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Abstract
We introduce FAIRSEQ S2T, a FAIRSEQ (Ott
et al., 2019) extension for speech-to-text (S2T)
modeling tasks such as end-to-end speech
recognition and speech-to-text translation. It
follows FAIRSEQ’s careful design for scalabil-
ity and extensibility. We provide end-to-end
workflows from data pre-processing, model
training to offline (online) inference. We
implement state-of-the-art RNN-based as
well as Transformer-based models and open-
source detailed training recipes. FAIRSEQ’s
machine translation models and language
models can be seamlessly integrated into
S2T workflows for multi-task learning or
transfer learning. FAIRSEQ S2T documen-
tation and examples are available at https:
//github.com/pytorch/fairseq/tree/

master/examples/speech_to_text.

1 Introduction

End-to-end sequence-to-sequence (S2S) modeling
has witnessed rapidly increased applications in
speech-to-text (S2T) tasks. It achieves state-of-the-
art performance on automatic speech recognition
(ASR) (Park et al., 2019; Synnaeve et al., 2019)
and leads to the recent resurgence of speech-to-
text translation (ST) research (Duong et al., 2016;
Bérard et al., 2016). ASR and ST are closely re-
lated. There are recent attempts to combine the
two tasks under the same S2S model architecture
via multi-task learning (Anastasopoulos and Chi-
ang, 2018; Liu et al., 2020). They also benefit
from each other via transfer learning (Bansal et al.,
2019; Wang et al., 2020b) and are able to lever-
age additional supervision from machine transla-
tion (MT) and language modeling (LM). When su-
pervised data is not abundant, self-supervised pre-
training (Schneider et al., 2019; Wu et al., 2020)
and semi-supervised training (Kahn et al., 2020;
Pino et al., 2020) lowers the requirements on super-
vision and improves model performance.

The increased connections among ASR, ST,
MT and LM has called for all-in-one S2S mod-
eling toolkits, and the use of large-scale unla-
beled speech data sets the scalability require-
ments. In this paper, we introduce FAIRSEQ S2T,
a FAIRSEQ (Ott et al., 2019) extension for S2T
tasks such as end-to-end ASR and ST. It follows
FAIRSEQ’s careful design for scalability and exten-
sibility. We provide end-to-end workflows from
data pre-processing, model training to offline (on-
line) inference. We implement state-of-the-art
RNN-based (Chan et al., 2016; Bérard et al., 2018)
and Transformer-based (Vaswani et al., 2017; Mo-
hamed et al., 2019) models and open-source de-
tailed training recipes. FAIRSEQ’s MT models and
LMs can be seamlessly integrated into S2T work-
flows for multi-task learning or transfer learning.
To facilitate model evaluation, we add a collection
of scorers as well as VizSeq (Wang et al., 2019) in-
tegration for visualized error analysis. FAIRSEQ

S2T documentation and examples are avail-
able at https://github.com/pytorch/fairseq/
tree/master/examples/speech_to_text.

With counterpart toolkits such as ESPNet (In-
aguma et al., 2020) and Lingvo (Shen et al., 2019),
FAIRSEQ S2T pursues the best integration, scala-
bility and reproducibility. A detailed comparison
of FAIRSEQ S2T with its counterparts can be found
in Table 1.

2 Features

Fairseq Models FAIRSEQ provides a collection
of MT models (Ng et al., 2019; Lewis et al., 2020)
and LMs (Liu et al., 2019; Conneau et al., 2020)
that demonstrate state-of-the-art performance on
standard benchmarks. They are open-sourced with
pre-trained models. FAIRSEQ also supports other
tasks such as text summarization, story generation
and self-supervised speech pre-training.

https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
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ASR LM MT Non-Autoreg. Offline Online Speech Multi-node Pre-trained
MT ST ST Pre-training training models

ESPNet-ST X X X X X† X
Lingvo X X X X‡ X

OpenSeq2seq1 X X X X X
RETURNN2 X X X X X X

SLT.KIT3 X X X X
Tensor2Tensor4 X X X X X

OpenNMT5 X X X X X
Kaldi6 X X X

Wav2letter++7 X X X

fairseq S2T X X X X X X X X X

Table 1: Comparison of FAIRSEQ S2T with counterpart toolkits (as of July 2020). † Only available in version 2
(under development). ‡ Not publicly available. 1 Kuchaiev et al. (2018). 2 Zeyer et al. (2018). 3 Zenkel et al.
(2018). 4 Vaswani et al. (2018). 5 Klein et al. (2017). 6 Povey et al. (2011). 7 Pratap et al. (2018).

S2T extension FAIRSEQ S2T adds attention-
based RNN models (Chan et al., 2016; Bérard
et al., 2018) as well as the latest Transformer mod-
els (Vaswani et al., 2017; Mohamed et al., 2019) for
ASR and ST. It also supports CTC criterion (Graves
et al., 2006) for ASR. For the simultaneous ST set-
ting, it includes online models with widely used
policies: monotonic attention (Raffel et al., 2017),
wait-k (Ma et al., 2019), monotonic infinite look-
back attention (Arivazhagan et al., 2019b), and
monotonic multihead attention (Ma et al., 2020b).

Data Pre-Processing FAIRSEQ S2T extracts
Kaldi-compliant (Povey et al., 2011) speech fea-
tures (e.g. log mel-filter banks) automatically from
WAV/FLAC audio files via PyKaldi (Can et al.,
2018) or torchaudio1. Speech features can also
be pre-computed and stored in NumPy (Harris
et al., 2020) format. Optionally, raw audio files
or features files can be packed into ZIP archives
to improve I/O performance or facilitate file man-
agement. For further pre-processing, FAIRSEQ

S2T provides online speech data transforms, in-
cluding CMVN (cepstral mean and variance nor-
malization), speed perturbation (Ko et al., 2017)
and SpecAugment (Park et al., 2019). It also
has an open interface for user-defined transforms.
For text data, FAIRSEQ S2T does online tokeniza-
tion with a rich collection of tokenizers, includ-
ing Moses2, SentencePiece (Kudo and Richardson,
2018), subword-nmt3, byte-level BPE (Wang et al.,
2020a) and bytes (Li et al., 2019).

1https://github.com/pytorch/audio
2https://github.com/moses-smt/mosesdecoder
3https://github.com/rsennrich/subword-nmt

Data Configuration FAIRSEQ S2T gets raw au-
dio (feature) paths and target texts from manifest
files in TSV (tab-separated values) format, which
is similar to Kaldi-style scp files. Online speech
data transforms and other data-related settings (e.g.
tokenizer type and vocabulary) are defined by a
separate configuration file in YAML format.

Computation FAIRSEQ is implemented in Py-
Torch (Paszke et al., 2019) and it provides efficient
batching, mixed precision training (Micikevicius
et al., 2018), multi-GPU as well as multi-machine
training for computational efficiency on large-scale
experiments.

Evaluation Metrics FAIRSEQ S2T provides
common automatic metrics for ASR, ST and MT,
including WER (word error rate), BLEU (Papineni
et al., 2002) and chrF (Popović, 2015). It also
integrates SIMULEVAL (Ma et al., 2020a) for si-
multaneous ST/MT metrics such as AL (average
lagging) (Ma et al., 2019) and DAL (differentiable
average Lagging) (Cherry and Foster, 2019).

Visualization FAIRSEQ supports Tensorboard4

for monitoring holistic metrics during model train-
ing. It also has VizSeq (Wang et al., 2019) inte-
gration for sequence-level error analysis, where
speech and target/predicted text data are visualized
with alignments in Jupyter Notebook interface.

3 Experiments

We evaluate FAIRSEQ S2T models on English ASR
benchmark—LibriSpeech (Panayotov et al., 2015),
as well as multilingual ST benchmarks—MuST-
C (Di Gangi et al., 2019a) and CoVoST 2 (Wang

4https://github.com/tensorflow/tensorboard
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De Nl Es Fr It Pt Ro Ru

Transformer1 17.3 18.8 20.8 26.9 16.8 20.1 16.5 10.5
Transformer2† 22.9 27.4 28.0 32.7 23.8 28.0 21.9 15.8

T-Sm 22.7 27.3 27.2 32.9 22.7 28.1 21.9 15.3
Multi. T-Md∗ 24.5 28.6 28.2 34.9 24.6 31.1 23.8 16.0

B
-B

as
e Offline 19.2 23.5 24.0 29.1 16.4 23.5 19.7 13.7

High Lat.‡ 18.6 (6.8) 22.9 (6.9) 22.3 (6.8) 28.4 (6.7) 15.4 (6.8) 22.6 (6.9) 19.1 (6.7) 12.9 (6.9)
Mid Lat.‡ 14.1 (5.4) 17.9 (5.4) 17.2 (5.5) 25.0 (5.3) 12.0 (5.5) 17.7 (5.8) 15.0 (5.6) 7.2 (5.8)
Low Lat.‡ 8.2 (2.9) 12.3 (2.8) 13.0 (3.0) 21.1 (2.8) 6.7 (2.9) 13.3 (2.9) 12.1 (2.9) 4.9 (2.7)

Table 2: FAIRSEQ S2T models on MuST-C. Test BLEU reported (for online models, AL is shown in parentheses).
1 Di Gangi et al. (2019). 2 Inaguma et al. (2020). † Applied additional techniques: speed perturbation, pre-trained
decoder from MT and auxiliary CTC loss for ASR pre-training. ‡ Online models using beam size of 1 (instead of
5). ∗ Trained jointly on all 8 languages.

Type Config. Params

B-Base
RNN†

512d, 3L enc./2L dec. 31M
B-Big 512d, 5L enc./3L dec. 52M

T-Sm Trans- 256d, 12L enc./6L dec. 31M
T-Md form- 512d, 12L enc./6L dec. 72M
T-Lg er‡ 1024d, 12L enc./6L dec. 263M

Table 3: FAIRSEQ S2T models for benchmarking. For
simplicity, we use the same (default) model hyper-
parameters and learning rate schedule across all experi-
ments. † Bérard et al. (2018). ‡ Vaswani et al. (2017).

Dev Test
Clean Other Clean Other

LAS† - - 2.8 6.8
Transformer‡ 2.5 6.7 2.9 7.0

B-Big 3.7 11.4 3.9 11.5
T-Sm 4.1 9.3 4.4 9.2
T-Md 3.5 8.1 3.7 8.1
T-Lg 3.3 7.7 3.5 7.8

Table 4: FAIRSEQ S2T models on LibriSpeech (using
default hyper-parameters and LR schedule). Dev and
test WER reported. † Park et al. (2019). ‡ Synnaeve
et al. (2019).

et al., 2020c). The model architectures used in
benchmarking can be found in Table 3.

3.1 Experimental Setup

For speech inputs, we extract 80-channel log mel-
filter bank features (25ms window size and 10ms
shift) with utterance-level CMVN applied. We re-
move training samples with more than 3,000 frames
for GPU memory efficiency. To alleviate overfit-
ting, we pre-train ST model encoders on English
ASR and adopt SpecAugment (without time warp-
ing): LD policy on LibriSpeech models and LB
policy on MuST-C and CoVoST 2 models. We av-

erage the last 10 checkpoints and use a beam size
of 5 for decoding. For ASR, we use 10K unigram
vocabulary (Kudo and Richardson, 2018) and re-
port WER. For ST, we use character vocabulary for
CoVoST 2 and 8K unigram vocabulary for MuST-C.
We report case-sensitive detokenized BLEU using
sacreBLEU (Post, 2018), except for Japanese and
Chinese translations (no word segmentation) where
we report character-level BLEU.

3.2 Speech Recognition (ASR)

LibriSpeech is a de-facto standard ASR bench-
mark that contains 1,000 hours of English speech
from audiobooks. Table 4 shows the dev and test
WER of our models on LibriSpeech clean and noisy
sets. Two popular architectures, RNN-based model
(“B-Big”) and Transformer based models (“T-Sm”,
“T-Md” and “T-Lg”), are evaluated. We can see
that both architectures are able to achieve com-
petitive performance (WER) to the state-of-the-art
ones (the upper section), while we use only default
model hyper-parameters and learning rate schedule
without any task-specific tuning.

3.3 Speech Translation (ST)

3.3.1 MuST-C
MuST-C contains up to around 500 hours of En-
glish speech from TED talks with translations in
8 European languages. Table 2 shows the test
BLEU of our Transformer-based models (“T-Sm”
and “Multi. T-Md”) and RNN-based models (“B-
Base”) on all the MuST-C language directions.
Compared with previous Transformer-based ap-
proaches (Di Gangi et al., 2019b; Inaguma et al.,
2020), our bilingual models achieve comparative
results to the state of the art without applying ad-
ditional techniques such as speed perturbation and
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Fr De Es Zh Tr Ar Sv Lv Sl Ta Ja Id Cy

X→En

B-Base 23.2 15.7 20.2 4.4 2.2 2.7 1.4 1.2 1.5 0.2 1.1 1.0 1.7
+ SSL? 23.1 16.2 20.2 4.8 3.2 3.8 3.7 2.3 2.2 0.2 1.6 1.6 2.2

Multi. B-Big† 26.6 19.5 26.3 4.4 2.1 0.3 1.3 0.6 1.4 0.1 0.6 0.3 0.9
T-Sm 26.3 17.1 23.0 5.8 3.6 4.3 2.7 2.5 3.0 0.3 1.5 2.5 2.7

Multi. T-Md† 26.5 17.5 27.0 5.9 2.3 0.4 0.5 0.6 0.7 0.1 0.1 0.3 1.9

En→X

B-Base - 12.5 - 20.0 6.7 9.1 18.1 8.7 11.6 7.4 25.6 15.2 18.9
Multi. B-Big‡ - 12.6 - 22.2 7.3 8.0 18.3 8.9 11.4 7.3 28.2 16.0 19.3

T-Sm - 16.3 - 25.4 10.0 12.1 21.8 13.0 16.0 10.9 29.6 20.4 23.9
Multi. T-Md‡ - 15.4 - 26.5 9.5 10.8 20.9 12.2 14.6 10.3 30.5 18.9 22.0

Table 5: FAIRSEQ S2T models on CoVoST 2. Test BLEU reported (character-level BLEU for Zh and Ja targets).
? Replaced mel-filter bank features with wav2vec ones (Schneider et al., 2019; Wu et al., 2020). † Trained jointly
on all 21 X-En directions with temperature-based (T=2) resampling (Arivazhagan et al., 2019a). ‡ Trained jointly
on all 15 En-X directions.

pre-trained decoder from MT. Moreover, our multi-
lingual model (trained on all 8 languages) outper-
forms all bilingual ones with large margins. Be-
sides traditional offline models, we also provide
simultaneous ST models: the lower section in Ta-
ble 2 presents the online models with wait-k pol-
icy, which was the baseline system in the IWSLT
2020 shared task on simultaneous ST (Ansari et al.,
2020). The results represent the best systems in
high (AL > 6), medium (6 ≥ AL > 3) and low
(AL ≤ 3) latency regimes, on which we can clearly
see the trade-offs between model performance and
prediction latency.

3.3.2 CoVoST 2

CoVoST 2 contains total 2,880 hours of read speech
in 22 languages from the open-source community,
with 21 X-En directions and 15 En-X directions.
We evaluate our models bidirectionally on 13 lan-
guages of them, including low-resource X-En direc-
tions: Zh, Tr, Ar, Sv, Lv, Sl, Ta, Ja, Id and Cy. We
observe from Table 5 that our Transformer-based
models (“T-Sm” and “T-Md”) outperforms RNN-
based ones (“B-Base” and “B-Big”) on all En-X
and X-En directions. The performance gap tends to
be larger when the training data is higher resource
(En-X directions, Fr-En, De-En and Es-En). Our
multilingual models perform reasonably well with
a universal model for over 15 X-En or En-X direc-
tions. They even have significant improvements on
some directions (e.g. at least 4 BLEU gain on Es-
En). For low-resource directions, we also evaluate
self-supervised speech features (Schneider et al.,

2019; Wu et al., 2020)5 as an alternative to the tra-
ditional log mel-filter bank features (“+ SSL”). We
find that self-supervised features bring consistent
gains and transfer well across different languages
(self-supervised model trained on English and fea-
ture extracted for non-English).

4 Conclusion

We introduce FAIRSEQ S2T, a FAIRSEQ exten-
sion for speech-to-text (S2T) modeling tasks such
as speech recognition and speech translation. It
includes end-to-end workflows and state-of-the-
art models with scalablity and extensibility de-
sign. It seamlessly integrates FAIRSEQ’s ma-
chine translation models and language models
to improve S2T model performance. FAIRSEQ

S2T documentation and examples are avail-
able at https://github.com/pytorch/fairseq/
tree/master/examples/speech_to_text.
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