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Abstract

Despite the success of neural machine trans-
lation (NMT), simultaneous neural machine
translation (SNMT), the task of translating in
real time before a full sentence has been ob-
served, remains challenging due to the syn-
tactic structure difference and simultaneity re-
quirements. In this paper, we propose a gen-
eral framework for adapting neural machine
translation to translate simultaneously. Our
framework contains two parts: prefix transla-
tion that utilizes a consecutive NMT model to
translate source prefixes and a stopping crite-
rion that determines when to stop the prefix
translation. Experiments on three translation
corpora and two language pairs show the effi-
cacy of the proposed framework on balancing
the quality and latency in adapting NMT to per-
form simultaneous translation.

1 Introduction

Simultaneous translation (Fiigen et al., 2007; Oda
et al., 2014; Grissom et al., 2014; Niehues et al.,
2016; Cho and Esipova, 2016; Gu et al., 2017; Ma
et al., 2018), the task of producing a partial transla-
tion of a sentence before the whole input sentence
ends, is useful in many scenarios including out-
bound tourism, international summit and multilat-
eral negotiations. Different from the consecutive
translation in which translation quality alone mat-
ters, simultaneous translation trades off between
translation quality and latency. The syntactic struc-
ture difference between the source and target lan-
guage makes simultaneous translation more chal-
lenging. For example, when translating from a
verb-final (SOV) language (e.g., Japanese) to a
verb-media (SVO) language (e.g., English), the
verb appears much later in the source sequence

*Part of the work was done when Yun is working at
Huawei Noah’s Ark Lab.
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than in the target language. Some premature trans-
lations can lead to significant loss in quality (Ma
et al., 2018).

Recently, a number of researchers have endeav-
ored to explore methods for simultaneous transla-
tion in the context of NMT (Bahdanau et al., 2015;
Vaswani et al., 2017). Some of them propose so-
phisticated training frameworks explicitly designed
for simultaneous translation (Ma et al., 2018; Ari-
vazhagan et al., 2019). These approaches are either
memory inefficient during training (Ma et al., 2018)
or with hyper-parameters hard to tune (Arivazha-
gan et al., 2019). Others utilize a full-sentence
base model to perform simultaneous translation
by modifications to the encoder and the decoding
process. To match the incremental source con-
text, they replace the bidirectional encoder with
a left-to-right encoder (Cho and Esipova, 2016;
Satija and Pineau, 2016; Gu et al., 2017; Aline-
jad et al., 2018) or recompute the encoder hidden
states (Zheng et al., 2019). On top of that, heuristic
algorithms (Cho and Esipova, 2016; Dalvi et al.,
2018) or a READ/WRITE model trained with re-
inforcement learning (Satija and Pineau, 2016; Gu
et al., 2017; Alinejad et al., 2018) or supervised
learning (Zheng et al., 2019) are used to decide, at
every step, whether to wait for the next source to-
ken or output a target token. However, these models
either cannot directly use a pretrained consecutive
neural machine translation (CNMT) model with
bidirectional encoder as the base model or work in
a sub-optimal way in the decoding stage.

In this paper, we study the problem of adapting
neural machine translation to translate simultane-
ously. We formulate simultaneous translation as
two nested loops: an outer loop that updates input
buffer with newly observed source tokens and an
inner loop that translates source tokens in the buffer
updated at each outer step. For the outer loop, the
input buffer can be updated by an ASR system with
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an arbitrary update schedule. For the inner loop,
we translate using the pretrained CNMT model and
stop translation with a stopping controller. Such
formulation is different from previous work (Satija
and Pineau, 2016; Gu et al., 2017; Alinejad et al.,
2018; Zheng et al., 2019) which define simultane-
ous translation as sequentially making interleaved
READ or WRITE decisions. We argue that our
formulation is better than the previous one in two
aspects: (i) Our formulation can better utilize the
available source tokens. Under previous formu-
lation, the number of source tokens observed by
the CNMT model is determined by the number of
READ actions that has been produced by the policy
network. It is likely that the CNMT model does not
observe all the available source tokens produced
by the ASR system. In contrast, the CNMT model
observes all the available source tokens when per-
forming inner loop translation in our framework.
(ii) Previous formulation makes T;+17> READ or
WRITE decisions regardless of the ASR update
schedule, where T}, and T’ are source sentence and
translation length, respectively. For an ASR system
that outputs multiple tokens at a time, this is com-
putational costly. Consider an extreme case where
the ASR system outputs a full source sentence at a
time. Previous work translates with a sequence of
T,+T’; actions, while we translate with a sequence
of T'; decisions (I;; — 1 CONTINUE and 1 STOP).

Under our proposed framework, we present two
schedules for simultaneous translation: one stops
the inner loop translation with heuristic and one
with a stopping controller learned in a reinforce-
ment learning framework to balance translation
quality and latency. We evaluate our method on
IWSLT16 German-English (DE-EN) translation in
both directions, WMT15 English-German (EN-DE)
translation in both directions, and NIST Chinese-
to-English (ZH—EN) translation. The results show
our method with reinforced stopping controller con-
sistently improves over the de-facto baselines, and
achieves low latency and reasonable BLEU scores.

2 Background

Given a set of source—target sentence pairs
(Xm, ¥i,) %:1, a consecutive NMT model can be
trained by maximizing the log-likelihood of the
target sentence from its entire source side context:

M
= argglaX{ > log p(y s, %m; ¢)}, (1)

m=1

where ¢ is a set of model parameters. At infer-
ence time, the NMT model first encodes a source
language sentence x = {z1,..,o7,} with its
encoder and passes the encoded representations
h = {hy,...,h7,} to a greedy decoder. Then the
greedy decoder generates a translated sentence in
target language by sequentially choosing the most
likely token at each step ¢:

yr = argmax, p(y|y<t,X). (2)

The distribution of next target word is defined as:

p(Yly<t, x) o< exp [pour (2¢)]
2t = d)DEC (yt—h Z<ty h) ) (3)

where z; is the decoder hidden state at position ¢.
In consecutive NMT, once obtained, the encoder
hidden states h and the decoder hidden state z; are
not updated anymore and will be reused during the
entire decoding process.

3 Simultaneous NMT

In SNMT, we receive streaming input tokens, and
learn to translate them in real-time. We formu-
late simultaneous translation as two nested loops:
the outer loop that updates an input buffer with
newly observed source tokens and the inner loop
that translates source tokens in the buffer updated
at each outer step.

More precisely, suppose at the end of outer step
s — 1, the input buffer is x*~* = {z1, ..., z;s_1)}»
and the output buffer is y*~! = {91, ..., Yr[s—1] -
Then at outer step s, the system translates with the
following steps:

1 The system observes c¢; > 0 new source to-
kens and updates the input buffer to be x° =
{1, ..., 2y} where n [s] = n[s — 1] + cs.

2 Then, the system starts inner loop transla-
tion and writes w, >= 0 target tokens to
the output buffer. The output buffer is up-
dated to be y* = {y1, ..., y,[5) } Where 7 [s] =
7 [s — 1] 4+ ws.

The simultaneous decoding process continues until
no more source tokens are added in the outer loop.
We define the last outer step as the terminal outer
step S, and other outer steps as non-terminal outer
steps.

For the outer loop, we make no assumption about
the value of c,, while all previous work assumes
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cs = 1. This setting is more realistic because
(i) increasing cs can reduce the number of outer
steps, thus reducing computation cost; (ii) in a real
speech translation application, an ASR system may
generate multiple tokens at a time.

For the inner loop, we adapt a pretrained vanilla
CNMT model to perform partial translation with
two important concerns:

1. Prefix translation: given a source prefix x° =
{®1, ..., 7[5} and a target prefix Yiis—1 =
{Y1y ey Yr[s—1] }, how to predict the remaining
target tokens?

2. Stopping criterion: since the NMT model is
trained with full sentences, how to design the
stopping criterion for it when translating par-
tial source sentcnes?

3.1 Prefix Translation

At an outer step s, given encoder hidden states h*
for source prefix x° = {1, ..., 2,5 } and decoder
hidden states z’ [s—1] for target prefix y? (s-1] =
{y1, .-; Yr[s—1)} we perform prefix translation se-
quentially with a greedy decoder:

2} = ¢pec (Y1, 224 h?)
P(yly<e, x*) o< exp [dour (27)]
yr = argmax, p(y|y<s, x°), (4)

where ¢ starts from ¢ = 7 [s — 1] + 1. The prefix
translation terminates when a stopping criterion
meets, yielding a translation y* = {y1, ..., Yr[g }-
However, a major problem comes from the above
translation method: how can we obtain the encoder
hidden states h® and decoder hidden states z” [s—1]
at the beginning of prefix translation? We propose
to rebuild all encoder and decoder hidden states

with

h* = ¢ENC(XS)7 (5)
Zi[s_l] = ¢DEC(yi[s_1]7hS)- (6)

During full sentence training, all the decoder hid-
den states are computed conditional on the same
source tokens. By rebuilding encoder and decoder
hidden states, we also ensure that the decoder hid-
den states are computed conditional on the same
source. This strategy is different from previous
work that reuse previous encoder (Cho and Esipova,
2016; Gu et al., 2017; Dalvi et al., 2018; Alinejad
et al., 2018) or decoder (Cho and Esipova, 2016;
Gu et al., 2017; Dalvi et al., 2018; Ma et al., 2018)
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Figure 1: Failure case when using EOS alone as the
stopping criterion.

hidden states. We carefully compare the effect of
rebuilding hidden states in Section 4.2 and experi-
ment results show that rebuilding all hidden states
benefits translation.

3.2 Stopping Criterion

In consecutive NMT, the decoding algorithm such
as greedy decoding or beam search terminates
when the translator predicts an EOS token or the
length of the translation meets a predefined thresh-
old (e.g. 200). The decoding for most source sen-
tences terminates when the translator predicts the
EOS token.! In simultaneous decoding, since we
use a NMT model pretrained on full sentences to
translate partial source sentences, it tends to pre-
dict EOS when the source context has been fully
translated. However, such strategy could be too ag-
gressive for simultaneous translation. Fig. 1 shows
such an example. At outer step 2, the translator
predicts “you EOS”, emiting target token “you”.
However, “you” is not the expected translation for
“f”” in the context of “f/RIF - ”. Therefore, we
hope prefix translation at outer step 2 can terminate
without emitting any words.

To alleviate such problems and do better simul-
taneous translation with pretrained CNMT model,
we propose two novel stopping criteria for prefix
translation.

3.2.1 Length and EOS Control

In consecutive translation, the decoding process
stops mainly when predicting EOS. In contrast, for
prefix translation at non-terminal outer step, we
stop the translation process when translation length
is d tokens behind source sentence length: 7[s] =
n[s] — d. Specifically, at the beginning of outer
step s, we have source prefix x° = {z1, ..., a;n[s]}
and target prefix yi[s_l] = {y1,.-sYr[s—1]}. Pre-
fix translation terminates at inner step ws when

'"We conduct greedy decoding on the validation set of
WMT15 EN—DE translation with fairseq-py, and find that
100% translation terminates with EOS predicted.
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Figure 2: Framework of our proposed model with the
TN controller.

predicting an EOS token or satisfying:

{ max(0,n[s] —7[s—1]—d) s<S
ws =

200 — 7 [s — 1] s=98

(7

where d is a non-negative integer that determines
the translation latency of the system. We call this
stopping criterion as Length and EOS (LE) stop-
ping controller.

3.2.2 Learning When to Stop

Although simple and easy to implement, LE con-
troller lacks the capability to learn the optimal tim-
ing with which to stop prefix translation. Therefore,
we design a small trainable network called train-
able (TN) stopping controller to learn when to stop
prefix translation for non-terminal outer step. Fig. 2
shows the illustration.

At each inner decoding step k for non-terminal
outer step s, the TN controller utilizes a stochas-
tic policy my parameterized by a neural network
to make the binary decision on whether to stop
translation at current step:

®)

where 27 [s—1)+k is the current decoder hidden state.
We implement fj with a feedforward network with
two hidden layers, followed by a softmax layer.
The prefix translation stops if the TN controller
predicts a,[;_1)44 = 1. Our TN controller is much
simpler than previous work (Gu et al., 2017) which
implements the READ/WRITE policy network us-
ing a recurrent neural network whose input is the
combination of the current context vector, the cur-
rent decoder state and the embedding vector of the
candidate word.

To train the TN controller, we freeze the NMT
model with pretrained parameters, and optimize

o (@rfs1 k2715 —1)41) = Jo(27s140)5

194

the TN network with policy gradient for reward
maximization J = Er, (ZtT;I r¢). With a trained
TN controller, prefix translation stops at inner de-
coding step ws when predicting an EOS token or
satisfying:

{

In the following, we talk about the details of the
reward function and the training with policy gradi-
ent.

Qr[s—1)4ws — 1 s< S

ws =200 — 7 [s — 1]

.
s< S

Reward To trade-off between translation quality
and latency, we define the reward function at inner
decoding step k of outer step s as:

Q

Tt =Ty D

+a-r,

(10)

where t = 7 [s — 1]+k, and r? and rf are rewards
related to quality and delay, respectively. a > 0
is a hyper-parameter that we adjust to balance the
trade-off between translation quality and delay.

Similar to Gu et al. (2017), we utilize sentence-
level BLEU (Papineni et al., 2002; Lin and Och,
2004) with reward shaping (Ng et al., 1999) as the
reward for quality:

0 { ABLEU(y*,y,t) k#wsors#S
re =
BLEU(y*,y) k=wsands=295
(11)
where

ABLEU(y*,y,t)
= BLEU(y*,y:) — BLEU(y*,y:—1) (12)

is the intermediate reward. Note that the higher
the values of BLEU are, the more rewards the TN
controller receives. Following Ma et al. (2018), we
use average lagging (AL) as the reward for latency:

0 k#wsors#S
.
—ldx,y) —d*]+ k=wsands=S
(13)
where
1 & t
dxy)==> Ih-—— (4

l[(t) is the number of observed source tokens
when generating the ¢-th target token, ¢,



Dataset Train Validation  Test
IWSLT16 193,591 993 1,305
WMTI15 | 3,745,796 3,003 2,169
NIST 1,252,977 878 4,103

Table 1: # sentences in each dataset.

argmin, (I(t) = |x|) denotes the earliest point
when the system observes the full source sentence,
A= % represents the target-to-source length ratio
and d* > 0 is a hyper-parameter called target delay
that indicates the desired system latency. Note that
the lower the values of AL are, the more rewards
the TN controller receives.

Policy Gradient We train the TN controller with
policy gradient(Sutton et al., 1999), and the gradi-

ents are:
T,
VoI = Er, ZRtve 10g7r6(at|')] , (15)
t=1

where R; = Z;‘F;t r; is the cumulative future re-
wards for the current decision. We can adopt any
sampling approach (Chen et al., 2017, 2018; Shen
et al., 2018) to estimate the expected gradient. In
our experiments, we randomly sample multiple
action trajectories from the current policy my and
estimate the gradient with the collected accumu-
lated reward. We try the variance reduction tech-
niques by subtracting a baseline average reward
estimated by a linear regression model from R;
and find that it does not help to improve the perfor-
mance. Therefore, we just normalize the reward in
each mini-batch without using baseline reward for
simplicity.

4 Experiments

4.1 Settings

Dataset We compare our approach with the base-
lines on WMT15 German-English2 (DE-EN) trans-
lation in both directions. This is also the most
widely used dataset to evaluate SNMT’s perfor-
mance (Cho and Esipova, 2016; Gu et al., 2017; Ma
et al., 2018; Arivazhagan et al., 2019; Zheng et al.,
2019). To further evaluate our approach’s efficacy
in trading off translation quality and latency on
other language pair and spoken language, we also

“http://www.statmt.org/wmt15/
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conduct experiments with the proposed LE and TN
methods on NIST Chinese-to-English? (ZH—EN)
translation and IWSLT16 German-English* (DE-
EN) translation in both directions. For WMT15, we
use newstest2014 for validation and newstest2015
for test. For NIST, we use MTO02 for validation,
and MTO05, MTO06, MTOS for test. For IWSLT16,
we use tst13 for validation and tst14 for test. All
the data is tokenized and segmented into subword
symbols using byte-pair encoding (Sennrich et al.,
2016) to restrict the size of the vocabulary. We
use 40,000 joint merge operations on WMT15, and
24,000 on IWSLT16. For NIST, we use 30,000
merge operations for source and target side sep-
arately. Without explicitly mention, we simulate
simultaneous translation scenario at inference time
with these datasets by assuming that the system
observes one new source token at each outer step,
i.e., cs = 1. Table 1 shows the data statistics.

Pretrained NMT Model We use Trans-
former (Vaswani et al., 2017) trained with
maximum likelihood estimation as the pretrained
CNMT model and implement our method
based on fairseq-py.> We follow the setting in
transformer_iwslt_de_en for IWSLT16
dataset, and transformer_wmt_en_de for
WMT15 and NIST dataset. Fairseq-py adds an
EOS token for all source sentences during training
and inference. Therefore, to be consistent with the
CNMT model implemented with fairseq-py, we
also add an EOS token at the end of the source
prefix for prefix translation and find that the EOS
helps translation.

TN Controller To train the TN controller, we use
a mini-batch size of 8,16,16 and sample 5,10,10
trajectories for each sentence pair in a batch for
IWSLT16, WMT15 and NIST, respectively. We
set the number of newly observed source tokens
at each outer step to be 1 during the training for
simplicity. We set « to be 0.04, and d* to be 2, 5, 8.
All our TN controllers are trained with policy gradi-
ent using Adam optimizer (Kingma and Ba, 2015)
with 30,000 updates. We select the last model as
our final TN controller.

Baseline We compare our model against three
baselines that utilize a pretrained CNMT model to

>These sentence pairs are mainly extracted from
LDC2002E18, LDC2003E07, LDC2003E14, Hansards por-
tion of LDC2004T07, LDC2004T08 and LDC2005T06

“https://workshop2016.iwslt.org/

Shttps://github.com/pytorch/fairseq
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Figure 3: Comparison with the baselines on the test set of WMT15 EN—DE and WMT15 DE—EN translations.
The shown points from left to right on the same line are the results of simultaneous greedy decoding with d* €
{2,5,8} for TN, d € {0,2,4,6,8} for LE, p € {0.65,0.6,0.55,0.5,0.45,0.4} for SL, k € {1,3,5,7,9} for
test_time_waitk and CW € {2, 5,8} for RWAgent. The scores of Greedy decoding: BLEU=25.16, AL=28.10 for
WMT15 EN—DE translation and BLEU=26.17, AL=31.20 for WMT15 DE—EN translation.
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Figure 4: Performance on the test set of IWSLT16 EN—DE translation, IWSLT16 DE—EN translation and NIST
ZH—EN translation. The shown points from left to right on the same line are the results of d* € {2, 5,8} for TN
and d € {0,2,4, 6,7} for LE. % ¥:full-sentence (greedy and beam-search).

perform simultaneous translation: We report the result with d € {0, 2,4, 6,8} for
our proposed LE method and d* € {2, 5, 8} for our

o test_time_waitk (Maetal., 2018): the method  proposed TN method. For all baselines, we cite the
that decodes with a waitk policy witha CNMT  regults reported in Zheng et al. (2019). ©

model. We report the results when k& €
{1,3,5,7,9}. 4.2 Results

We compare our methods with the baselines on the
test set of WMT15 EN—DE and DE—EN transla-
tion tasks, as shown in Fig. 3. The points closer to
the upper left corner indicate better overall perfor-
mance, namely low latency and high quality. We
observe that as latency increases, all methods im-
prove in quality. the TN method significantly out-

e RWAgent (Gu et al., 2017): the adaptation performs all the baselines in both translation tasks,

Of. Guetal. (2017)’s full—sentel.lce model and ®Since Zheng et al. (2019) did not mention the details
reinforced READ/WRITE policy network to of data preprocessing, we cannot compare the BLEU and
Transformer by Ma et al. (2018). We report AL scores directly with theirs. Therefore, we normalize the

. BLEU and AL scores with its corresponding upper bound,
the results when using CW e {27 5, 8} as the i.e. the BLEU and AL scores obtained when the pretrained

target delay. Transformer performs standard greedy decoding (Greedy).

e SL (Zheng et al., 2019): the method that
adapts CNMT to SNMNT by learning an
adaptive READ/WRITE policy from ora-
cle READ/WRITE sequences generated with
heuristics. We report the results with thresh-
old p € {0.65,0.6,0.55,0.5,0.45,0.4}.
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Figure 5: Comparison of whether to reuse previous en-
coder or decoder hidden states on WMT15 EN—DE
test set with the LE controller. The left Y axis is
the BLEU score and the right Y axis is the length
ratio: the translation length divided by the reference
length. The points on the same line are the results of
d € {0,2,4,6,8}. none: rebuild all encoder/decoder
hidden states; decoder: reuse decoder hidden states and
rebuild all encoder hidden states; encoder: reuse previ-
ous encoder hidden states and rebuild all decoder hid-
den states.

demonstrating that it indeed learns the appropriate
timing to stop prefix translation. LE outperforms
the baselines on WMT15 EN—DE translation at
high latency region and performs similarly or worse
on other cases.

We show the methods’ efficacy in trading off
quality and latency on other language pair and spo-
ken language in Fig. 4. TN outperforms LE on
all translation tasks, especially at the low latency
region. It obtains promising translation quality
with acceptable latency: with a lag of < 7 tokens,
TN obtains 96.95%, 97.20% and 94.03% BLEU
with respect to consecutive greedy decoding for
IWSLT16 EN—DE, IWSLT16 DE—EN and NIST
ZH—EN translations, respectively.

4.3 Analyze

We analyze the effect of different ways to obtain
the encoder and decoder hidden states at the be-
ginning of prefix translation with the LE controller.
Fig. 5 shows the result. We try three variants: a) dy-
namically rebuild all encoder/decoder hidden states
(none); b) reuse decoder hidden states and rebuild
all encoder hidden states (decoder); c) reuse previ-
ous encoder hidden states and rebuild all decoder
hidden states (encoder). The left Y axis and X
axis show BLEU-vs-AL curve. We observe that if
reusing previous encoder hidden states (encoder),
the translation fails. We ascribe this to the discrep-
ancy between training and decoding for the encoder.
We also observe that when d € 0,2, reusing de-
coder hidden states (decoder) obtain negative AL.
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To analyze this, we plot the translation to reference
length ratio versus AL curve with the right Y axis
and X axis. It shows that with decoder, the decod-
ing process stops too early and generates too short
translations. Therefore, to avoid such problem and
to be consistent with the training process of the
CNMT model, it is important to dynamically re-
build all encoder/decoder hidden states for prefix
translation.

Since we make no assumption about the cs, i.e.,
the number of newly observed source tokens at
each outer step, we also test the effect of differ-
ent c;. Fig. 6 shows the result with the LE and
TN controllers on the test set of WMT15 EN—DE
translation. We observe that as ¢, increases, both
LE and TN trend to improve in quality and worsen
in latency. When ¢ = 1, LE controller obtains
the best balance between quality and latency. In
contrast, TN controller obtains similar quality and
latency balance with different cs;, demonstrating
that TN controller successfully learns the right tim-
ing to stop regardless of the input update schedule.

We also analyze the TN controller’s adaptability
by monitoring the initial delay, i.e., the number
of observed source tokens before emitting the first
target token, on the test set of WMT15 EN—DE
translation, as shown in Fig. 7. d* is the target de-
lay measured with AL (used in Eq. 13). It demon-
strates that the TN controller has a lot of variance
in it’s initial delay. The distribution of initial delay
changes with different target delay: with higher
target delay, the average initial delay is larger. For
most sentences, the initial delay is within 1 — 7.

In speech translation, listeners are also con-
cerned with long silences during which no transla-
tion occurs. Following Gu et al. (2017); Ma et al.
(2018), we use Consecutive Wait (CW) to measure

this:
251G
5 .
> o1 Lu>0

Fig. 8 shows the BLEU-vs-CW plots for our
proposed two methods. The TN controller has
higher CW than the LE controller. This is be-
cause TN controller prefers consecutive updat-
ing output buffer (e.g., it often produces w; as
0000300000500004 ... while the LE
controller often updates its output buffer follow-
ing the input buffer (e.g., it often produces w; as
0000111111...whend = 4). Although larger
than LE, the CW for TN (< 6) is acceptable for
most speech translation scenarios.

S
s=1Cs

CW(xy) = (16)
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4.4 Translation Examples

Fig. 9 shows two translation examples with the LE
and TN controllers on the test set of NIST ZH—EN
and WMT15 EN—DE translation. In manual in-
spection of these examples and others, we find
that the TN controller learns a conservative timing
for stopping prefix translation. For example, in
example 1, TN outputs translation “wu bangguo
attended the signing ceremony” when observing
“RIVE HF 5 {0 H, instead of a more rad-
ical translation “wu bangguo attended the signing
ceremony and”. Such strategy helps to alleviate the
problem of premature translation, i.e., translating
before observing enough future context.
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5 Related Work

A number of works in simultaneous translation
divide the translation process into two stages. A
segmentation component first divides the incom-
ing text into segments, and then each segment is
translated by a translator independently or with pre-
vious context. The segmentation boundaries can
be predicted by prosodic pauses detected in speech
(Fiigen et al., 2007; Bangalore et al., 2012), lin-
guistic cues (Sridhar et al., 2013; Matusov et al.,
2007), or a classifier based on alignment informa-
tion (Siahbani et al., 2014; Yarmohammadi et al.,
2013) and translation accuracy (Oda et al., 2014;
Grissom et al., 2014; Siahbani et al., 2018).

Some authors have recently endeavored to per-
form simultaneous translation in the context of
NMT. Niehues et al. (2018); Arivazhagan et al.
(2020) adopt a re-translation approach where the
source is repeatedly translated from scratch as it
grows and propose methods to improve transla-
tion stability. Cho and Esipova (2016); Dalvi et al.
(2018); Ma et al. (2018) introduce a manually de-
signed criterion to control when to translate. Satija
and Pineau (2016); Gu et al. (2017); Alinejad et al.
(2018) extend the criterion into a trainable agent



1 2 3 4 5 6 7 8 9
R FPE HE T £ X £ T
LE wu bangguoattended  the signing ceremony and signed the agreement
TN wu bangguo attended the signing ceremony and signed the agreement
Greedy)| wu bangguo attended the signing ceremony and signed the agreement
Ref wu bangguo attends signing ceremony and signs agreement
INATO does not wantto break  agreements with Russia
LE Die NATO mochte  keine Abkommen mit Russland brechen
TN Die NATO will keine Abkommen mit Russland brechen
Greedy Die NATO mochte keine Abkommen mit Russland brechen
Ref NATO will Vereinbarungen mit Russland nicht brechen

Figure 9: Translation examples from the test set of NIST ZH—EN (example 1) and WMT15 EN—DE translation
(example 2). We compare LE with d = 4 and TN with d* = 5 because these two models achieve similar latency.
Greedy and Ref represent the greedy decoding result from consecutive translation and the reference, respectively.

in a reinforcement learning framework. However,
these work either develop sophisticated training
frameworks explicitly designed for simultaneous
translation (Ma et al., 2018) or fail to use a pre-
trained consecutive NMT model in an optimal
way (Cho and Esipova, 2016; Dalvi et al., 2018;
Satija and Pineau, 2016; Gu et al., 2017; Alinejad
et al., 2018; Zheng et al., 2019). In contrast, our
work is significantly different from theirs in the
way of using pretrained consecutive NMT model
to perform simultaneous translation and the design
of the two stopping criteria.

6 Conclusion

We have presented a novel framework for improv-
ing simultaneous translation with a pretrained con-
secutive NMT model. The basic idea is to translate
partial source sentence with the consecutive NMT
model and stops the translation with two novel stop-
ping criteria. Extensive experiments demonstrate
that our method with trainable stopping controller
outperforms the state-of-the-art baselines in balanc-
ing between translation quality and latency.
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