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Abstract
Named entity recognition is a critical task in

the natural language processing field. Most

existing methods for this task can only ex-

ploit contextual information within a sentence.

However, their performance on recognizing en-

tities in limited or ambiguous sentence-level

contexts is usually unsatisfactory. Fortunately,

other sentences in the same document can pro-

vide supplementary document-level contexts

to help recognize these entities. In addition,

words themselves contain word-level contex-

tual information since they usually have dif-

ferent preferences of entity type and relative

position from named entities. In this paper,

we propose a unified framework to incorporate

multi-level contexts for named entity recogni-

tion. We use TagLM as our basic model to

capture sentence-level contexts. To incorpo-

rate document-level contexts, we propose to

capture interactions between sentences via a

multi-head self attention network. To mine

word-level contexts, we propose an auxiliary

task to predict the type of each word to capture

its type preference. We jointly train our model

in entity recognition and the auxiliary classifi-

cation task via multi-task learning. The exper-

imental results on several benchmark datasets

validate the effectiveness of our method.

1 Introduction

Named Entity Recognition (NER) is defined as

automatically identifying and classifying named

entities into specific categories (e.g., person, loca-

tion, organization) in text. It is a critical task in

Natural Language Processing (NLP) and a prereq-

uisite for many downstream tasks, such as entity

linking (Luo et al., 2015), relation extraction (Feld-

man and Rosenfeld, 2006) and question answering

(Lee et al., 2006).

NER is usually modeled as a sentence-level se-

quence labeling task in previous work. For exam-

ple, Lample et al. (2016) used long-short term

Sentence 1

When Fred was still in High School he 
set up a business with his mother called 
Elizabeth Trump (PER) and Son.

×
When Fred was still in High School he 
set up a business with his mother called 
Elizabeth Trump and Son (ORG).

Russ Berrie and Co Inc (ORG) said on 
Friday that A. Curts Cooke (PER) will 
retire as chief operating officer.

Russ Berrie and Co Inc (PER) said on 
Friday that A. Curts Cooke (PER) will 
retire as chief operating officer.

×
Sentence 2

When Fred was still in high school he set
up a business with his mother called Elizabeth
Trump and Son.

While in college, Donald Trump (PER) began
his first real estate career at his father’s
company, Elizabeth Trump and Son (ORG).

Action Performance Cos Inc (ORG) said
Friday it has agreed to acquire Motorsport
Traditions Ltd (ORG) and Creative Marketing &
Promotions Inc (ORG) for aboud $13 million in
cash and stock. ……

Place Dome Inc (ORG) too was considered
unlikely because it is focusing on geographic
expansion in areas that ……

Russ Berrie and Co Inc said on Friday that A. 
Curts Cooke will retire as chief operating 
officer.

Document-level contextual evidence

Word-level contextual evidence

Figure 1: Examples of document- and word-level con-

textual evidence. Blue italic and red underlined entities

are the names of organizations and persons respectively.

Green and orange arrows indicate the document- and

word-level contextual evidence respectively.

memory (LSTM) (Gers et al., 2000) for captur-

ing contextual word representations and condi-

tional random fieid (CRF) (Lafferty et al., 2001) for

jointly label decoding. In recent years, language

models (LMs) were introduced to this task to learn

better contextual representations of words (Peters

et al., 2017, 2018; Devlin et al., 2019). However,

these methods only consider the contexts within a

sentence, which is insufficient.

Our work is motivated by the observation that

the contextual information beyond sentences can

mitigate the negative effects of the ambiguous and

limited sentence contexts. The sentences within a

document are highly related, and the interactions

between them can provide document-level contex-

tual information. For example, in Figure 1, sen-

tence 1 is ambiguous because it can be either his

mother called Elizabeth Trump or a business called

Elizabeth Trump and Son. But another sentence in

this document explicitly mentions Elizabeth Trump
and Son as a company’s name and solves the am-

biguity. Besides, words themselves contain prefer-
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ences of entity type and relative position from the

entities, and the preferences provide word-level
contextual information. For instance, the sentence

2 in Figure 1 has limited contexts, and the word

said can easily mislead the classification of the type

of Co Inc. However, the multiple mentions of Inc in

other sentences indicate its preference to appear as

the last word of organizations. Thus, these prefer-

ences of words have the potential to help recognize

entity types more correctly.

In this paper, we propose a unified framework

for NER to incorporate multi-level contexts. Our

framework is based on TagLM (Peters et al., 2017),

which captures morphological and sentence-level

contextual information with two-layer bidirectional

gated recurrent units (BiGRUs) (Chung et al.,

2014). We apply the neural attention mechanism

(Bahdanau et al., 2014) to the hidden states of

TagLM’s bottom BiGRU to learn sentence repre-

sentations, and contextualize them with a sentence-

level BiGRU. To mine document-level contexts,

we propose to apply the multi-head self attention

mechanism (Vaswani et al., 2017) to the sentence-

level BiGRU’s hidden states to capture the relations

between sentences. To fuse the document-level

context, we combine the output document represen-

tations of the self attention module with the corre-

sponding sentence’s bottom hidden states and feed

them into TagLM’s top BiGRU. Besides, to mine

word-level contextual information, we propose an

auxiliary word classifier to predict the probability

distributions of word labels because the label distri-

butions describe the type and position preferences

of words. The auxiliary word classification task is

jointly trained with our NER model via multi-task

learning. We concatenate the top BiGRU’s output

representations with the output probability vectors

of the word classifier to fuse the word-level context

and feed them into a CRF for sequence decoding.

The main contributions of this paper are:

• We propose to fuse multi-level contexts for

the NER task with a unified framework.

• We propose to exploit the document-level con-

text by capturing the interactions between sen-

tences within a document with the multi-head

self attention mechanism.

• We propose to mine the word-level context

with an auxiliary word classification task to

learn the words’ preferences of entity type and

relative position from the entities.

• We conduct experiments on several bench-

mark datasets, and the results validate the ef-

fectiveness of our method.

2 Related Work

In traditional NER methods, contexts are usually

modeled via hand-crafted features. For example,

Passos et al. (2014) trained phrase vectors in their

lexicon-infused skip-gram model. Lin and Wu

(2009) used a linear chain CRF and added phrase

cluster features extracted from the web data. How-

ever, these methods require heavy feature engineer-

ing, which necessities massive domain knowledge.

In addition, these methods cannot make full use of

contextual information within texts.

In recent years, many neural networks were ap-

plied to the NER task. Collobert et al. (2011) first

adopted CNNs to learn word representations. Re-

cently, BiLSTM was widely used for long distance

context modeling (Chiu and Nichols, 2016; Lam-

ple et al., 2016; Ma and Hovy, 2016). Additionally,

Chiu and Nichols (2016) employed CNNs to cap-

ture morphological word representations; Lample

et al. (2016) utilized CRF to model the dependen-

cies between adjacent tags; Ma and Hovy (2016)

proposed LSTM-CNNs-CRF model to combine the

strengths of these components. Besides, Strubell

et al. (2017) proposed iterated-dilated CNNs for

higher efficiency than BiLSTM and better capacity

with large context than vanilla CNNs. Recent work

proved that the context-sensitive representations

captured by language models are useful in NER

systems. Peters et al. (2017) proposed TagLM

model and introduced LM embeddings in this task.

Afterwards, ELMo (Peters et al., 2018) and BERT

(Devlin et al., 2019) were proposed for better con-

textual representations. However, these methods

focused only on the context within a sentence, so

their performance is substantially hurt by the ambi-

guity and limitation of sentence context.

To combine contexts beyond sentences, several

methods were proposed to mine document-level

information, such as logical rules (Mikheev et al.,

1999), global attention (Xu et al., 2018; Zhang et al.,

2018; Hu et al., 2020) and memory mechanisms

(Gui et al., 2020). But these methods ignored the

sequential characteristics of the sentences within a

document, which may be sub-optimal. We observe

that contextual associations between sentences in a

document have the potential of improving the NER

performance. Moreover, the words’ preferences of

entity type and relative position from the entities
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……

The sat on the hat<BOS>

…

cat The ate the hat .<BOS> cat
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Figure 2: Overview of our multi-level context framework. The character representation is captured with a two-

layer BiGRU. The document representation is captured with the multi-head self attention mechanism. The word

label distribution is predicted by a two-layer neural network.

contain word-level contextual information, which

is ignored by most previous work.

Based on these observations, we propose a uni-

fied framework to combine multi-level contexts in

this paper. Our framework is based on the TagLM

model, which captures sentence-level context with

two stacked BiGRUs and models tag dependen-

cies with CRF. To exploit the document-level con-

text, we propose to capture the interactions between

sentences within a document with multi-head self

attention mechanism (Vaswani et al., 2017). Be-

sides, to mine the word-level context, we propose

an auxiliary word classification task to encode the

words’ type and position preferences. We train our

model in the NER and the auxiliary task via multi-

task learning. We conduct experiments on several

benchmark datasets, and the results demonstrate

the effectiveness of multi-level contexts.

3 Our Approach

In this section, we will introduce our approach in

detail. The overall framework of our approach is

shown in Figure 2. We will first briefly introduce

the basic model in our approach, then introduce

how to incorporate document- and word-level con-

texts into our model.

3.1 Baseline NER model

We choose TagLM (Peters et al., 2017) as our ba-

sic model. TagLM first captures character-level

information of words because named entities usu-

ally have specific morphological patterns. For ex-

ample, China refers to the country in most cases,

while china mostly refers to porcelains. Therefore,

given a sentence of words w1, w2, . . . , wn, TagLM

learns morphological information with a two-layer

BiGRU, as shown in Figure 2. It takes the character

embeddings (whose dimension denoted as dce) as

input, and the last output hidden state is adopted as

character representation ck. Then we concatenate

ck with a word embedding wk to construct context-

independent representation xk for each word:

ck = BiGRU(wk; θc) ∈ R
dch

wk = E(wk; θw) ∈ R
dwe

xk = [ck;wk] ∈ R
dwe+dch

(1)

The word embedding wk is obtained by looking

up a pre-trained embedding matrix θw, which is

fine-tuned during training (Collobert et al., 2011).

To learn context-sensitive word representations,

TagLM applies two layers of BiGRUs on [x1:n].
Then the pre-trained LM embeddings are concate-

nated with the hidden states of the bottom BiGRU.

We denote the output of the bottom and the top

BiGRU as hword
k ∈ R

dsh and hseq
k ∈ R

dsqh :

hword
k = BiGRU(xk),

hseq
k = BiGRU([hword

k ;LMk]).
(2)

Finally, we feed [hseq
1:n] into a linear-chain CRF to

model the correlations between labels in neighbor-
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hoods and jointly decode the best label sequence.

The probabilistic model for linear CRF defines a

family of conditional probability p(y|z;θ) over all

possible label sequences y given z:

p(y|z;θ) =
∏n

i=1 ψi(yi−1, yi, z)∑
y′∈Y(z)

∏n
i=1 ψi(y′i−1, y

′
i, z)

(3)

where ψi(y
′, y, z) = exp(W�

y′,yzi + by′,y) are po-

tential functions, and Wy′,y,by′,y are parameters

of the CRF. Following Lafferty et al. (2001) and

Collobert et al. (2011), we utilize the sentence

CRF loss for training, which is formulated as the

negative log-likelihood:

LCRF = −
∑

i

log p(y|z;θ) (4)

We compute the likelihood using the forward-

backward algorithm at the training phase, and use

the Viterbi algorithm to find the most likely label

sequence at the test phase.

3.2 Document-level Context
Sentences within a document are highly correlated,

and these correlations provide contextual informa-

tion at the document level. For example, in the

document “Jason Little is a rugby union player. Lit-

tle won 75 caps as captain”, the second sentence is

ambiguous because it can also mean “Hardly any

person won 75 caps as captain”. In this case, the

first sentence in this document explicitly mentions

Jason Little as a player. The interaction between

the two sentences helps to solve this ambiguity.

Therefore, we capture and fuse the document-level

context as follows.

To capture the document-level context, we first

obtain the context-independent sentence represen-

tations. Since each word in a sentence has different

importance (e.g. a contributes less information than

player in “Jason Little is a rugby union player.”)

, we apply the neural attention mechanism (Bah-

danau et al., 2014) to filter the uninformative words

and learn better sentence representations. Then we

contextualize these representations with a sentence-

level BiGRU. Formally,

αk = softmax(u�
w · tanh(Wah

word
k + ba))

si =
n∑

k=1

αkh
word
ik

hsen
i = BiGRU(si)

(5)

where Wa ∈ R
dna×dwh ,ba ∈ R

dna ,uw ∈ R
dna

are the parameters of the neural attention module.

Next, we propose to capture the interactions be-

tween sentences with the multi-head self attention

mechanism (Vaswani et al., 2017). In most exist-

ing attention mechanisms, a sentence’s attention

weight is only based on its representation, and the

relationships between sentences cannot be mod-

eled. Self attention is an effective way to capture

the interactions between sentences. Besides, a sen-

tence may interact with multiple sentences. For

example, in the document “LeBron James is a bas-

ketball player for the Lakers. In 2016 James won

the championship of NBA. In 2018 he signed with

the Lakers”, the first sentence interacts with the

remaining two sentences simultaneously because

they jointly mention James and Lakers respectively.

Thus, we propose to apply the multi-head self at-

tention mechanism to learn better representations

of sentences by modeling their relationship with

multiple sentences. We first project the sentence

hidden states into the h-th sub-space, and calculate

the attention weights in this sub-space:

[Q
(h)
j ;K

(h)
j ;V

(h)
j ] = [W

(h)
Q ;W

(h)
K ;W

(h)
V ]hsen

j

z
(h)
ij = Q

(h)
i

�
K

(h)
j , β

(h)
ij =

exp
(
z
(h)
ij

)

∑
j exp

(
z
(h)
ij

)
(6)

Then we calculate the sub-representation y
(h)
i for

the i-th sentence by weighted summing the V
(h)
j .

Finally, these sub-representations are concatenated

and projected, resulting in the final representation

di for the i-th sentence. We denote the number of

heads as H and the sub-space dimension of each

head as dsa, then we have:

y
(h)
i =

∑

j

β
(h)
ij V

(h)
j

di =WO[y
(1)
i ; . . . ;y

(h)
i ; . . . ;y

(H)
i ]

(7)

where W
(h)
Q ,W

(h)
K ,W

(h)
V ∈ R

dsa×dsh ,WO ∈
R
dsh×Hdsa are projection matrices. di combines

representations of all sentences within this docu-

ment, thus is regarded as the document representa-

tion for the i-th sentence.

To fuse the document-level context, we first add

a special token <BOS> (denoted as wi0) at the be-

ginning of the sentence wi1, . . . , win, and feed the

sentence into TagLM’s bottom BiGRU to compute

[hword
i0 ,hword

i1 , . . . ,hword
in ]. Next we compute the

document representation di and replace hword
i0 with

it (requires dwh = dsh). Then we feed them into
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the top BiGRU. The input of the top BiGRU con-

tains document- and sentence-level contextual rep-

resentations simultaneously. Thus its output hidden

states act as the fusion of the two contexts.

3.3 Word-level Context
In natural language, words themselves have differ-

ent preferences on different entity types and rela-

tive positions from the entities. These preferences

provide word-level contextual information for the

NER task. For example, in the sentence “With only

one match before New Year, Real will spend Christ-

mas ahead of others”, the type of the entity Real
is uncertain because the context of the sentence is

inadequate. However, Real prefers to appear as the

first word of organizations (e.g. Real Madrid, Real
Betis are football clubs). This preference helps to

ensure the entity type of Real. Thus we learn and

incorporate the word-level context as follows.

To learn the word-level context, we encode the

preferences with the probability distributions of

word labels, because the label of a word indicates

its entity type and relative position from the entities

(e.g., B-ORG means the first word of an organiza-

tion). To learn the distributions automatically, we

propose an auxiliary word classification task and

employ a two-layer neural network as the classifier.

The classifier’s input consists of the morphological

representation ck and the word embedding wk. Be-

sides, we add a position embedding pk to represent

the relative position information:

pk = E(k; θp) ∈ R
dpe

x′
k = [ck;wk;pk] ∈ R

dwe+dch+dpe
(8)

where pk is obtained by looking up a randomly-

initialized embedding matrix and tuned during

training. Then x′
k is fed into the two-layer clas-

sifier to predict label distribution:

mk = tanh(Wc1x
′
k + bc1)

plabel
k = softmax(Wc2mk + bc2)

(9)

where Wc1 ∈ R
dlch×(dwe+dch+dpe), bc1 ∈ R

dlch ,

Wc2 ∈ R
|C|×dlch , bc2 ∈ R

|C| are the parameters

of the classifier (the number of all labels denoted

as |C|). During training, we use plabel
k to compute

the loss function for word classification, which is

formulated as cross-entropy loss:

LWC(θ) = −
n∑

k=1

log plabelk (yk|θ). (10)

To incorporate the word-level context, we con-

catenate plabel
ik with the original CRF input hseq

ik

to enrich word representations with the label dis-

tributions (Seyler et al., 2018). The CRF takes

the enhanced word representations as input and de-

codes the best label sequence. Our framework is

jointly trained on the original NER and the auxil-

iary classification task via multi-task learning:

L(θ) = LCRF (θ) + λLWC(θ), (11)

where λ is the weight of word classification loss.

4 Experiments

4.1 Datasets and Evaluation Metrics
We evaluate our approach on the CoNLL-2002,

CoNLL-2003, and Wikigold NER datasets. The

Wikigold dataset contains annotations for English

(denoted as WIKI). The CoNLL-2002 dataset con-

tains annotations for Dutch (denoted as NLD)1.

The CoNLL-2003 dataset contains annotations for

English and German (denoted as ENG and DEU
respectively). All datasets are manually tagged

with four different entity types (LOC, PER, ORG,

MISC). The CoNLL datasets have standard train,

development, and test sets. Since the Wikigold

dataset doesn’t have standard separation, we ran-

domly split the data into the three sets and perform

all experiments on the same separation. Table 1

shows the number of documents and sentences of

the datasets. We report the official micro-averaged

F1 scores on all the datasets.

Dataset Train Dev. Test

WIKI 101 (1,227) 22 (402) 22 (212)

NLD 287 (16,093) 74 (2,969) 119 (5,314)

DEU 533 (12,705) 201 (3,068) 155 (3,160)

ENG 946 (14,987) 216 (3,466) 231 (3,684)

Table 1: Numbers of documents (and sentences) in

datasets statistics.

4.2 Experimental Settings
In our experiments, we use the BIOES label-

ing scheme for output tags, which was proven

to outperform other options in previous work

(Ratinov and Roth, 2009). Under this tagging

scheme, the number of labels |C| = 17 ([B,I,E,S]×
1The CoNLL-2002 dataset contains Dutch and Spanish

data. But the Spanish data lacks the marks of doucument
boundaries. Thus we only conduct experiments on the Dutch
data.
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Hyper-parameter Value

Word embedding dim. (dwe) 50/300

Character embedding dim. (dce) 25

Position embedding dim. (dpe) 30

Character hidden state dim. (dch) 80

Word hidden state dim. (dwh) 300

Sentence hidden state dim. (dsh) 300

Sequence hidden state dim. (dsqh) 300

Neural attention subspace dim. (dna) 100

Self attention subspace dim. (dsa) 60

Label classifier hidden dim. (dlch) 64

Number of heads (H) 5

Weight of LWC (λ) 0.1

Table 2: Hyper-parameters of our model.

[LOC,PER,ORG,MISC] + O). For English datasets,

we use the 50-dimensional Senna word embeddings

(Collobert et al., 2011) and pre-process the text by

lower-casing the words and replacing all digits with

0 (Chiu and Nichols, 2016; Peters et al., 2017). For

Dutch and German datasets, we use the pre-trained

300-dimensional word2vec embeddings (Mikolov

et al., 2013), which are trained on the Wikipedia

dumps2. We adopt ELMo (Peters et al., 2018; Che

et al., 2018) as the pre-trained LM embeddings3.

The hyper-parameters of our model are shown in

Table 2. For regularization, we add 25% dropout

(Srivastava et al., 2014) to the input of all BiGRUs,

but not to the recurrent connections.

Following Peters et al. (2017), we use the Adam

optimizer (Kingma and Ba, 2014) with gradient

norms clipped at 5.0. We fine-tune the pre-trained

word embeddings and ELMo model parameters.

We train our model with a constant learning rate of

γ = 0.001 for 20 epochs. Then we start a simple

learning rate decay schedule: divide γ by ten, train

for 5 epochs, divide γ by ten, train for 5 epochs

again and stop. We train the model’s parameters on

the train set and tune the hyper-parameters on the

development set. Then we compute F1 score on the

test set at the epoch with the highest development

performance. Following previous work (Chiu and

Nichols, 2016; Peters et al., 2017), we train our

model for multiple times with different random

2https://github.com/Kyubyong/wordvectors
3We also conduct experiments with TagLM+BERTBASE

with released parameters. Due to the limitation of GPU mem-
ory, we didn’t fine-tune BERT. The dev and test set F1 scores
are 95.03±0.22 and 91.64±0.18 respectively. Our results
have a surprisingly huge gap between the reported scores (we
refer readers to Section 4.3 and 5.4 of Devlin et al. (2019)).

seeds and report the mean of F1.

4.3 Performance Evaluation

To demonstrate the effectiveness of our method, we

compare our experimental results on the CoNLL-

2002 and CoNLL-2003 datasets with previously

published state-of-the-art models: Ando and Zhang

(2005) proposed a structural learning algorithm

for semi-supervised NER; Qi et al. (2009) pro-

posed Word-Class Distribution Learning (WCDL)

method; Nothman et al. (2013) introduced

Wikipedia articles as extra knowledge; Gillick et al.

(2015) proposed a byte-level model for multilin-

gual NER; Lample et al. (2016) proposed BiLSTM-

CRF model; Yang et al. (2017) applied transfer

learning mechanism for NER; Peters et al. (2018)

proposed ELMo embeddings; Clark et al. (2018)

proposed Cross-View Training (CVT) method; De-

vlin et al. (2019) proposed BERT representations;

Liu et al. (2019) introduced external gazetters to

this task; Akbik et al. (2018) proposed contextual

character language model and achieved the state-

of-the-art performance; Zhang et al. (2018) and

Hu et al. (2020) utilized global attention to mine

document-level information; Gui et al. (2020) used

memory mechanism to capture document-level la-

bel consistency. Table 3 shows the comparison

results, from which we can observe that the in-

corporation of multi-level contexts brings 0.47%,

Method ENG DEU NLD

Ando et al. (2005) 89.31 75.27 −
Qi et al. (2009) 88.69 75.72 −
Nothman et al. (2013) 85.2 66.5 78.6

Gillick et al. (2015) 86.50 76.22 82.84

Lample et al. (2016) 90.94 78.76 81.74

Yang et al. (2017) 91.26 − 85.19

Peters et al. (2018) 92.22 − −
Clark et al. (2018) 92.6 − −
Akbik et al. (2018) 93.09 88.32 −
Devlin et al. (2019) 92.8 − −
Liu et al. (2019) 92.75 − −
Zhang et al. (2018) 91.81 79.21 87.40

Hu et al. (2020) 91.92 − −
Gui et al. (2020) 93.05 − −
TagLM (Peters et al., 2017) 91.93 − −
TagLM+ELMo (baseline) 92.21† 77.83† 88.05†

Our model 92.68∗ 78.87∗ 88.93∗

Table 3: Comparison results of F1 score on the CoNLL-

2002 and CoNLL-2003 test sets. † denotes the re-

sults of our implementation. ∗ denotes statistically sig-

nificant improvements over the baseline model with

p < 0.01 under a t-test.
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Figure 3: An ablation study of our framework. We compare the mean of test set F1 score under the four settings

on the four datasets. The bars indicate the standard deviation of F1 score.

1.04%, and 0.88% absolute F1 score improvement

on the English, German and Dutch dataset respec-

tively compared with our baseline model. In addi-

tion, our model outperforms most of the previous

sentence- and document-level methods on the three

languages. The improvements demonstrate the ef-

fectiveness of our framework, which fully exploits

the document and word-level contexts and com-

bines the multi-level contexts. With the assistance

of multi-level contexts, our model can capture more

contextual information beyond sentences and rec-

ognize entities more correctly.

4.4 Ablation Study

To study the contribution of the document- and

word-level context respectively, we conduct ex-

periments on two settings: only incorporating the

word-level context and the document-level context,

and compare the F1 score with our model. Fig-

ure 3 shows the results, from which we have the

following observations: (1) The document- and

word-level contexts both bring improvements on

the four datasets. It indicates the utility of these

contexts respectively. The document-level context

contains interactions between sentences within a

document. The word-level context contains words’

type and position preferences. Either of the con-

texts can help alleviate the effects of limited or

ambiguous sentence context. (2) The multi-level

contexts method improves the F1 score over the

other two settings on all the datasets. It validates

the effectiveness of the fusion of multi-level con-

texts. Our framework can exploit and fuse the con-

texts at the document and word level simultane-

ously. With the assistance of more extra contextual

information from the document and word level, our

method performs better than the other two settings

of combining only one context.

4.5 Analysis

4.5.1 How to fuse the document-level
context?

In this experiment, we propose four alternative

ways to fuse document-level contextual representa-

tion di with sentence-level contextual representa-

tions hword
i or hseq

i (Equation 2):

• Concatenate hword
ik with di;

• Add hword
ik to di;

• Initialize hseq
i(−1) with di;

• Replace hword
i0 with di.

Table 4 shows the comparison result on the CoNLL-

2003 English test set. The first two options es-

sentially translate hword
ik in the vector space, be-

cause they enhance hword
ik with the same di for

all words. Therefore they cannot fully combine

the contexts. To distinguish between the latter two

options, we need to focus on the internal calcu-

lation of GRU: ht = (1 − zt)nt + ztht−1,nt =
tanh(Winxt+bin+rt(Whnht−1+bhn)). GRU

uses non-linearly transformed xt and raw ht to

calculate hidden states. We speculate that the non-

linear transformation on di aligns it to the same

space as hword
ik and produces better performance.

4.5.2 How to fuse the word-level context?
In this experiment, we compare three ways of fus-

ing word-level contextual representations plabel
i

with the sentence-level context:

• Concatenate the input xk with plabel
ik ;

• Concatenate hword
ik with plabel

ik ;

• Concatenate hseq
ik with plabel

ik .
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λ

Figure 4: The CoNLL 2003 English test set perfor-

mance of our model with different λ.

Table 5 shows the comparison results. The first

two options use BiGRU to encode the label distri-

butions but perform worse than the last one using

CRF. We speculate that CRF is more suitable to

encode the distributions of word label than BiGRU

because there exist strong connections between two

adjacent words’ label distributions intuitively.

4.5.3 Which attention mechanism to use at
document level?

In this part, we compare three choices of atten-

tion mechanism: the multi-head self attention, self
attention, and the most-popular neural attention
mechanism. Table 6 shows the comparison results.

We can observe that the self attention mechanism

outperforms neural attention because it can capture

interactions between sentences in the document.

In contrast, the neural attention mechanism only

learns the sentence’s weight based on its representa-

tion, thus fails to capture the interactions. Further-

more, multi-head self attention performs better than

self attention because it can capture a sentence’s

interactions with multiple sentences.

4.5.4 How to choose the weight λ of the
auxiliary task ?

We conduct experiments on different weights λ to

investigate its influence and illustrate the result in

Figure 4. We speculate that λ controls the propor-

Document-level fusion method F1± std
Concatenate hword

ik with di 92.36±0.08

Add hword
ik to di 92.43±0.05

Initialize hseq
i(−1) with di 92.42±0.10

Replace hword
i0 with di 92.68±0.09

Table 4: Comparison of different ways of fusing the

document-level context on CoNLL 2003 test set.

Fusion method F1± std
Concatenate plabel

ik with xk 91.99±0.14

Concatenate plabel
ik with hword

ik 92.33±0.11

Concatenate plabel
ik with hseq

ik 92.68±0.09

Table 5: Comparison of different ways of fusing the

word-level context on CoNLL 2003 test set.

Attention mechanism F1± std
Neural attention 92.49±0.10

Self attention 92.52±0.09

Multi-head self attention 92.68±0.09

Table 6: Comparison of different attention mechanisms

at document level on CoNLL 2003 test set.

Case

#1

Label LITTLE TO MISS CAMPESE FAREWELL

TagLM LITTLE TO MISS CAMPESE FAREWELL

Ours LITTLE TO MISS CAMPESE FAREWELL

D-lvl Centre Jason Little will miss ...

Case

#2

Label ... play at the Melbourne Cricket Ground.

TagLM ... play at the Melbourne Cricket Ground.

Ours ... play at the Melbourne Cricket Ground.

W-lvl
1. ... the Sydney Cricket Ground ...

2. ... the Melbourne Cricket Ground ...

Table 7: Comparison between the baseline and our

method on two cases. Blue, red and orange entities indi-

cate the names of organizations, persons and locations.

The bold words are word-level (W-lvl) or document-

level (D-lvl) supporting contextual evidence.

tion of the word-level context in all contexts. When

λ changes, the balance of the contexts is broken,

and the performance is affected. Besides, λ con-

trols the learning rate of the word label classifier’s

parameters. Its increase and decrease will hurt the

accuracy of the label classification.

4.6 Case Study

Table 7 shows the comparison of the baseline and

our model on two example sentences. In the first

case, the ambiguity of LITTLE disturbs the baseline

model. Our model finds another explicit mention

Jason Little as a person (centre) in this document

and correctly identifies this entity. In the second

case, the Melbourne Cricket Ground (location) is

wrongly classified as organization, because one

can either play at a team or play at a stadium. Our

model notices the two other mentions of Ground,

both of which appears as the last word of loca-

tion, and corrects the erroneous entity type. The

examples prove that our model can mine contex-

tual information outside sentences and recognize
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entities more correctly than the baseline model.

5 Conclusion

In this paper, we propose a unified structure to in-

corporate multi-level contexts for the NER task.

We use TagLM as our baseline model to capture

the sentence-level context. To incorporate the

document-level context, we propose to learn re-

lationships between sentences within a document

with the multi-head self attention mechanism. Be-

sides, to mine word-level contextual information,

we propose an auxiliary task to predict the word

type to capture its type preferences. Our model

is jointly trained on the NER and auxiliary tasks

through multi-task learning. We evaluate our model

on several benchmark datasets, and the experimen-

tal results prove the effectiveness of our method.
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