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Abstract

Chinese and Japanese share many charac-
ters with similar surface morphology. To
better utilize the shared knowledge across
the languages, we propose UnihanLM, a
self-supervised Chinese-Japanese pretrained
masked language model (MLM) with a novel
two-stage coarse-to-fine training approach.
We exploit Unihan, a ready-made database
constructed by linguistic experts to first merge
morphologically similar characters into clus-
ters. The resulting clusters are used to re-
place the original characters in sentences for
the coarse-grained pretraining of the MLM.
Then, we restore the clusters back to the
original characters in sentences for the fine-
grained pretraining to learn the representation
of the specific characters. We conduct ex-
tensive experiments on a variety of Chinese
and Japanese NLP benchmarks, showing that
our proposed UnihanLM is effective on both
mono- and cross-lingual Chinese and Japanese
tasks, shedding light on a new path to exploit
the homology of languages.1

1 Introduction

Recently, Pretrained Language Models have shown
promising performance on many NLP tasks (Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2019;
Yang et al., 2019c; Lan et al., 2020). Many attempts
have been made to train a model that supports mul-
tiple languages. Among them, Multilingual BERT
(mBERT) (Devlin et al., 2019) is released as a part
of BERT. It directly adopts the same model ar-
chitecture and training objective, and is trained
on Wikipedia in different languages. XLM (Lam-
ple and Conneau, 2019) is proposed with an ad-
ditional language embedding and a new training

∗ This work was done during Canwen’s internship at
Microsoft Research Asia.

1The code and pretrained weights are available at https:
//github.com/JetRunner/unihan-lm.

JA 台1風2は熱3帯4低気5圧6の一種7です。

T-ZH 颱1風2是熱3帶4氣5旋的一種7。

S-ZH 台1风2是热3带4低气5压6的一种7。

EN Typhoon is a type of tropical depression.

Table 1: A sentence example in Japanese (JA), Tradi-
tional Chinese (T-ZH) and Simplified Chinese (S-ZH)
with its English translation (EN). The characters that
already share the same Unicode are marked with an
underline. In this work, we further match characters
with identical meanings but different Unicode, then
merge them. Characters eligible to be merged together
are marked with the same superscript.

objective (translation language modeling, TLM).
XLM-R (Conneau et al., 2019) has a larger size
and is trained with more data. Based on XLM, Uni-
coder (Huang et al., 2019) collects more data and
uses multi-task learning to train on three supervised
tasks.

The census of cross-lingual approaches is to al-
low lexical information to be shared between lan-
guages. XLM and mBERT exploit shared lexical
information by Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016) and WordPiece (Wu et al., 2016),
respectively. However, these automatically learned
shared representations have been criticized by re-
cent work (K et al., 2020), which reveals their limi-
tations in sharing meaningful semantics across lan-
guages. Also, words in both Chinese and Japanese
are short, which prohibits an effective learning of
sub-word representations. Different from European
languages, Chinese and Japanese naturally share
Chinese characters as a subword component. Early
work (Chu et al., 2013) shows that shared charac-
ters in these two languages can benefit Example-
based Machine Translation (EBMT) with a statisti-
cal based phrase extraction and alignment. For Neu-
ral Machine Translation (NMT), (Zhang and Ko-

https://github.com/JetRunner/unihan-lm
https://github.com/JetRunner/unihan-lm
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machi, 2019) exploited such information by learn-
ing a BPE representation over sub-character (i.e.,
ideograph and stroke) sequence. They applied this
technique to unsupervised Chinese-Japanese ma-
chine translation and achieved state-of-the-art per-
formance. However, this approach greatly relies on
unreliable automatic BPE learning and may suffer
from the noise brought by various variants.

To facilitate lexical sharing, we propose Unihan
Language Model (UnihanLM), a cross-lingual pre-
trained masked language model for Chinese and
Japanese. We propose a two-stage coarse-to-fine
pretraining procedure to empower better general-
ization and take advantages of shared characters
in Japanese, Traditional and Simplified Chinese.
First, we let the model exploit maximum possible
shared lexical information. Instead of learning a
shared sub-word vocabulary like the prior work,
we leverage Unihan database (Jenkins et al., 2019),
a ready-made constituent of the Unicode standard,
to extract the shared lexical information across the
languages. By exploiting this database, we can ef-
fectively merge characters with the similar surface
morphology but independent Unicodes, as shown
in Table 1 into thousands of clusters. The clusters
will be used to replace the characters in sentences
during the first-stage coarse-grained pretraining.
After the coarse-grained pretraining finishes, we re-
store the clusters back to the original characters and
initialize their representation with their correspond-
ing cluster’s representation and then learn their spe-
cific representation during the second-stage fine-
grained pretraining. In this way, our model can
make full use of shared characters while maintain-
ing a good sense for nuances of similar characters.

To verify the effectiveness of our approach, we
evaluate on both lexical and semantic tasks in
Chinese and Japanese. On word segmentation,
our model outperforms monolingual and multi-
lingual BERT (Devlin et al., 2019) and shows a
much higher performance on cross-lingual zero-
shot transfer. Also, our model achieves state-of-the-
art performance on unsupervised Chinese-Japanese
machine translation, and is even comparable to the
supervised baseline on Chinese-to-Japanese transla-
tion. On classification tasks, our model achieves a
comparable performance with monolingual BERT
and other cross-lingual models trained with the
same scale of data.

To summarize, our contributions are three-fold:
(1) We propose UnihanLM, a cross-lingual pre-

trained language model for Chinese and Japanese
NLP tasks. (2) We pioneer to apply the language
resource – the Unihan Database to help model pre-
training, allowing more lexical information to be
shared between the two languages. (3) We devise
a novel coarse-to-fine two-stage pretraining strat-
egy with different granularity for Chinese-Japanese
language modeling.

2 Preliminaries

2.1 Chinese Character

Chinese character is a pictograph used in Chinese
and Japanese. These characters often share the
same background and origin. However, due to his-
toric reasons, Chinese characters have developed
into different writing systems, including Japanese
Kanji, Traditional Chinese and Simplified Chinese.
Also, even in a single text, multiple variants of
the same characters can be used interchangeably
(e.g., “台灣” and “臺灣” for “Taiwan”, in Tradi-
tional Chinese). These characters have identical
or overlapping meanings. Thus, it is critical to
better exploit such information for modeling both
cross-lingual (i.e., between Chinese and Japanese),
cross-system (i.e., between Traditional and Simpli-
fied Chinese) and cross-variant semantics.

Both Chinese and Japanese have no delimiter
(e.g., white space) to mark the boundaries of words.
There have always been debates over whether word
segmentation is necessary for Chinese NLP. Re-
cent work (Li et al., 2019) concludes that it is
not necessary for various NLP tasks in Chinese.
Previous cross-lingual language models use dif-
ferent methods for tokenization. mBERT adds
white spaces around Chinese characters and lefts
Katakana/Hiragana Japanese (also known as kanas)
unprocessed. Different from mBERT, XLM uses
Stanford Tokenizer2 and KyTea3 to segment Chi-
nese and Japanese sentences, respectively. After to-
kenization, mBERT and XLM use WordPiece (Wu
et al., 2016) and Byte Pair Encoding (Sennrich
et al., 2016) for sub-word encoding, respectively.

Nevertheless, both approaches suffer from obvi-
ous drawbacks. For mBERT, the kanas and Chinese
characters are treated differently, which causes a
mismatch for labeling tasks. Also, leaving kanas
untokenized may cause the data sparsity problem.
For XLM, as pointed out in (Li et al., 2019), an

2https://nlp.stanford.edu/software/
tokenizer.html

3http://www.phontron.com/kytea/

https://nlp.stanford.edu/software/tokenizer.html
https://nlp.stanford.edu/software/tokenizer.html
http://www.phontron.com/kytea/
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Variant Description Example

Traditional Variant The traditional versions of a simplified Chinese character. 发→髮 (hair),發 (to burgeon)
Simplified Variant The simplified version of a traditional Chinese character. 團→团 (group)

Z-Variant Same character with different unicodes only for compatibility. 說↔説 (say)
Semantic Variant Characters with identical meaning. 兎↔兔 (rabbit)

Specialized Semantic Variant Characters with overlapping meaning. 丼 (rice bowl, well)↔井 (well)

Table 2: The five types of variants in the Unihan database.

external word segmenter would introduce extra seg-
mentation errors and compromise the performance
of the model. Also, as a word-based model, it is
difficult to share cross-lingual characters unless the
segmented words in both Chinese and Japanese are
exactly matched. Furthermore, both approaches
would enlarge the vocabulary size and thus intro-
duce more parameters.

2.2 Unihan Database

Chinese, Japanese and Korean (CJK) characters
share a common origin from the ancient Chinese
characters. However, with the development of each
language, both the shape and semantics of char-
acters drastically change. When exchanging in-
formation, different codings of the same character
hinders the text processing. Thus, as the result
of Han unification4, the database of CJK Unified
Ideographs, Unihan (Jenkins et al., 2019), is con-
structed by human experts tracing the sources of
each character.

As part of the Unicode Standard, Unihan merges
the Unicode for some characters from different
languages and provides extra variant information
between different characters. In previous stud-
ies (Zhang and Komachi, 2019; Lample and Con-
neau, 2019; Devlin et al., 2019), Unicode is used
by default. However, due to the “Source Separation
Rule” of Unicode, to remain the compatibility with
prior encoding systems, a single character can have
multiple Unicodes with different glyphs. For exam-
ple, for the character “戶”, there are three unicodes:
U+6236, U+6237 and U+6238. This feature could
be useful for message exchange but is undoubtedly
undesirable for NLP and may bring the problems of
data sparsity and prevent the alignment of a cross-
lingual language model.

Fortunately, Unihan database also provides
12,373 entries of variant information in five types,
as listed in Table 2. Note that one character may
have multiple types of variants and each type may

4https://en.wikipedia.org/wiki/Han_
unification

Tokenization Scheme Result

BERT (2019) 台風 /はひどい
XLM (2019) 台風 /は /ひどい

UnihanLM 台 /風 /は /ひ /ど /い

Table 3: Different tokenization schemes used in re-
cent work and ours. Note that the tokenized results
of both BERT and XLM in this table are before Word-
Piece/BPE applied. WordPiece/BPE may further split
a token.

have multiple variant characters (e.g., the tradi-
tional variants of “发” in Table 2). Such informa-
tion forms a complex graph structure.

3 UnihanLM

In this section, we introduce the tokenization, char-
acter merging and training procedure for our pro-
posed UnihanLM.

3.1 Tokenization

As analyzed in Section 2.1, the tokenization
scheme is tricky and critical for East Asian lan-
guages. Although recent work (Li et al., 2019) re-
veals that tokenization is unnecessary for most high-
level NLU and NLG tasks, many downstream la-
beling tasks (e.g., Part-of-speech Tagging, Named
Entity Recognition) still require an implicit or ex-
plicit segmentation. To enable all NLP tasks, we
tokenize the sentences by treating every character
(including Japanese Kana) as a token. Thus, our
model is capable of processing all tasks, from the
lowest-level Chinese and Japanese word segmen-
tation to high-level NLU tasks. We summarize the
different tokenization schemes used in recent work
and ours in Table 3.

We do not further apply BPE to our tokenized
sentences for two reasons. First, a character is the
atomic element in both Chinese and Japanese gram-
mars which should not be further split. Second,
character itself is naturally a sub-word semantic
element, e.g., “自” (self) + “信”(belief) = “自信”

https://en.wikipedia.org/wiki/Han_unification
https://en.wikipedia.org/wiki/Han_unification
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Figure 1: A connected subgraph of Unihan database.
For example, for the word “typhoon”, “台” is used in
Japanese and Simplified Chinese while “颱” is used in
Traditional Chinese.

(confidence); “自” (self) + “尊”(respect) = “自尊”
(self-esteem).

3.2 Character Merging

To reduce the vocabulary size and align the Chi-
nese characters in Traditional Chinese, Simplified
Chinese and Japanese to the greatest extent, it is
important to merge as many characters as possible
while ensuring only merging characters with the
identical or overlapping meanings. Thus, we use
Unihan database, which includes character variant
information collected and approved by human ex-
perts. We use four types of variants including Tra-
ditional Variant, Simplified Variant, Z-Variant and
Semantic Variant. Note that we exclude Special-
ized Semantic Variant which may raise ambiguity
problem since it is not very common and the seman-
tics of the two characters are merely overlapping,
not identical.

However, merging characters is still challenging
since the variant information in Unihan database
is a complex graph, as illustrated in Figure 1. To
merge the characters as much as possible, we con-
vert Unihan database to a large undirected graph
and use Union Find Algorithm (Galler and Fischer,
1964) to find all maximal connected subgraph. For
example, the whole Figure 1 is a subgraph in the
Unihan graph found by the algorithm. We call all
characters in a maximal connected subgraph belong
to a “cluster”. After this merging procedure, the
12,373 variant entries yield a total of 4,001 clusters.

3.3 Training Procedure

As illustrated in Figure 2, the model is a Trans-
former based model with three embeddings as in-
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Figure 2: The model architecture of UnihanLM. (1)
We merge characters to clusters and use cluster indices
when doing cluster-level pretraining. In the figure, “#1”
and “#2” indicate indices of the clusters which “台”
and “風” belong to, respectively. (2) We initialize the
embedding of each character in a cluster with the clus-
ter embedding and do character-level pretraining to pre-
dict each character.

put and the training procedure is composed of two
phases.

3.3.1 Model
Our model is a Transformer-based Masked Lan-
guage Model (Devlin et al., 2019) which learns to
predict the randomly masked words with the con-
text. Also, following (Lample and Conneau, 2019),
we add language embedding to help the model dis-
tinguish between Chinese and Japanese, especially
when we share the characters between these two
languages. The detailed hyperparameter settings
are described in Section 4.1.

3.3.2 Coarse-grained Cluster-level
Pretraining

To maximize the shared lexicon and force them to
share a representation, we leverage clusters to pre-
train our models on a coarse-grained cluster level.
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We first append the cluster indices to the vocabu-
lary. During cluster-level pretraining, we substitute
the character index with its corresponding cluster
index if the character is in the Unihan database.
For Japanese kanas, punctuation, number and other
characters not in Unihan database, we keep its orig-
inal token index. In this way, we employ human
prior knowledge to the pretraining procedure and
allow the model to roughly model the semantic
knowledge.

3.3.3 Fine-grained Character-level
Pretraining

Although the clusters training is effective, there
are two problems remaining unsolved. First, Tra-
ditional Variant could be ambiguous. As shown
in Table 2, a character (most likely one used in
Simplified Chinese) may have multiple Traditional
Variants. Although it should not have a signifi-
cant negative effect for understanding the language
(since a Simplified Chinese user can disambiguate
between different meanings of a character based
on its context), it still makes sense to improve the
overall performance by distinguish the characters
explicitly (Navigli et al., 2017). Also, in tasks in-
volving decoding (e.g., machine translation), they
must be processed independently. Thus, charac-
ter disambiguation can be naturally used as a self-
supervised task. Second, when using the trained
model for translation, it would be important for the
model to decode the right character for different
languages and writing systems. For example, for
the word meaning “typhoon”, “台風”, “颱風”, “台
风” should be used in Japanese, Traditional Chi-
nese and Simplified Chinese, respectively.

Consequently, we leave these nuances of char-
acters to a fine-grained character-level pretraining.
Since during the cluster-level pretraining, all char-
acters in Unihan database are preserved in the vo-
cabulary but their embedding is untrained, we ini-
tialize their embedding with their corresponding
cluster embedding trained in cluster-level pretrain-
ing stage. In the character-level pretraining stage,
we discard the clusters in the vocabulary and do
not substitute any character since then. In this way,
the model can handle each character case by case,
with a fine granularity. We restart the training with
a smaller learning rate to allow the model to learn
to disambiguate.

Model #Layer #Param.

BERT-Mono-ZH (2019) 12 110M
mBERT (2019) 12 179M
XLM (2019) 16 571M

UnihanLM 12 176M

Table 4: The numbers of layers and parameters for dif-
ferent models.

4 Experiments

In this section, we compare UnihanLM with other
self-supervised pretrained language models. All
of our baselines (monolingual BERT, mBERT
and XLM) use Wikipedia for self-supervised pre-
training. Note that we do not compare our
model to XLM-R (Conneau et al., 2019) and Uni-
coder (Huang et al., 2019) since they are trained
with much more data and even on supervised tasks.

4.1 Training Details

We use the mixture of Chinese and Japanese
Wikipedia5 as the unparalleled pretraining corpus.
We sample 5, 000 sentences as validation set for
model selection and use the rest for training. Our
model uses 12 layers of Transformer blocks with
16 attention heads. The hidden size is set to 1,024.
The vocabulary size is 24,044. Shown in Table
4, our model has a similar size to mBERT. We
train our model on 8 Nvidia V100 32GB GPUs to
optimize Masked Language Model (MLM) objec-
tive (Devlin et al., 2019) with an Adam (Kingma
and Ba, 2015) optimizer. The masking probability
is set to 15%. We add a L2 regularization of 0.01.
We warm up the first 30,000 steps for each stage
of pretraining by an inverse square root function.
The batch size is set to 64 per GPU. The maxi-
mum sequence length is limited to 256 tokens. We
add dropout (Srivastava et al., 2014) for both feed-
forward network and attention with a drop rate of
0.1. The learning rate for cluster-level pretraining
is set to 1 × 10−4. After 264 hours of cluster-
level pretraining until convergence, we perform
character-level pretraining with a smaller learning
rate of 5× 10−5 for another 43 hours. We choose
the best model according to its perplexity on val-
idation set. For downstream tasks (to be detailed
shortly), we fine-tune UnihanLM with a learning
rate of 5× 10−7, 1× 10−4, 2.5× 10−5 and a batch

5https://dumps.wikimedia.org/

https://dumps.wikimedia.org/
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Method PKU (ZH) KWDLC (JA)

Standard training

mBERT (2019) 95.0 96.3
BERT-Mono-ZH (2019) 96.5 -
UnihanLM 96.6 98.2

Cross-lingual zero-shot transfer

mBERT (2019) 82.0 63.1
UnihanLM 85.7 74.1

Table 5: F1 scores on Chinese Word Segmentation
(CWS) and Japanese Word Segmentation (JWS) tasks.
“Cross-lingual zero-shot transfer” indicates that the
model is trained on CWS and zero-shot tested on JWS,
vice versa.

size of 20, 24, 16 for word segmentation, unsuper-
vised machine translation and classification tasks,
respectively.

4.2 Word Segmentation

Word segmentation is a fundamental task in both
Chinese and Japanese NLP. It is often recognized as
the first step for further processing in many systems.
Thus, we evaluate Chinese Word Segmentation
(CWS) and Japanese Word Segmentation (JWS) on
PKU dataset (Emerson, 2005) and KWDLC (Kawa-
hara et al., 2014). We use Multilingual BERT and
monolingual Chinese BERT (Devlin et al., 2019) as
baselines. We use pretrained checkpoints provided
by Google6. Following previous work, we treat
the word segmentation task as a sequence labeling
task. Note that XLM (Lample and Conneau, 2019)
uses pre-segmented sentences as input, making it
inapplicable for this task. As shown in Table 5,
our proposed UnihanLM outperforms mBERT and
monolingual BERT by 1.6 and 0.1 in terms of F1
score on CWS, respectively. On JWS, our model
outperforms mBERT by 1.9 on F1. Additionally,
we conduct zero-shot transfer experiments to deter-
mine how much lexical knowledge is shared within
Chinese and Japanese for each model. We use the
weights trained on CWS and JWS for zero-shot
transferring on the other language. Our model dras-
tically outperforms mBERT on this task by 3.7 and
11.0 on CWS and JWS, respectively. This proves
that our model can better capture the lexical knowl-
edge shared between Chinese and Japanese. Also,
it is notable that zero-shot JWS has a prominently
poorer performance than zero-shot CWS. As we

6https://github.com/google-research/
bert

Method ZH→JA JA→ZH

Supervised baseline

OpenNMT (Klein et al., 2017) 42.12 40.63

Fine-tuned on Wikipedia

XLM (Lample and Conneau, 2019) 14.58 15.06
UnihanLM 33.53 28.70

Fine-tuned on shuffled ASPEC-JC training set

Stroke (Zhang and Komachi, 2019) 33.81 31.66
UnihanLM 44.59 40.58

Table 6: BLEU scores of Chinese-Japanese unsuper-
vised translation on ASPEC-JC dataset.

analyze, the criterion for segmenting Chinese char-
acters can be learned with a Japanese corpus and
then transferred to CWS. However, since no kana is
present in CWS, the model cannot successfully seg-
ment kanas, when performing zero-shot inference
on JWS.

4.3 Unsupervised Machine Translation

A Chinese speaker who never learned Japanese
can roughly understand a Japanese text (and vice
versa), due to the similarity between the writing
systems of these two languages. On the other hand,
only a few parallel corpora between Chinese and
Japanese are publicly available, and they are usu-
ally small in size. Thus, Unsupervised Machine
Translation (UMT) is very promising and mean-
ingful on the Chinese-Japanese translation task.
We evaluate on Asian Scientific Paper Excerpt
Corpus Japanese-Chinese (ASPEC-JC)7, the most
widely-used Chinese-Japanese Machine Transla-
tion dataset. We perform our experiments under
two settings: (1) Chinese and Japanese Wikipedia
is used as the monolingual corpora, following the
setting of (Lample and Conneau, 2019). (2) Shuf-
fled unparalleled ASPEC-JC training set is used as
the monolingual corpora, following the settings in
(Zhang and Komachi, 2019).

Except for XLM, we choose (Zhang and Ko-
machi, 2019), the current state-of-the-art Chinese-
Japanese UMT model as a strong baseline. They
decomposed a Chinese character in both Chinese
and Japanese into strokes and then learn a shared
token in the stroke sequence to increase the shared
tokens in the vocabulary. However, this method re-
lies on an unsupervised BPE (Sennrich et al., 2016)
to learn shared stroke tokens from a long noisy

7http://orchid.kuee.kyoto-u.ac.jp/
ASPEC/

https://github.com/google-research/bert
https://github.com/google-research/bert
http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
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Method
PAWS-X

ZH JA

BOW 54.5 55.1
ESIM (Chen et al., 2017a) 60.3 59.6
mBERT (Devlin et al., 2019) 82.3 79.2
XLM (Lample and Conneau, 2019) 82.5 79.5

UnihanLM 82.7 80.5

Table 7: Accuracy scores on PAWS-X dataset.

stroke sequence, which is rather unreliable com-
pared to our solution. For example, “丑” (ugly) and
“五” (five) have a very similar stroke sequence but
completely different meanings. Following (Lam-
ple and Conneau, 2019), we use our pretrained
weights to initialize the translation model and train
the model with denoising auto-encoding loss and
online back-translation loss. Note that both base-
lines use Wikipedia as the unsupervised data and
are based on the same UMT method (Lample et al.,
2018c). We use character-level BLEU (Papineni
et al., 2002) as the evaluation metric.

We demonstrate the results in Table 6. As
we analyzed, XLM suffers from a severe out-of-
vocabulary (OOV) problem on AESPEC-JC, a
dataset composed of scientific papers, containing
many new terminologies which do not show up in
the pretraining corpus of XLM. As a word-based
model, XLM is not able to handle these new words
and thus yields a rather poor result. When fine-
tuned on unparalleled training set of ASPEC-JC,
our model outperforms the previous state-of-the-art
model (Zhang and Komachi, 2019) by a large mar-
gin of 10.78 and 8.92 in terms of BLEU. Also no-
tably, UnihanLM even outperforms the supervised
baseline on Chinese-to-Japanese translation and
has a performance in close proximity on Japanese-
to-Chinese task, compared to an early supervised
machine translation model, OpenNMT (Klein et al.,
2017), trained on the paired training set of ASPEC-
JC.

4.4 Text Classification

To further evaluate our model, we perform our ex-
periments on Cross-lingual Paraphrase Aversaries
from Word Scrambling (PAWS-X) (Yang et al.,
2019b), a newly proposed cross-lingual text classi-
fication dataset supporting seven languages includ-
ing Chinese and Japanese. This dataset consists of
challenging English paraphrase identification pairs
from Wikipedia and Quora. Then the human trans-

lators translate the text into the other six languages.
We test under the setting of TRANSLATE-TRAIN
(i.e., we use the provided translation of the train-
ing set for both Chinese and Japanese and test in
the same language). Shown in Table 7, UnihanLM
outperforms all baselines in (Yang et al., 2019b),
including mBERT.

4.5 Ablation Study

To verify the effectiveness of our two-stage pre-
training procedure, we conduct an ablation study.
A character-level model is trained from scratch
without the cluster-level pretraining and marked as
“−cluster”. On the other hand, we use the model
trained in cluster-level stage for downstream tasks
and mark it as “−character”. Note that since the
objective for cluster-level stage is to predict the
masked cluster, it cannot be used for unsupervised
translation. Shown in Figure 8, both cluster-level
and character-level pretraining play an essential
role on classification tasks. On translation task,
cluster-level pretraining is more important when
fine-tuned on Wikipedia but has a relatively smaller
impact when using shuffled ASPEC-JC training set.

To analyze the success of our two-stage training
strategy, we would like to emphasize two strengths.
First, as mentioned before, our easy-to-hard train-
ing procedure matches the core idea of Curriculum
Learning (Bengio et al., 2009), which smooths the
training and help the model generalize better. Sec-
ond, the two-stage procedure inherently introduces
a new self-supervised task, which could take the
advantage of Multitask Learning (Caruana, 1993).

5 Related Work

Multilingual Representation Learning Learn-
ing cross-lingual representations are useful for
downstream tasks such as cross-lingual classifica-
tion (Conneau et al., 2018; Yang et al., 2019b),
cross-lingual retrieval (Zweigenbaum et al., 2017;
Artetxe and Schwenk, 2019) and cross-lingual
QA (Artetxe et al., 2019; Lewis et al., 2019; Clark
et al., 2020). Earlier work on multilingual repre-
sentations exploiting parallel corpora (Luong et al.,
2015; Gouws et al., 2015) or a bilingual dictionary
to learn a linear mapping (Mikolov et al., 2013;
Faruqui and Dyer, 2014). Subsequent methods
explored self-training (Artetxe et al., 2017) and un-
supervised learning (Zhang et al., 2017; Artetxe
et al., 2018; Lample et al., 2018b). Recently, mul-
tilingual pretrained encoders have shown its effec-
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Method PAWS-X ASPEC-JC
Wiki Shuffled-train

ZH JA ZH→JA JA→ZH ZH→JA JA→ZH

UnihanLM 82.7 80.5 33.53 28.70 44.59 40.58
−cluster 81.5 79.2 29.33 20.93 42.34 39.24
−character 82.0 80.1 - - - -

Table 8: The results of ablation study on text classification and UMT. “-cluster” and “-character” indicate the model
trained without the cluster-level pretraining and character-level pretraining, respectively. The metrics for PAWS-X
and ASPEC-JC are accuracy and BLEU, respectively.

tiveness for learning deep cross-lingual represen-
tations (Eriguchi et al., 2018; Pires et al., 2019;
Wu and Dredze, 2019; Lample and Conneau, 2019;
Conneau et al., 2019; Huang et al., 2019).

Word Segmentation Word segmentation is of-
ten formalized as a sequence tagging task. It re-
quires lexical knowledge to split a character se-
quence into a word list that can be used for down-
stream tasks. This step is necessary for many ear-
lier NLP systems for Chinese and Japanese. Recent
work on Chinese Word Segmentation (Wang and
Xu, 2017; Zhou et al., 2017; Yang et al., 2017; Cai
et al., 2017; Chen et al., 2017b; Yang et al., 2019a)
and Japanese Word Segmentation (Kaji and Kit-
suregawa, 2014; Fujinuma and II, 2017; Kitagawa
and Komachi, 2018) exploit deep neural networks
and focus on building end-to-end sequence tagging
models.

Unsupervised Machine Translation Recently,
machine translation systems have demonstrated
near human-level performance on some languages.
However, it depends on the availability of large
amounts of parallel sentences. Unsupervised Ma-
chine Translation addresses this problem by ex-
ploiting monolingual corpora which can be eas-
ily constructed. Lample et al. (2018a) proposed
a UMT model by learning to reconstruct in both
languages from a shared feature space. Lample
et al. (2018c) exploited language modeling and
back-translation and thus proposed a neural un-
supervised translation model and a phase-based
translation model. Different from European lan-
guages (e.g., English), Chinese and Japanese nat-
urally share Chinese characters. Zhang and Ko-
machi (2019) exploited such information by learn-
ing a BPE representation over sub-character (i.e.,
ideograph and stroke) sequence. They applied this
technique to unsupervised Chinese-Japanese ma-
chine translation and achieved state-of-the-art per-
formance. This information is also shown to be

effective by (Xu et al., 2019).

6 Discussion and Future Work

There is still space to improve for our method.
First, as we analyze, except for Chinese charac-
ters, English words often appear in both Chinese
and Japanese texts. In our current model, they are
treated as normal characters without any special
processing. However, such a rough processing may
harm the performance of the model on some tasks.
For example, in PAWS-X, many entities remain
untranslated and this may have a negative effect on
the performance of our model. Also, loan words
(i.e., Gairaigo), especially from English, constitute
a large part of nouns in modern Japanese (Miller,
1998). These words are written with kanas, instead
of Chinese characters which makes it inapplica-
ble to be shared with our approach. Thus, it may
be reasonable to involve English in cross-lingual
modeling of Asian languages, as well. Similarly,
Chinese characters exist in Korean and Vietnamese
but are now written in Hangul (Korean alphabet)
and Vietnamese alphabet, respectively. Our future
work will explore the possibility to generalize the
idea to more Asian languages including Korean
and Vietnamese.

7 Conclusion

In this paper, we exploit the ready-made Unihan
database constructed by linguistic experts and pro-
pose a novel Chinese-Japanese cross-lingual lan-
guage model trained by a two-stage coarse-to-fine
procedure. Our extensive experiments on word seg-
mentation, unsupervised machine translation and
text classification verify the effectiveness of our
model. Our approach sheds some light on the lin-
guistic features that receive insufficient attention
recently and showcases a novel way to fuse hu-
man linguistic knowledge and exploit the similarity
between two languages.
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