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Abstract

This paper presents a new dataset, B-SHARP,
that can be used to develop NLP models for the
detection of Mild Cognitive Impairment (MCI)
known as an early sign of Alzheimer’s disease.
Our dataset contains 1-2 min speech segments
from 326 human subjects for 3 topics, (1) daily
activity, (2) room environment, and (3) picture
description, and their transcripts so that a total
of 650 speech segments are collected. Given
the B-SHARP dataset, several hierarchical text
classification models are developed that jointly
learn combinatory features across all 3 topics.
The best performance of 74.1% is achieved by
an ensemble model that adapts 3 types of trans-
former encoders. To the best of our knowledge,
this is the first work that builds deep learning-
based text classification models on multiple
contents for the detection of MCI.

1 Introduction

Alzheimer’s Disease (AD) is a progressive neurode-
generative disorder that is associated with memory
loss and declines in major brain functions including
semantic and pragmatic levels of language process-
ing (Vestal et al., 2006; Ferris and Farlow, 2013).
Traditional cognitive assessments such as positron
emission tomography or cerebrospinal fluid analy-
sis are expensive and time-consuming (Fyffe et al.,
2011). This may cause delay in treating AD, known
to be irreversible and incurable (Korczyn, 2012),
and put an increasing pressure on public health, es-
pecially for seniors whose life expectancy is rapidly
growing yet are more likely to develop AD. Thus, it
is crucial to find a more intelligent way of detecting
AD in the earliest stage possible (Karr et al., 2018).

Mild Cognitive Impairment (MCI) is considered
the first phase that patients start having biomarker
evidence of brain changes that can eventually lead
to AD (Albert et al., 2011). MCI involves subtle
language changes from impairment in reasoning

that may not be noticeable to people other than
friends and relatives. Because of this, the detec-
tion of MCI is a much more challenging task than
detecting dementia (Suzman and Beard, 2011). Re-
cent studies in NLP have shown that it is possible
to detect early stages of AD by analyzing patients’
language patterns; however, most previous works
have focused on the detection of dementia instead
and researches tackling the detection of MCI have
been based on relatively small datasets (Section 2).

This paper presents a new dataset that comprises
three types of speech segments from both normal
controls and MCI patients (Section 3). Then, a
hierarchical text classification model is proposed,
which jointly learns features from all three types
of speech segments to determine whether or not
each subject has MCI (Section 4). Individual and
ensemble models using three types of transformer
encoders are evaluated on our dataset and show that
different transformer encoders reveal strengths in
distinct types of speeches (Section 5). We believe
that this work takes the initiative of deep learning-
based NLP for detecting MCI that will be broadly
beneficial to global public health.

2 Related Work

Only few studies have tackled the detection of MCI
using NLP.1 Asgari et al. (2017) conducted inter-
views with (27C, 14M), and developed SVM and
random forest models on their transcribed speeches.
Beltrami et al. (2018) conducted three speech tasks
with (48C, 32M, 16D), and analyzed phonetic and
linguistic features of their speeches and transcripts.
Fraser et al. (2019) conducted 3 language tasks with
(29C, 26M), and built a cascade model to learn mul-
timodal features such as audio, text, eye-tracking.
Gosztolya et al. (2019) conducted question answer-

1#C: the number of normal controls,
#M/D/A: the number of MCI / Dementia / AD patients.
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Tokens Sentences Nouns Verbs Conjuncts Complex Discourse

Q1
Control 186.6 (±60.4) 10.4 (±4.5) 28.1 (±9.6) 30.4 (±11.5) 8.5 (±4.5) 2.3 (±1.7) 8.1 (±5.4)

MCI 175.6 (±54.5) 9.8 (±4.1) 23.7 (±8.3) 29.3 (±10.4) 8.5 (±4.2) 2.0 (±1.6) 9.2 (±6.0)

Q2
Control 191.5 (±11.8) 11.7 (±4.7) 41.1 (±13.3) 24.3 (±11.2) 6.6 (±4.5) 3.6 (±2.7) 7.1 (±4.8)

MCI 178.6 (±11.7) 11.6 (±4.7) 36.7 (±12.1) 23.2 (±10.6) 6.4 (±4.4) 2.9 (±2.3) 8.4 (±5.3)

Q3
Control 193.4 (±63.4) 12.6 (±5.4) 39.5 (±13.5) 28.4 (±10.1) 8.0 (±4.8) 3.3 (±2.1) 6.1 (±5.5)

MCI 187.8 (±63.4) 12.7 (±5.1) 36.2 (±13.2) 27.7 (±10.9) 7.2 (±4.2) 2.6 (±2.0) 7.3 (±5.5)

All
Control 578.1 (±149.8) 34.5 (±10.7) 110.5 (±27.9) 84.2 (±25.4) 23.5 (±10.1) 9.3 (±4.5) 21.4 (±13.0)

MCI 548.7 (±140.6) 34.0 (±10.5) 98.1 (±26.1) 81.2 (±24.1) 22.5 (±9.7) 7.7 (±4.2) 25.3 (±15.0)
p 0.0110 0.5541 < 0.0001 0.1277 0.2046 < 0.0001 0.0006

Table 1: Average counts and their standard deviations of linguistic features per transcript in the B-SHARP dataset.
Complex: occurrences of complex structures (e.g., relative clauses, non-finite clauses), Discourse: occurrences of
discourse elements (e.g., interjections, disfluency).

ing sessions with (25C, 25M, 25A), and trained a
SVM model using acoustic and linguistic features.
All of the previous works were based on fewer than
100 subjects using traditional linguistic features to
develop NLP models, compared to our work that
is based on 326 subjects and 650 recordings using
the latest transformer-based deep neural models.

The task of dementia detection has been more ex-
plored by the NLP community. Becker et al. (1994)
presented the DementiaBank, that consists of 552
audio recordings describing the picture called “The
Boston Cookie Theft” from 99 normal controls and
194 dementia patients, that have been used by the
following works. Orimaye et al. (2016) presented
deep-deep neural network language models using
higher-order n-grams and skip-grams. Pou-Prom
and Rudzicz (2018) leveraged linguistic features
and multiview embeddings by applying generalized
canonical correlation analysis. Karleka et al. (2018)
proposed a model based on convolutional and re-
current neural networks and gave interpretations of
this model to explain linguistic characteristics for
detecting dementia. Our work is distinguished as:

• We tackle the detection of MCI, not dementia,

• Our documents are multi-contents compared to
single-content documents in the DementiaBank.

• Our approach is based on the latest contextual-
ized embeddings compared to the distributional
embeddings adapted by the previous works.

3 Dataset

3.1 B-SHARP
Our work is based on data collected as part of the
Brain, Stress, Hypertension, and Aging Research
Program (B-SHARP).2 In this dataset, 185 normal
2B-SHARP: http://medicine.emory.edu/bsharp

controls and 141 MCI patients are selected based
on neuropsychological and clinical assessments.
Every subject has been examined with multiple
cognitive tests including the Montreal Cognitive
Assessment (MoCA; Nasreddine et al. 2005) and
the Boston Naming Test (BNT; Kaplan et al. 1983),
followed by a speech task protocol for recording.
51.5% and 23.9% of the subjects have so far come
back for their 2nd and 3rd visits to take new voice
recordings, respectively. B-SHARP is an ongoing
program; recordings of 20-25 subjects are taken
every month; thus, the data is still growing.

Sbj 2nd 3rd Rec MoCA BNT
C 185 100 50 385 26.2 (±2.6) 14.2 (±1.2)
M 141 68 28 265 21.5 (±3.5) 13.4 (±1.5)
Σ 326 168 78 650 24.2 (±3.8) 13.9 (±1.4)

Table 2: Statistics of control (C) and MCI (M) groups.
Sbj: # of subjects, 2nd/3rd: # of subjects who made the
2nd/3rd visits, Rec: # of voice recordings, MoCA/BNT:
average scores and stdevs from MoCA/BNT. Note that
subjects with the 2nd/3rd visits take one/two additional
recordings; thus, Rec = Sbj + 1·(2nd) + 2·(3rd).

Table 2 shows the statistics of the control and the
MCI groups in B-SHARP. Note that when subjects
make multiple visits, there is a year gap in between
so that subjects generally do not remember so much
from their previous visits. Thus, speeches from the
same subject are not necessarily more similar than
ones from the other subjects. In fact, most speeches
across subjects, regardless of their groups, are very
similar when they are transcribed since all subjects
follow the same speech protocol in Section 3.2.3

3.2 Speech Task Protocol

A speech task protocol has been conducted to col-
lect recordings of both control and MCI subjects

3A.3 compares B-SHARP with the DementiaBank in details.

http://medicine.emory.edu/bsharp
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Figure 1: Overview of hierarchical transformer to combine content features from the three types of speech tasks.

who are asked to speak about Q1: daily activity, Q2:
room environment, and Q3: picture description for
1-2 minutes each. All subjects are provided with
the same instructions in A.2, and visual abilities of
the subjects are confirmed before recording. To re-
duce potential variance, the subjects are guided to
follow similar activities before Q1, located to sim-
ilar room settings before Q2, and shown the same
picture in Fig 2, “The Circus Procession”, for Q3.

The collected voice recordings are automatically
transcribed by the online tool called Temi.4 Table 1
shows linguistic features about our dataset analyzed
by the open-source NLP toolkit, ELIT.5 Transcripts
from the control group depict significantly higher
numbers of tokens, nouns, and complex structures
while transcripts from the MCI group gives signifi-
cantly more discourse elements, implying that the
control subjects are more expressive while the MCI
subjects include more disfluency in their speeches.

4 Hierarchical Transformer

Although transformer encoders have recently estab-
lished the state-of-the-art results on most document
classification tasks, they have a limit on the input
size. As in Table 1, the average number of tokens in
our input documents well-exceeds 512 when com-
bining transcripts from all three tasks, which is the
max-number of tokens that the pretrained models
of these transformers allow in general. This makes
it difficult to simply join all transcripts together and
feed into a transformer encoder. Thus, this section
presents a hierarchical transformer to overcome the
challenge of long documents while jointly training
transcript contents from all three tasks (Figure 1).

4Temi: https://www.temi.com
5ELIT: https://github.com/elitcloud/elit

Let Wi = {wi1, . . . , win} be a transcript, where
wij represents the j’th token in the transcript pro-
duced by the i’th task Qi (in our case, i = {1, 2, 3}).
Wi is prepended by the special token [CLSi] that
is used to learn the transcript embedding, and fed
into the transformer Ti. The transformer then gen-
erates Ei = {ci, ei1, . . . , ein}, where ci and eij are
the embeddings for [CLSi] and wij , respectively.
ci ∈ Rd is used to make two types of predictions.

First, ci is fed into a multilayer perceptron layer,
MLPi, that generates the output vector oi ∈ R2 to
predict whether or not the subject has MCI based on
the transcript from Qi alone. Second, the transcript
embeddings from all three tasks are concatenated
such that ce = c1 ⊕ c2 ⊕ c3 ∈ R3d, which gets
fed into another MLPe to generate the output vector
oe ∈ R2, and makes the binary decision based on
the transcripts from all three tasks, Q1, Q2 and Q3.

5 Experiments

There are 650 recordings in our dataset (Table 2),
that is rather small to divide into train, development,
and test sets. Thus, 5-fold cross-validation (CV) is
used to evaluate the performance of our models.
Table 5 shows the distributions of the five CV sets
for our experiments, where the transcript of each
recording is treated as an independent document.
Notice that the distributions are calculated based
on analysis of the last MLP layer instead of simple
majority vote on individual models.

It is worth mentioning that all recordings from
the same subject given multiple visits are assigned
to the same CV set; thus, there is no overlap in terms
of subjects across these CV sets. This allows us to
avoid potential inflation in accuracy due to unique
language patterns used by individual subjects.

https://www.temi.com
https://github.com/elitcloud/elit
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BERT RoBERTa ALBERT
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

ACC 67.6 (±0.4) 69.0 (±1.2) 67.7 (±0.7) 69.0 (±1.5) 69.9 (±0.2) 65.2 (±0.3) 67.6 (±1.5) 69.5 (±0.3) 66.6 (±1.3)
SEN 48.9 (±1.8) 57.1 (±2.5) 41.5 (±3.6) 44.3 (±4.5) 55.3 (±1.2) 37.1 (±3.7) 45.9 (±1.9) 52.2 (±0.6) 37.4 (±3.3)
SPE 80.4 (±1.2) 77.3 (±2.8) 85.2 (±3.0) 85.8 (±2.1) 79.7 (±0.7) 84.5 (±3.0) 82.6 (±3.7) 81.4 (±0.3) 86.8 (±3.3)

Table 3: Model performance on the individual tasks. ACC: accuracy, SEN: sensitivity, SPE: specificity.

CNN BERTe RoBERTae ALBERTe Be + Re Ae + Re Be + Ae + Re

ACC 69.5 (±0.2) 69.9 (±1.1) 71.6 (±1.5) 69.7 (±2.9) 72.2 (±0.7) 71.5 (±1.9) 74.1 (±0.3)
SEN 49.2 (±0.8) 57.6 (±3.4) 48.5 (±6.1) 46.2 (±8.3) 56.5 (±2.5) 51.7 (±1.3) 60.9 (±5.2)
SPE 83.5 (±0.9) 77.4 (±4.8) 87.5 (±1.8) 85.4 (±0.5) 83.1 (±0.9) 86.7 (±3.4) 84.0 (±2.4)

Table 4: Performance of ensemble models. Berte/RoBERTae/ALBERTe use transcript embeddings from all 3 tasks
trained by the BERT/RoBERTa/ALBERT models in Table 3, respectively. Be+Re uses transcript embeddings from
both Berte and RoBERTae (so the total of 6 embeddings), Ae+Re uses transcript embeddings from both ALBERTe

and RoBERTae (6 embeddings), and Be+Ae+Re uses transcript embeddings from all three models (9 embeddings).

Three transformer encoders are used, BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2020), and
ALBERT (Lan et al., 2019) for our experiments.
Every model is trained 3 times and its average per-
formance with the standard deviation are reported.6

CV0 CV1 CV2 CV3 CV4 ALL

CRec 77 77 77 77 77 385
MRec 53 53 53 53 53 265
CSbj 37 37 37 37 37 185
MSbj 27 28 28 29 29 141

Table 5: Statistics of the CV sets for our experiments.
Rec/Sbj: # of recordings/subjects, C/M: in control/MCI
group. CVi: the i’th set. ALL:

∑4
i=0 CVi.

5.1 Performance of Individual Models

Individual models are built by training transcripts
from each task separately using MLPi in Section 4.
Table 3 shows the performance of the 3 transformer
models on the individual tasks. The performance
on Q2 shows the highest accuracy for all three mod-
els, achieving 69.9% with RoBERTa, implying that
the room environment task of Q2, involving many
spatial descriptions, are the most effective to dis-
tinguish the MCI group. The highest sensitivity of
57.1% is achieved by BERT on Q2, and the highest
specificity of 86.8% is achieved by ALBERT on Q3.
Such a low sensitivity and a high specificity imply
that it is easier to recognize the normal controls but
not the MCI patients given the short speeches.

5.2 Performance of Ensemble Models

Ensemble models are developed by jointly training
multiple transcript embeddings from the individual
models using MLPe in Section 4. Table 4 shows the
6Details about the experimental settings are provided in A.1.

model performance of the ensemble models. Addi-
tionally, results from a model that takes transcripts
from the 3 tasks as one input document and trains
a convolutional neural network (CNN) are provided
for comparison to Karleka et al. (2018).7 Re shows
1.7% improvement on accuracy over the RoBERTa
model in Table 3 although its sensitivity is worse.
Table 6 shows the voting distributions of each task
combination; given the samples correctly predicted
by RoBERTae, we count how often the individual
models are correct for those samples by comparing
the weights in MLPe and estimate the percentages.
The combination of (Q1, Q3) shows the highest per-
centage of 30%, meaning that 30% of the corrected
predicted samples are voted by both Q1 and Q3.

Q1 Q2 Q3 Q1,2 Q1,3 Q2,3 Q1,2,3

5.8 6.4 2.8 19.5 30.0 8.8 26.1

Table 6: Voting distributions of each task combination
for RoBERTae. Qi: % of only the Qi model is correct,
Qi,i,j : % of all Qi, Qi, and Qj models are correct.

A similar analysis is done for Be+Re+Ae although
displaying the distributions is quite infeasible since
it involves 29-1 combinations. Among the samples
correctly predicted by Be+Re+Ae, 86% are derived
from majority votes; in other words, at least 5 out
of 9 individual models agree with the predictions.
Votes from 6 and 5 models are the largest groups,
showing 35% and 28%, respectively. Only 0.21%
are agreed by all 9 models. No case of votes from 3
or less models is found, implying that no individual
model dominates the final decision of Be+Re+Ae.

7We also experiemented with LSTM-RNN and CNN-LSTM
models as suggested by Karleka et al. (2018); however, the
CNN model gave the highest accuracy on our dataset.
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6 Conclusion

This paper presents the B-SHARP dataset, that is
the largest dataset for the task of MCI detection
feasible to develop robust deep neural models. Our
best ensemble model using hierarchical transformer
gives the accuracy of 74% to distinguish MCI pa-
tients from normal controls that is very promising.
We will also explore models to make a longevity
analysis per patient with this dataset.8
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A Appendix

A.1 Experimental Settings

Table 7 shows the configuration of the transformer
encoders in Section 5. The base pre-trained models
are used for all encoders.

Transformer L AH IC HC P
BERT 12 12 768 768 108M

RoBERTa 12 12 768 768 125M
ALBERT 12 12 768 128 12M

Table 7: Configurations of the BERT, RoBERTa, and
ALBERT encoders for our experiments. L: # of layers,
AH: # of attended heads, IC: # of input cells, HC: # of
hidden cells, P: # of parameters.

Individual Models For training the BERT and
RoBERTa models, the batch size of 5, the learning
rate of 5 · 10−6, and the gradient clip of norm 0.5
are used with the Adam optimizer. A dropout rate
of 0.15 is applied to all layers. For the ALBERT
model, the batch size of 8 is used. All three models
are trained for 30 epochs.

Ensemble Models For training the two model
ensembles, Be+Re and Ae+Re, the batch size of 72
and the learning rate of 5 · 10−5 are used with the
Adam optimizer for 200 epochs. A dropout rate of
0.25 is also applied. For training the Be+Ae+Re

model, the dropout rate is set to 0.3.

A.2 Speech Task Protocol

Table 8 describes the instructions provided to the
subjects for the three speech tasks in Section 3.2.

Task Instruction

Q1

I would like you to describe to me everything
we did from the moment we met today until now.
Please try to recall as many details as possible in
the order the events actually happened where we
met, what we did, what we saw, where we went,
and what you felt or thought during each of these
events.

Q2
I would like you to describe everything that you
see in this room.

Q3

I am going to show you a picture and ask you to
describe what you see in as much detail as pos-
sible. You can describe the activities, characters,
and colors of things you see in this picture.

Table 8: Instructions of the 3 speech tasks, Q1, Q2, Q3,
provided to the subjects.

Figure 2 illustrates the image of the picture called
“The Circus Procession” for the picture description
task, Q3, copyrighted by the McLoughlin Brothers
as part of the Juvenile Collection.

Figure 2: The picture of “The Circus Procession” used
in the B-SHARP dataset.

A.3 B-SHARP Compared to DementiaBank
DementiaBank is the largest public dataset for de-
mentia detection that comprises recordings for 4
language tasks, picture description, verbal fluency,
story recall, and sentence construction, from a large
longitudinal study (Becker et al., 1994). Subjects
in this study are divided into two groups, normal
controls and dementia patients. Among the four
tasks, data from only the picture description task
can be used for classification since the other tasks
give data of dementia patients only.9 The design of
this task is similar to Q3 in B-SHARP (Section 3.2);
each subject is shown “The Boston Cookie Theft”
picture in Figure 3 to describe for 1-2 minutes.

Figure 3: The picture of “The Boston Cookie Theft”
used in the DementiaBank.

Table 10 shows the statistics of the DementiaBank
in comparison to Table 2 in Section 3. Subjects
in this study made up to 5 visits compared to 3 in
B-SHARP although the number of subjects in each
visit is larger in B-SHARP. B-SHARP has ≈100
9The verbal fluency task gives 1 audio recording of a normal
control, that is still not enough to train classification models.
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Tokens Sentences Nouns Verbs Conjuncts Complex Discourse
Control 124.0 (±59.7) 12.6 (±5.1) 23.7 (±11.8) 27.1 (±11.9) 2.8 (±2.8) 1.6 (±1.6) 1.5 (±1.6)

Dementia 114.3 (±61.3) 12.1 (±6.4) 18.7 (±10.4) 23.9 (±12.9) 2.4 (±2.4) 1.4 (±1.4) 2.8 (±2.9)
p 0.0625 0.3204 < 0.0001 0.0029 0.0715 0.1184 < 0.0001

Table 9: Average counts and standard deviations of linguistic features per transcript in the DementiaBank. See the
caption in Table 1 for the column descriptions.

more recordings than the DementiaBank, more im-
portantly, B-SHARP is still growing, which makes
it the largest dataset for NLP research related to the
detection of Alzheimer’s Disease. Unlike Demen-
tiaBank where 66.2% of the subjects are dementia
patients, 43.3% of the subjects belong to the MCI
group in B-SHARP; this makes sense because MCI
is closer to the preclinical phase that involves a
much fewer number of patients reported in general.

Group Sbj 2nd 3rd 4th 5th Rec
Control 99 29 28 9 8 243

Dementia 194 53 13 8 3 309
All 293 82 41 17 11 552

Table 10: Statistics of the control and the dementia
groups in the DementiaBank. Sbj: # of subjects, i’th: #
of subjects who made i’th visits, Rec: # of voice record-
ings. Note that subject with i’th visits take (i − 1) ad-
ditional recordings; thus, Rec = Sbj +

∑5
i=2(i− 1)’th.

Table 9 shows the statistics of linguistic features
in comparison to Table 1 in Section 3. The same
tools, Temi and ELIT, are used to measure them.
Unlike B-SHARP, the control group in the Demen-
tiaBank does not reveal a significantly greater num-
ber of tokens than the dementia group. The docu-
ment size in the DementiaBank is 4.9 times smaller
than B-SHARP on average. In both datasets, the
noun and discourse counts are significantly differ-
ent between the control and the other groups.

It is interesting that a significant difference is
found in verbs whereas it is not the case for com-
plex structures in the DementiaBank, which is op-
posite in B-SHARP. This may imply that the verb
usage deteriorates as it progresses from MCI to
dementia, but more thorough research is needed for
further verification.


