russian-English, as
the corresponding NMT system is an ensemble and it is not
evident how the glass-box features proposed by Fomicheva
et al. (2020) should be extracted in this case.

comparable across languages than input features
from pre-trained representations.

We note that the NMT systems in MLQE dataset
were all based on Transformer architecture but
trained using different amount of data and have
different overall output quality. Interestingly, the
results of this experiment indicate that glass-box
information extracted from these systems could
be language-independent. More experiments are
needed to confirm if this observation can be extrap-
olated to other datasets, language pairs, domains
and MT systems.

5.2.2 Multilingual gains are limited by
learning algorithm

Second, by contrast to the results in Table 1 where
multilingual training brings significant improve-
ments, we do not see any gains in performance
from training with all available data. The rea-
son could be that training a regression model
with a small number of features does not require
large amounts of training data, and therefore per-
formance does not improve with additional data.
English-German is an exception with a large gain
in correlation when training on all language pairs.

5.2.3 The output label distribution matters
Finally, similarly to the black-box approach in Ta-
ble 1, the performance for English-German benefits
from using the data from other language pairs for
training. This indicates that the results are affected
by factors that are independent of the approach
used for prediction. To better understand these
results we look at the distribution of NMT log-
probabilities (Figure 5) and the distribution of DA
scores (Figure 3).
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Figure 5: Distribution of NMT log-probabilities for dif-
ferent language pairs

While log-probability distributions are compara-
ble across language pairs, the distributions of DA
scores are very different. We suggest, therefore,
that the decrease in performance when testing on
a different language is related to a higher extent to
the shift in the output distribution across languages
(i.e. DA judgments) than to the shift in the input
features. This also explains the difficulty for train-
ing and predicting on English-German data where
the distribution of DA scores is highly skewed with
minimal variability in the quality range.

6 Discussion and Conclusions

From our various experiments, one setting that
stood out is that of English-German. We suggest
that the difficulty for predicting quality for this
language pair was exacerbated by the metric used
for evaluation. Because of its sample-dependence,
Pearson correlation can be more sensitive to the out-
put distribution. In contrast, an error-based metric
like RMSE will be less sensitive to these variations.
To illustrate these effects, in Figure 6, we show
the hierarchical clustering of language directions
obtained by using the metric value from training
on one direction and testing on another one as a
notion of distance. In subfigure (a), we observe
the clusters based on Pearson correlation as shown
in Table 1. In subfigure (b), we observe the same
clustering done based on RMSE. It should be noted
that in the former, En-De is a clear outlier, whereas
in the latter, we have a clustering that is more con-
sistent with the general maturity of the language
pairs: Ne-En and Si-En are low resource, Ro-En
and Et-En are medium resource, etc.

We explored the use of multilingual contextual

(a) Pearson correlation

(b) RMSE

Figure 6: Language hierarchical clustering according
to the results of training on one language and testing on
another. In subfigure (a) we plot the clustering based
on Pearson correlation. In subfigure (b) we plot the
same clustering based on RMSE. The y axis denotes
the distance between language pairs according to each
evaluation.

representations to build state-of-the-art multilin-
gual QE models. From our experiments, we ob-
served that: 1) multilingual systems are always
better than bilingual systems; 2) having multi-task
models, which share parts of the model across lan-
guages and specialise others, does not necessarily
yield better results; and 3) multilingual systems
for QE generalise well across languages and are
powerful even in zero-shot scenarios. We also con-
trasted the use of pre-trained representations which
are costly to obtain, to the use of glass-box features
which can be extracted from the NMT system. We
observed that glass-box features are very compa-
rable across languages, and training multilingual
systems with them adds little value. Finally, we
observed that the distribution of the output labels
matters for the evaluation of QE.
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Appendix

For completeness, Tables 4 and 5 report RMSE
scores for our main experiments.
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Model Strategy TrainL TestL

En-De En-Zh Et-En Ro-En Si-En Ne-En Ru-En Avg

BASE BL

En-De 0.71 0.72 0.86 0.92 0.79 0.82 0.88 0.81
En-Zh 0.85 0.69 0.75 0.85 0.75 0.83 0.82 0.79
Et-En 0.76 0.69 0.59 0.71 0.78 0.91 0.74 0.74
Ro-En 0.93 0.77 0.61 0.48 0.82 1.01 0.79 0.77
Si-En 1.01 0.79 0.89 0.94 0.64 0.61 0.87 0.82
Ne-En 1.13 0.84 1.10 1.16 0.79 0.57 1.05 0.95
Ru-En 0.83 0.66 0.78 0.87 0.73 0.73 0.67 0.75

ML All 0.68 0.65 0.55 0.44 0.59 0.53 0.65 0.58

MTL

LS All 0.69 0.64 0.56 0.45 0.62 0.54 0.66 0.59
LA All 0.68 0.64 0.57 0.44 0.61 0.54 0.66 0.59

LS En-* 0.71 0.70 - - - - - -
LA En-* 0.69 0.68 - - - - - -

LS *-En - - 0.56 0.46 0.60 0.55 0.64 -
LA *-En - - 0.56 0.46 0.61 0.54 0.66 -

Table 4: RMSE for BASE and MTL QE models. We underline the best RMSE for BASE-BL and bold the best
RMSE across all models.

TestL

%data Model Strategy En-De En-Zh Et-En Ro-En Si-En Ne-En Ru-En Avg

0 BASE ML 0.74 0.65 0.64 0.65 0.61 0.84 0.72 0.69

5 BASE BL 0.74 0.70 0.72 0.75 0.76 0.76 0.74 0.74
ML 0.77 0.74 0.62 0.56 0.73 0.62 0.71 0.68

10 BASE BL 0.74 0.70 0.71 0.59 0.74 0.71 0.75 0.71
ML 0.77 0.72 0.62 0.54 0.73 0.64 0.70 0.67

25 BASE BL 0.77 0.70 0.65 0.54 0.74 0.70 0.71 0.69
ML 0.72 0.71 0.61 0.49 0.69 0.64 0.70 0.65

50 BASE BL 0.73 0.72 0.60 0.52 0.68 0.62 0.71 0.65
ML 0.69 0.68 0.59 0.47 0.65 0.59 0.67 0.62

75 BASE BL 0.71 0.70 0.59 0.48 0.65 0.61 0.68 0.63
ML 0.67 0.65 0.55 0.45 0.62 0.54 0.67 0.59

100 BASE BL 0.72 0.68 0.57 0.47 0.64 0.56 0.68 0.62
ML 0.68 0.66 0.56 0.44 0.60 0.54 0.65 0.59

Table 5: RMSE of BASE QE models for different portions of training data (%data). We underline the best RMSE
for each %data setting.


