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Abstract

Typically, tokenization is the very first step in
most text processing works. As a token serves
as an atomic unit that embeds the contextual in-
formation of text, how to define a token plays
a decisive role in the performance of a model.

Even though Byte Pair Encoding (BPE) has
been considered the de facto standard tokeniza-
tion method due to its simplicity and universal-
ity, it still remains unclear whether BPE works
best across all languages and tasks. In this pa-
per, we test several tokenization strategies in
order to answer our primary research question,
that is, “What is the best tokenization strategy
for Korean NLP tasks?”

Experimental results demonstrate that a hybrid
approach of morphological segmentation fol-
lowed by BPE works best in Korean to/from
English machine translation and natural lan-
guage understanding tasks such as KorNLI,
KorSTS, NSMC, and PAWS-X. As an excep-
tion, for KorQuAD, the Korean extension of
SQuAD, BPE segmentation turns out to be the
most effective.

Our code and pre-trained models are pub-
licly available at https://github.com/

kakaobrain/kortok.

1 Introduction

Tokenization is the very first step in most text pro-
cessing works. Not surprisingly, tremendous aca-
demic efforts have been made to find the best tok-
enization method for various NLP tasks. For the
past few years, Byte Pair Encoding (BPE) (Gage,
1994) has been considered the de facto standard
tokenization technique since it was reintroduced by
Sennrich et al. (2016a). Besides the fact that BPE
turns out to be very effective in the machine transla-
tion task, another important reason BPE has gained

∗*Equal contribution.

such popularity is that BPE is a data-driven sta-
tistical algorithm so it is independent of language.
However, it is still not clear whether BPE works
best across all languages, irrespective of tasks.

In this paper we study various tokenization strate-
gies for Korean, a language which is morpholog-
ically by far richer than English. Concretely, we
empirically examine what is the best tokenization
strategy for Korean to English / English to Ko-
rean machine translation tasks, and natural lan-
guage understanding (NLU) tasks—machine read-
ing comprehension (MRC), natural language in-
ference (NLI), semantic textual similarity (STS),
sentiment analysis, and paraphrase identification.
We are particularly interested in how complemen-
tary BPE and linguistically motivated segmentation
are.

2 Background

2.1 MeCab-ko: A Korean Morphological
Analyzer

MeCab (Kudo, 2006) is an open-source morpholog-
ical analyzer based on Conditional Random Fields
(CRFs). It is originally designed for Japanese, but
also serves generic purposes so it can be applied to
other languages. MeCab-ko1, a Korean extension
of MeCab, started from the idea that MeCab can
be easily extended to the Korean language due to
the close similarity between Japanese and Korean
in terms of morphology or syntax.

MeCab-ko trained its model on the Sejong Cor-
pus (Kang and Kim, 2001), arguably the largest
Korean corpus morphologically annotated by many
experts, using MeCab. Ever since released in 2013,
MeCab-ko has been widely used for many Korean
NLP tasks due to its high accuracy and good usabil-
ity. For example, the Workshop on Asian Transla-

1https://bitbucket.org/eunjeon/
mecab-ko

https://github.com/kakaobrain/kortok
https://github.com/kakaobrain/kortok
https://bitbucket.org/eunjeon/mecab-ko
https://bitbucket.org/eunjeon/mecab-ko
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Tokenization Tokenized Sequence
Raw Text 나랑쇼핑하자.
CV (4.1) ㄴ/ㅏ/ㄹ/ㅏ/ㅇ/?/ㅅ/ㅛ/ㅍ/ㅣ/ㅇ/ㅎ/ㅏ/ㅈ/ㅏ/.
Syllable (4.2) 나/랑/?/쇼/핑/하/자/.
Morpheme (4.3) 나/랑/?/쇼핑/하/자/.
Subword (4.4) 나랑/ 쇼/핑하/자/.
Morpheme-aware Subword (4.5) 나/ 랑/?/ 쇼/핑/ 하/ 자/ .
Word (4.6) 나랑/쇼핑하자/.

Table 1: An input sentence나랑쇼핑하자. ‘Let’s go shopping with me.’ is differently tokenized depending on
the various tokenization strategies. Slashes (/) are token separators.

tion (WAT) has adopted it as the official segmenta-
tion tool for evaluating Korean machine translation
results since 2015. (Nakazawa et al., 2015, 2016,
2017, 2018, 2019).

2.2 Byte Pair Encoding

Byte Pair Encoding (BPE) is a simple data com-
pression technique that iteratively replaces the most
frequent pair of bytes in text with a single, unused
byte (Gage, 1994). Since Sennrich et al. (2016b)
successfully applied it to neural machine transla-
tion models, it has been regarded as the standard
tokenization method across languages.

Korean is not an exception; Park et al. (2019b)
applied BPE to the Korean text in the Korean to
Japanese task of WAT 2019 and ranked first. In ad-
dition, most recent Korean neural language models
(e.g., KoBERT2) used BPE to tokenize the training
text.

3 Related Work

There have been extensive studies about tokeniza-
tion techniques for machine translation. Several
papers claimed that a hybrid of linguistically in-
formed segmentation and a data-driven method
like BPE or unigram language modeling performs
the best for non-English languages. Banerjee and
Bhattacharyya (2018) combined an off-the-shelf
morphological segmenter and BPE in Hindi and
Bengali translations against English. Tawfik et al.
(2019) used a retrained version of linguistically
motivated segmentation model along with statis-
tical segmentation methods for Arabic. Pinnis
et al. (2017) adopted linguistic guidance to BPE
for English-Latvian translation. Particularly (Park
et al., 2019a) is close to ours, but their main focus
is on preprocessing techniques for neural machine

2https://github.com/SKTBrain/KoBERT

translation like parallel corpus filtering rather than
on tokenization strategies per se.

Compared with the tokenization studies for ma-
chine translation, those for NLU tasks have gained
less attention. Among them is Bostrom and Durrett
(2020), which compared the fine-tuning task per-
formance of BERT (Devlin et al., 2019) pre-trained
with BPE and unigram language modeling. Moon
and Okazaki (2020) proposed a novel encoding
method for Korean and showed its efficiency in
vocabulary compression with a few Korean NLU
datasets.

4 Tokenization Strategies

We introduce assorted Korean tokenization strate-
gies arranged from the smallest to the largest unit.
Each of them induces different tokenization results,
as illustrated in Table 1.

4.1 Consonant and Vowel (CV)

In Hangul, the standard Korean writing system,
consonants and vowels, called Jamo in Korean, cor-
responding to Latin letters are assembled to form
a syllable character. For example, a Hangul conso-
nantㅎ /h/ (U+314E) is combined with a vowelㅏ
/a/ (U+314F) to make a syllable character하 /ha/
(U+558). Readers who are not familiar with such
a mechanism can think of Jamo and syllables as
atoms and molecules respectively. As a molecule
H2O can be decomposed into two H atoms and an
O atom, a syllable하 /ha/ can be decomposed into
its constituent consonantㅎ /h/ and vowelㅏ /a/.
The first syllable나 /na/ of the raw text in Table 1
is tokenized intoㄴ /n/ andㅏ /a/, and the second
syllable 랑 /lang/ is tokenized into ㄹ /l/, ㅏ /a/,
andㅇ /ng/, and so on. A whitespace is replaced
by a special symbol ?.

https://github.com/SKTBrain/KoBERT
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4.2 Syllable

We can tokenize a sentence at the syllable level. A
whitespace is replaced by the special symbol ?.

4.3 Morpheme

MeCab-ko provides a convenient tokenization op-
tion in the command line interface3. For example,
it returns A, B, and C given an input text AB C,
where A-C represent morphemes. Note that the
original space between AB and C is missing in the
output token list. Accordingly, it is NOT possi-
ble to recover the original text from the tokenized
result.

This can be problematic in some tasks that re-
quire us to restore the input text such as machine
translation whose target language is Korean, or
machine reading comprehension where we are ex-
pected to suggest a certain phrase in the given text
as the answer.

For this reason, we insert a special token ?
(U+2B51) to the original whitespace position. As
a result, in the above example, the tokenized se-
quence looks like A, B, ?, and D.

4.4 Subword

We learn and apply BPE using the SentencePiece
(Kudo and Richardson, 2018) library. It prepends
‘ ’ (U+2581) to every word to mark the original
whitespace, then tokenizes text into subword pieces.
As seen in Table 1, 나랑 쇼핑하자. can be split
into 나랑, 쇼,핑하,자, and . (period).

4.5 Morpheme-aware Subword

Motivated by the combined methods of data-
and linguistically-driven approaches (Banerjee and
Bhattacharyya, 2018; Park et al., 2019a; Pinnis
et al., 2017; Tawfik et al., 2019), we apply MeCab-
ko and BPE in sequence to make morpheme-aware
subwords. According to this strategy, since BPE
is applied after the original text is split into mor-
phemes, tokens spanning multiple morphemes (e.g.,
핑하 in the Section 4.4) are not generated. Instead,
the BPE algorithm further segments morphemes
into frequent pieces.

4.6 Word

We can simply split text by whitespaces. Note that
punctuation marks are split into separate tokens.
Check that나랑쇼핑하자. is tokenized into나랑,
쇼핑하자 and . (period) in Table 1.

3% mecab -O wakati

Lang
Pair

Vocab
Size

Korean BPE
Training Data Dev Test

Ko-En 32K
AI Hub (130MB) 35.79 36.06

Wiki (613MB) 39.05 38.69

En-Ko 32K
AI Hub (130MB) 37.19 36.98

Wiki (613MB) 37.11 36.98

Table 2: BLEU scores of Korean to English (Ko-En)
and English to Korean (En-Ko) translation models with
different BPE training data. Note that the English sen-
tences are tokenized using a 32K BPE model trained on
the English Wiki.

5 Experiments

5.1 Korean to/from English Machine
Translation

5.1.1 Dataset
To date, there have yet been few open source bench-
mark datasets for Korean-English machine trans-
lation, not to mention that Korean is not in the
language list of WMT4 or IWSLT5. Park et al.
(2019a) used OpenSubtitles (Lison and Tiedemann,
2016), a collection of crowd-sourced movie subti-
tles across 65 different languages, for English to
Korean translation, but they are too noisy to serve
as a translation benchmark dataset.6

Recently, a Korean-English parallel corpus was
publicly released by AI Hub7, which was gathered
from various sources such as news, government
web sites, legal documents, etc. We download
the news data, which amount to 800K sentence
pairs, and randomly split them into 784K (train),
8K (dev), and 8K (test).

5.1.2 BPE Modeling
Prior to training, we do simple preliminary experi-
ments to decide which dataset to use for learning
BPE.

There are two choices: AI Hub news training
data and open source large text such as Wiki. AI
Hub training data is relatively small in size (130
MB), but can be optimal as its lexical distribution
will be close to that of the test data, considering
both of them are from the same source. On the
other hand, Wiki is larger, but it is not news per
se, so can be not as appropriate as AI Hub data for

4https://www.aclweb.org/anthology/
venues/wmt

5http://iwslt.org/doku.php?id=start
6Park et al. (2019a) reported BLEU scores of 7-12.
7http://www.aihub.or.kr/aidata/87

https://www.aclweb.org/anthology/venues/wmt
https://www.aclweb.org/anthology/venues/wmt
http://iwslt.org/doku.php?id=start
http://www.aihub.or.kr/aidata/87


136

Tokenization Vocab Size Ko-En En-Ko OOV Rate (%) Avg. LengthDev Test Dev Test
CV 166 39.11 38.56 36.52 36.45 0.02 142.75
Syllable 2K 39.30 38.75 38.64 38.45 0.06 69.20

Morpheme

8K 31.59 31.24 32.44 32.19 7.51 49.19
16K 34.38 33.80 35.74 35.52 4.67 49.19
32K 36.19 35.74 36.51 36.12 2.72 49.19
64K 37.88 37.37 37.51 37.03 1.40 49.19

Subword

4K 39.18 38.75 38.31 38.18 0.07 48.02
8K 39.16 38.75 38.09 37.94 0.08 38.44
16K 39.22 38.77 37.64 37.34 0.10 33.69
32K 39.05 38.69 37.11 36.98 0.11 30.21
64K 37.02 36.46 35.77 35.64 0.12 27.50

Morpheme-aware
Subword

4K 39.41 38.95 39.29 39.13 0.06 65.17
8K 39.42 39.06 39.78 39.61 0.06 56.79
16K 39.84 39.41 40.23 40.04 0.07 53.30
32K 41.00 40.34 40.43 40.41 0.07 51.38
64K 39.62 39.34 38.63 38.42 0.07 50.27

Word 64K 7.04 7.07 18.68 18.42 26.20 18.96

Table 3: BLEU scores of Korean to English (Ko-En) and English to Korean (En-Ko) translation models of various
tokenization strategies. Note that we use an 32K Subword model for English for all of them. The OOV rate values
in the table are obtained from the test set, but there is no meaningful difference between the test and the dev set
in terms of the OOV rate. The best BLEU scores in each column (global) and group (local) are bold-faced and
underlined, respectively.

BPE modeling.
To investigate this, first we train a 32K Ko-

rean BPE model (A) using SentencePiece with
the Korean sentences in the AI Hub training
data. Then we download the latest Wikipedia Ko-
rean8/English9 dumps, and extract plain texts using
WikiExtractor 10. Next, we make 32K BPE models
for Korean (B) and English (C) with them. Finally,
we train Korean to English (Ko-En) and English to
Korean (En-Ko) translation models on the AI Hub
training data with the two different Korean BPE
models (A, B). The training details are explained
in Section 5.1.3. For comparison, we use the same
English BPE model (C) for both.

The results are shown in Table 2. For Ko-En
translation, the Wiki-based BPE model performs
better in both dev and test sets by 2-3 points. For
En-Ko translation, there is no practical difference in
performance between the Wiki and AI Hub-based
models. It is also worth considering the BPE mod-
els are used for NLU tasks as well as machine
translation. All things taken together, we opt for

8https://dumps.wikimedia.org/kowiki
9https://dumps.wikimedia.org/enwiki

10https://github.com/attardi/
wikiextractor

the Wiki-based BPE model.

5.1.3 Training
We test the tokenization strategies in Section 4
with various vocabulary sizes on the AI Hub news
dataset.

We use the Transformer (Vaswani et al., 2017),
the state-of-the-art model for neural machine trans-
lation. We mostly follow the base model config-
uration: 6 blocks of 512-2048 units with 8 atten-
tion heads. We run all of our experiments using
FAIRSEQ 11 (Ott et al., 2019), a PyTorch based
deep learning library for sequence to sequence mod-
els.

Each model is trained using a Tesla V100 GPU
with batch size 128, dropout rate 0.3, label smooth-
ing 0.1, and the Adam (Kingma and Ba, 2015)
optimizer. We set the learning rate to 5e-4 with the
inverse square-root schedule. We train all models
for 50 epochs and save the checkpoint files at every
epoch.

5.1.4 Results
After all training stages are finished, we evalu-
ate the saved checkpoint files of each model on

11https://github.com/pytorch/fairseq

https://dumps.wikimedia.org/kowiki
https://dumps.wikimedia.org/enwiki
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://github.com/pytorch/fairseq
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Vocab Size # Tokens # Tokens Spanning
Morpheme Boundaries

4K 387,088 25,458 (6.58%)
8K 309,360 50,029 (16.17%)

16K 271,334 62,861 (23.17%)
32K 242,736 73,609 (30.26%)
64K 221,530 82,324 (37.16%)

Table 4: Number of tokens spanning morpheme bound-
aries in Subword models.

the dev set to find the best one, which is subse-
quently used for the final test. In Table 3 we report
BLEU scores on both the dev and test sets using the
Moses12 multi-bleu.perl script. Following
WAT 2019 (Nakazawa et al., 2019), Moses tok-
enizer and MeCab-ko are used for tokenizing the
evaluation data.

For both Ko-En and En-Ko, overall, the Sub-
word models (35.64-39.22) and the Syllable models
(38.45-39.30) are superior to the Morpheme mod-
els (31.59-37.37) or the Word models (7.04-18.42)
in performance. It is highly likely to come from
the lower OOV rates of the Subword models (0.07-
0.12) and the Syllable models (0.06) compared to
those of the Morpheme models (1.40-7.51) and the
Word models (26.20). While BPE tends to split rare
words into subword pieces, MeCab-ko is ignorant
of statistics so it splits words into morphemes by
linguistic knowledge instead. That the Morpheme
and Word models generate many OOVs suggests
Korean has so large types of morphemes or word
forms that even 64K vocabulary is not enough to
cover them all.

CV models are tiny in vocabulary size (166) so
they show the lowest OOV rate (0.02). However,
their performance is not as good as the Syllable
or Subword models. We speculate this is because
a single consonant or vowel must bear too much
contextual information in the CV models.

Morpheme-aware Subword 32K models achieve
the best BLEU scores. Each Subword model, as
shown in Table 4, contains 6-37% of tokens span-
ning morpheme boundaries in the test set, which
implies that subword segmentation by BPE is not
optimal and morpheme boundaries are meaningful
in tokenization.

To sum up, morpheme-aware subword tokeniza-
tion that makes the best use of linguistic knowledge
and statistical information is the best for Korean
machine translation.

12http://www.statmt.org/moses

Hyper-
param KorQuAD KorNLI KorSTS NSMC PAWS

Epoch 5 3 5 3 5
Batch 16 64 64 64 64
η 5e-5 1e-4 5e-5 5e-5 1e-4

Dropout 0.1 0.1 0.1 0.1 0.1
Warm-up 0.1 0.1 0.1 0.1 0.1

Max Seq.† 128 128 128 128 128

Table 5: Fine-tuning hyper-parameters for NLU tasks.
η: learning rate. †: Max sequence length is 256 for CV
models in all tasks.

5.2 Korean Natural Language
Understanding Tasks

Large pre-trained language models have proven
their effectiveness in many downstream tasks (Pe-
ters et al., 2018; Devlin et al., 2019; Liu et al.,
2019). We pre-train BERT (Devlin et al., 2019)
models with various tokenization strategies, and
fine-tune them on five different Korean NLU tasks.

5.2.1 Machine Reading Comprehension:
KorQuAD 1.0 Dataset

The KorQuAD 1.0 dataset (Lim et al., 2019) is a
Korean adaptation of SQuAD 1.0 (Rajpurkar et al.,
2016), a popular reading comprehension dataset.
KorQuAD 1.0 consists of 10,645 passages and
their paired 66,181 questions (60,407 for training
+ 5,774 for development13). Like SQuAD 1.0, Ko-
rQuAD 1.0 involves answering a question given a
passage. The answer must be a phrase within the
passage.

5.2.2 Natural Language Inference: KorNLI
Dataset

The KorNLI Dataset (Ham et al., 2020) is a Ko-
rean NLI dataset sourced from three different NLI
datasets: SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), and XNLI (Conneau et al.,
2018).

It is composed of 950,354 sentence pairs:
942,854 for training, 2,490 for development, and
5,010 for test. A model receives a pair of
sentences—a premise and a hypothesis—and clas-
sifies their relationship into one out of three cate-
gories: entailment, contradiction, and neutral.

5.2.3 Semantic Textual Similarity: KorSTS
Dataset

The KorSTS Dataset (Ham et al., 2020) is a Ko-
rean STS dataset translated from the STS-B dataset
(Cer et al., 2017). It comprises 8,628 sentence

13The test dataset is not included.

http://www.statmt.org/moses
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Tokenization Vocab
Size

KorQuAD KorNLI KorSTS NSMC PAWS-X
Dev (EM/F1) Dev Test Dev Test Dev Test Dev Test

CV 166 59.66 / 73.91 70.60 71.20 77.22 71.47 87.97 87.89 58.00 55.20
Syllable 2K 69.10 / 83.29 73.98 73.47 82.70 75.86 88.94 89.07 68.65 67.20

Morpheme
32K 68.05 / 83.82 74.86 74.37 82.37 76.83 87.87 88.04 69.30 67.20
64K 70.68 / 85.25 75.06 75.69 83.21 77.38 88.72 88.88 73.40 68.65

Subword

4K 71.48 / 83.11 74.38 74.03 83.37 76.80 89.08 89.30 72.00 69.60
8K 72.91 / 85.11 74.18 74.65 83.23 76.42 89.08 89.19 73.45 69.00
16K 73.42 / 85.75 74.46 75.15 83.30 76.41 88.89 88.88 73.40 70.70
32K 74.04 / 86.30 74.74 74.29 83.02 77.01 89.39 89.38 74.05 70.95
64K 74.04 / 86.66 73.73 74.55 83.52 77.47 88.80 89.19 75.85 72.10

Morpheme-aware
Subword

4K 67.53 / 81.93 73.53 73.45 83.34 76.03 88.93 89.32 69.75 67.45
8K 70.90 / 84.57 74.14 73.95 83.71 76.07 89.37 89.29 73.40 71.30
16K 69.47 / 83.36 75.02 74.99 83.22 76.59 89.33 89.41 75.05 71.70
32K 72.65 / 86.35 74.10 75.13 83.65 78.11 89.53 89.65 74.60 71.60
64K 69.48 / 83.73 76.39 76.61 84.29 76.78 89.82 89.66 76.15 74.00

Word 64K 1.54 / 8.86 64.06 65.83 69.00 60.41 70.10 70.58 58.25 55.30

Table 6: Performance of various models on several Korean natural language understanding tasks. The evaluation
metrics are as follows: KorQuAD: Exact Match/F1, KorNLI: accuracy (%), KorSTS: 100 × Spearman correlation,
NSMC: accuracy (%), PAWS-X: accuracy (%). The best scores in each column (global) and group (local) are
bold-faced and underlined, respectively.

pairs—5,749 for training, 1,500 for development,
and 1,379 for test. The task assesses the gradations
of semantic similarity between two sentences with
a scale from 0 to 5.

5.2.4 Sentiment Analysis: NSMC Dataset
NSMC14 is a movie review dataset scraped from
Naver MoviesTM. It consists of 200K samples of
which 150K are the training set and the rest 50K
are the test set. Each sample is labeled with 0
(negative) or 1 (positive). We hold out 10 percent
of the training data for development.

5.2.5 Paraphrase Identification: PAWS-X
Dataset

The PAWS-X dataset (Yang et al., 2019) is a chal-
lenging paraphrase identification dataset in six lan-
guages including Korean. The Korean portion
amounts to 53,338 sentence pairs (49,410 for train-
ing, 1,965 for development, and 1,972 for test).
Like the NSMC dataset, each sentence pair is an-
notated with either 0 (negative) or 1 (positive).

For each tokenization strategy, we pre-train a
BERT-Base model on a large corpus and fine-tune
it on the training sets of the five NLU tasks inde-
pendently.
Pre-training. Because the Korean Wiki corpus
is not enough in volume, 640 MB, for the pre-

14https://github.com/e9t/nsmc

training purpose, we additionally download the
recent dump of Namuwiki15, a Korean Wiki, and
extract plain texts using Namu Wiki Extractor16.
On the resulting Namuwiki corpus (5.5 GB) along
with the Wiki corpus (640 MB), pre-training is
performed with a Cloud TPU v3-8 for 1M steps
using the official BERT training code17, which is
based on TensorFlow. We set the training hyper-
parameters of all models as follows: batch size
= 1024, max sequence length = 128, optimizer =
AdamW (Loshchilov and Hutter, 2019), learning
rate = 5e-5, warm-up steps = 10K.
Fine-tuning. After converting each of the pre-
trained models in TensorFlow into PyTorch, we
fine-tune it using HuggingFace Transformers18

(Wolf et al., 2019). The hyper-parameters for each
task are shown in Table 5.

5.2.6 Results
In Table 6 we report the evaluation results of the
various models on the dev and test sets. Since
KorQuAD lacks the test set, we report the results
on the dev set only.

15http://dump.thewiki.kr
16https://github.com/jonghwanhyeon/

namu-wiki-extractor
17https://github.com/google-research/

bert
18https://github.com/huggingface/

transformers

https://github.com/e9t/nsmc
http://dump.thewiki.kr
https://github.com/jonghwanhyeon/namu-wiki-extractor
https://github.com/jonghwanhyeon/namu-wiki-extractor
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Figure 1: Translation performance over the average number of syllables per token

As for KorQuAD, Subword 64K models achieve
the highest Exact Match (EM) and F1 scores. The
scores in the Subword and Morpheme models in-
crease monotonically as the vocabulary size grows.
On the other hand, the 32K models outperform the
others in the Morpheme-aware Subword models;
no clear correlation is found between performance
and vocabulary sizes in them.

For all the other four tasks, Morpheme-aware
Subword 64K models show the best scores. One
noteworthy phenomenon is that the scores tend to
increase as the vocabulary size grows across the
tokenization groups. This is discordant with the ma-
chine translation results in Section 5.1.4, where a
larger vocabulary size does not guarantee better per-
formance for the Subword and Morpheme-aware
Subword models.

6 Discussion

We further examine which factors with respect to
tokenization affect the Ko-En and En-Ko transla-
tion performance.

6.1 Token Length

Because tokenization involves splitting a text into
shorter segments, we find it important to figure out
how much information each segment bears. To this
end, based on the assumption that the longer a text
is, the more information it is likely to have, we
plot the BLEU scores by the average number of
syllables per Korean token in the translation test

sets in Figure 1.
The BLEU scores of the subword models—

Syllable, Morpheme, Subword, and Morpheme-
aware Subword—are mostly higher than those of
the CV models, which are plotted as dotted lines. In
particular, the Syllable, Subword, and Morpheme-
aware Subword models between 1.00 and 1.50
show the best scores both in Ko-En and in En-Ko.
When a token has more than 1.5 syllables on av-
erage, the scores begin to decrease, and the Word
models which has more than 2.5 syllables in a to-
ken performs the worst (7.07 for Ko-En and 18.42
for En-Ko). Note that they are not in the figures
due to space constraints.

6.2 Linguistic Awareness

Obviously token length is not the only key fac-
tor in tokenization strategies. Let us compare
the Morpheme-aware Subword 16K models (green
markers) and Subword 8K models (red markers)
in the shaded regions in Figure 1. Although they
have the same average token length around 1.4,
the Morpheme-aware Subword models outperform
the Subword models. We believe this is evidence
to support that linguistic awareness is another im-
portant factor in Korean tokenization strategies for
machine translation.

6.3 Under-trained Tokens

In section 5.1.4, we pointed out high OOV rates
are highly likely to degrade the performance of
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Figure 2: Percentage of under-trained tokens in various
tokenization strategies

Morpheme models. It is also worth noting that in
Figure 1 as most of the orange markers denoting
Morpheme models are below the dotted lines.

OOVs are the tokens that appear only in the test
set. They are an extreme case of under-trained
tokens—test set’s tokens that appear in the training
set for the limited number of times. Figure 2 shows
how much under-trained tokens account for in each
model, ranging from n = 1 to n = 100, where n
is the frequency of the under-trained tokens in the
training set. Clearly, the curve of the Morpheme
32K model is far above that of the others, indicating
that it suffers from the problem of under-trained
tokens the most.

7 Conclusion

We explored various Korean tokenization strate-
gies on machine translation and five NLU tasks.
In machine translation Morpheme-aware Subword
models with a vocabulary size worked best for both
Korean to English and English to Korean settings.
By contrast, there was no single best tokenization
strategy for the NLU tasks. Instead, Subword 64K
models showed the best performance on KorQuAD,
whereas Morpheme-aware Subword 64K models
turned out to be optimal for the other KorNLI, Ko-
rSTS, NSMC, and PAWS-X tasks.
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