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Abstract

Current end-to-end semantic role labeling is
mostly accomplished via graph-based neural
models. However, these all are first-order
models, where each decision for detecting any
predicate-argument pair is made in isolation
with local features. In this paper, we present a
high-order refining mechanism to perform in-
teraction between all predicate-argument pairs.
Based on the baseline graph model, our high-
order refining module learns higher-order fea-
tures between all candidate pairs via atten-
tion calculation, which are later used to up-
date the original token representations. After
several iterations of refinement, the underly-
ing token representations can be enriched with
globally interacted features. Our high-order
model achieves state-of-the-art results on Chi-
nese SRL data, including CoNLL09 and Uni-
versal Proposition Bank, meanwhile relieving
the long-range dependency issues.

1 Introduction

Semantic role labeling (SRL), as the shallow se-
mantic parsing aiming to detect the semantic predi-
cates and their argument roles in texts, plays a core
role in natural language processing (NLP) commu-
nity (Pradhan et al., 2005; Zhao et al., 2009; Lei
et al., 2015; Xia et al., 2019b). SRL is traditionally
handled by two pipeline steps: predicate identifica-
tion (Scheible, 2010) and argument role labeling
(Pradhan et al., 2005). More recently, growing
interests are paid for developing end-to-end SRL,
achieving both two subtasks, i.e., recognizing all
possible predicates together with their arguments
jointly, via one single model (He et al., 2018a).

The end-to-end joint architecture can greatly al-
leviate the error propagation problem, thus helping
to achieve better task performance. Currently, the
end-to-end SRL methods largely are graph-based

∗Corresponding author.

neural models, enumerating all possible predicates
and their arguments exhaustively (He et al., 2018a;
Cai et al., 2018; Li et al., 2019). However, these
first-order models that only consider one predicate-
argument pair at a time can be limited to short-term
features and local decisions, thus being subjective
to long-range dependency issues existing at large
surface distances between arguments (Chen et al.,
2019; Lyu et al., 2019). This makes it imperative
to capture the global interactions between multiple
predicates and arguments.

In this paper, based on the graph-based model
architecture, we propose to further learn the higher-
order interaction between all predicate-argument
pairs by performing iterative refining for the un-
derlying token representations. Figure 1 illustrates
the overall framework of our method. The BiL-
STM encoder (Hochreiter and Schmidhuber, 1997)
first encodes the inputs into the initial token rep-
resentations for producing predicate and argument
representations, respectively. The biaffine attention
then exhaustively calculates the score representa-
tions for all the candidate predicate-argument pairs.
Based on all these score representations, our high-
order refining module generates high-order feature
for each corresponding token via an attention mech-
anism, which is then used for upgrading the raw
token representation. After total N iterations of
the above refining procedure, the information be-
tween the predicates and the associated arguments
can be fully interacted, and thus results in global
consistency for SRL.

On the other hand, most of the existing SRL
studies focus on the English language, while there
is little work in Chinese, mainly due to the lim-
ited amount of annotated data. In this study, we
focus on the Chinese SRL. We show that our pro-
posed high-order refining mechanism can be espe-
cially beneficial for such lower-resource language.
Meanwhile, our proposed refining process is fully
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Figure 1: The overview of the graph-based high-order
model for end-to-end SRL. The dotted-line green box
is our proposed high-order refining module.

parallel and differentiable.
We conduct experiments on the dependency-

based Chinese SRL datasets, including CoNLL09
(Hajič et al., 2009), and Universal Proposition Bank
(Akbik et al., 2015; Akbik and Li, 2016). Re-
sults show that the graph-based end-to-end model
with our proposed high-order refining consistently
brings task improvements, compared with base-
lines, achieving state-of-the-art results for Chinese
end-to-end SRL.

2 Related Work

Gildea and Jurafsky (2000) pioneer the task of se-
mantic role labeling, as a shallow semantic parsing.
Earlier efforts are paid for designing hand-crafted
discrete features with machine learning classifiers
(Pradhan et al., 2005; Punyakanok et al., 2008;
Zhao et al., 2009). Later, a great deal of work takes
advantages of neural networks with distributed fea-
tures (FitzGerald et al., 2015; Roth and Lapata,
2016; Marcheggiani and Titov, 2017; Strubell et al.,
2018). On the other hand, many previous work
shows that integrating syntactic tree structure can
greatly facilitate SRL (Marcheggiani et al., 2017;
He et al., 2018b; Zhang et al., 2019; Fei et al.,
2020b).

Prior studies traditionally separate SRL into two
individual subtasks, i.e., predicate disambiguation
and argument role labeling, mostly conducting
only the argument role labeling based on the pre-

identified predicate (Pradhan et al., 2005; Zhao
et al., 2009; FitzGerald et al., 2015; He et al.,
2018b; Fei et al., 2020a). More recently, several
researches consider the end-to-end solution that
handles both two subtasks by one single model.
All of them employs graph-based neural model, ex-
haustively enumerating all the possible predicate
and argument mentions, as well as their relations
(He et al., 2018a; Cai et al., 2018; Li et al., 2019;
Xia et al., 2019a). Most of these end-to-end mod-
els, however, are first-order, considering merely
one predicate-argument pair at a time. In this work,
we propose a high-order refining mechanism to
reinforce the graph-based end-to-end method.

Note that most of the existing SRL work focuses
on the English language, with less for Chinese,
mainly due to the limited amount of annotated data
(Xia et al., 2019a). In this paper, we aim to improve
the Chinese SRL and make compensation of the
data scarcity by our proposed high-order model.

3 Framework

Task formulation. Following prior end-to-end
SRL work (He et al., 2018a; Li et al., 2019), we
treat the task as predicate-argument-role triplets
prediction. Given an input sentence S =
{w1, · · · , wn}, the system is expected to output
a set of triplets Y ∈ P × A × R, where P =
{p1, · · · , pm} are all possible predicate tokens,
A = {a1, · · · , al} are all associated argument to-
kens, and R are the corresponding role labels for
each ai, including a null label ε indicating no rela-
tion between a pair of predicate argument.

3.1 Baseline Graph-based SRL Model

Our baseline SRL model is mostly from He et al.
(2018a). First, we obtain the vector representation
xwt of each word wt from pre-trained embeddings.
We then make use of the part-of-speech (POS) tag
for each word, and use its embedding xpost . A
convolutional neural networks (CNNs) is used to
encode Chinese characters inside a word xct . We
concatenate them as input representations: xt =
[xwt ;x

pos
t ;xct ].

Thereafter, a multi-layer bidirectional LSTM
(BiLSTM) is used to encode the input represen-
tations into contextualized token representations:
h1, · · · ,hn = BiLSTM(x1, · · · ,xn). Based on
the token representations, we further generate the
separate predicate representations and argument
representations: vpt = FFN(ht),v

a
t = FFN(ht).
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Then, a biaffine attention (Dozat and Manning,
2016) is used for scoring the semantic relationships
exhaustively over all the predicate-argument pairs:

vs(pi, aj) = vpi ·W1 ·vaj +W2 · [vpi ;v
a
j ]+b, (1)

where W1, W2 and b are parameters.

Decoding and learning. Once a predicate-
argument pair (pi, aj) (i.e., the role label r 6= ε) is
determined by a softmax classifier, based on the
score representation vs(pi, aj), the model outputs
this tuple (p, a, r).

During training, we optimize the probability
Pθ(ŷ|S) of the tuple y(pi,aj ,r) over a sentence S:

Pθ(y|S) =
∏

p∈P,a∈A,r∈R
Pθ(y(p,a,r)|S)

=
∏

p∈P,a∈A,r∈R

φ(p, a, r)∑
r̂∈R φ(p, a, r̂)

,
(2)

where θ is the parameters of the model and
φ(p, a, r) represents the total unary score from:
φ(p, a, r) = WpReLU(vp) +WaReLU(va)

+WsReLU(vs(p, a)) .
(3)

The final objective is to minimize the negative log-
likelihood of the golden structure:

L = −logPθ(y|S). (4)

3.2 Higher-order Refining

The baseline graph model is a first-order model,
since it only considers one predicate-argument pair
(as in Eq. 3) at a time. This makes it limited to
short-term and local decisions, and thus subjec-
tive to long-distance dependency problem wher-
ever there are larger surface distances between ar-
guments. We here propose a higher-order refining
mechanism for allowing a deep interactions be-
tween all predicate-argument pairs.

Our high-order model is shown in Figure 1.
Compared with the baseline model, the main dif-
ference lies in the high-order refining module. Our
motivation is to inform each predicate-argument
pair with the information of the other rest of pairs
from the global viewpoint. We reach this by refin-
ing the underlying token representations ht with
refined ones which carry high-order interacted fea-
tures.

Concretely, we take the baseline as the initia-
tion, performing refinement iteratively. At the i-th
refining iteration, we can collect the score repre-
sentations V i,s = {vi,s1 , · · · ,vi,sK } of all candidate

predicate-argument pairs, where K (i.e.,
(
n
2

)
) are

the total combination number of these pairs. Based
on V i,s, we then generate the high-order feature
vector oit by using an attention mechanism guided
by the current token representation hi−1t for word
wt at last turn, i.e., the (i-1)-th iteration:

uik = tanh(W3h
i−1
t +W4v

i,s
k ),

αik = softmax(uik),

oit =
∑K

k=1α
i
kv

i,s
k ,

(5)

where W3 and W4 are parameters. We then con-
catenate the raw token representation and high-
order feature representation together, and obtain the
refined token representation after a non-linear pro-
jection ĥit = FFN([oit;h

i−1
t ]). Finally, we use ĥit

to update the old one hi−1t . After total N iterations
of high-order refinement, we expect the model to
capture more informative features at global scope
and achieve the global consistency.

4 Experiments

4.1 Settings

Our method is evaluated on the Chinese SRL bench-
marks, including CoNLL091 and Universal Propo-
sition Bank (UPB)2. Each dataset comes with its
own training, development and test sets. Precision,
recall and F1 score are used as the metrics.

We use the pre-trained Chinese fasttext embed-
dings3. The BiLSTM has hidden size of 350, with
three layers. The kernel sizes of CNN are [3,4,5].
We adopt the Adam optimizer with initial learning
rate of 1e-5. We train the model by mini-batch size
in [16,32] with early-stop strategy. We also use the
contextualized Chinese word representations, i.e.,
ELMo4 and BERT (Chinese-base-version)5.

4.2 Main Results

We mainly make comparisons with the recent end-
to-end SRL models, as well as the pipeline methods
on standalone argument role labeling given the gold
predicates. Table 1 shows the results on the Chinese
CoNLL09. We first find that the joint detection for
predicates and arguments can be more beneficial

1https://catalog.ldc.upenn.edu/
LDC2012T03

2https://github.com/System-T/
UniversalPropositions

3https://fasttext.cc/
4https://github.com/HIT-SCIR/

ELMoForManyLangs
5https://github.com/google-research/

bert

https://catalog.ldc.upenn.edu/LDC2012T03
https://catalog.ldc.upenn.edu/LDC2012T03
https://github.com/System-T/UniversalPropositions
https://github.com/System-T/UniversalPropositions
https://fasttext.cc/
https://github.com/HIT-SCIR/ELMoForManyLangs
https://github.com/HIT-SCIR/ELMoForManyLangs
https://github.com/google-research/bert
https://github.com/google-research/bert
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Arg. Prd.

P R F1 F1

• Pipeline method
Zhao et al. (2009) 80.4 75.2 77.7 -
Björkelund et al. (2009) 82.4 75.1 78.6 -
Roth and Lapata (2016) 83.2 75.9 79.4 -
Marcheggiani and Titov (2017) 84.6 80.4 82.5 -
He et al. (2018b) 84.2 81.5 82.8 -
Cai and Lapata (2019)‡ 85.4 84.6 85.0 -
• End-to-end method
He et al. (2018a) 82.6 83.6 83.0 85.7
Cai et al. (2018) 84.7 84.0 84.3 86.0
Li et al. (2019) 84.9 84.6 84.8 86.9
Xia et al. (2019a) 84.6 85.7 85.1 87.2

+BERT 88.0 89.1 88.5 89.6
Ours 85.7 86.2 85.9 88.6

+ELMo 86.4 87.6 87.1 88.9
+BERT 87.4 89.3 88.8 90.3

Table 1: Performances on CoNLL09. Results with ‡

indicates the additional resources are used.

P R F1

He et al. (2018a) 64.8 65.3 64.9
Cai et al. (2018) 65.0 66.4 65.8
Li et al. (2019) 65.4 67.2 66.0
Xia et al. (2019a) 65.2 67.6 66.1
Ours 67.5 68.8 67.9

+ELMo 68.0 70.6 68.8
+BERT 70.0 73.0 72.4

Table 2: Performances by end-to-end models for the
argument role labeling on UPB.

than the pipeline detection of SRL, notably with
85.1% F1 score on argument detection by Xia et al.
(2019a). Most importantly, our high-order end-to-
end model outperforms all these baselines on both
two subtasks, with 85.9% F1 score for argument
role labeling and 88.6% F1 score for predicate de-
tection. When the contextualized word embeddings
are available, we find that our model can achieve
further improvements, i.e., 88.8% and 90.3% F1
scores for two subtasks, respectively.

Table 2 shows the performances on UPB. Over-
all, the similar trends are kept as that on CoNLL09.
Our high-order model still performs the best, yield-
ing 67.9% F1 score on argument role labeling, ver-
ifying its prominent capability for the SRL task.
Also with BERT embeddings, our model further
wins a great advance of performances.

4.3 Analysis
High-order refinement. We take a further step,
looking into our proposed high-order refining

1 2 3 4 5
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Arg.(Ours) Prd.(Ours)
Arg.(He et al. (2018)) Prd.(He et al. (2018))

Figure 2: Performances by varying refining iterations.
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Figure 3: Argument recognition under varying surface
distance between predicates and arguments.

mechanism. We examine the performances un-
der varying refining iterations in Figure 2. Com-
pared with the first-order baseline model by He
et al. (2018a), our high-order model can achieve
better performances for both two subtasks. We find
that our model can reach the peak for predicate de-
tection with total 2 iterations of refinement, while
the best iteration number is 4 for argument labeling.

Long-distance dependencies. Figure 3 shows
the performances of argument recognition by dif-
ferent surface distance between predicates and ar-
guments. The overall results decrease when argu-
ments are farther away from the predicates. Never-
theless, our high-order model can beat against such
drop significantly. Especially when the distance
grows larger, e.g., distance ≥ 7, the winning score
by our model even becomes more notable.

5 Conclusion

We proposed a high-order end-to-end model for
Chinese SRL. Based on the baseline graph-based
model, our high-order refining module performed
interactive learning between all predicate-argument
pairs via attention calculation. The generated
higher-order featured token representations then
were used to update the original ones. After total
N iterations of refinement, we enriched the under-
lying token representations with global interactions,
and made the learnt features more informative. Our
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high-order model brought state-of-the-art results
on Chinese SRL data, i.e., CoNLL09 and Universal
Proposition Bank, meanwhile relieving the long-
range dependency issues.
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Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
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Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic dependen-
cies in multiple languages. In Proceedings of the
CoNLL, pages 1–18.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018a. Jointly predicting predicates and ar-
guments in neural semantic role labeling. In Pro-
ceedings of the ACL, pages 364–369.

Shexia He, Zuchao Li, Hai Zhao, and Hongxiao Bai.
2018b. Syntax for semantic role labeling, to be, or
not to be. In Proceedings of the ACL, pages 2061–
2071.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Tao Lei, Yuan Zhang, Lluı́s Màrquez, Alessandro Mos-
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