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Abstract 

This paper describes our end-to-end speech translation system 
for the speech translation task of lectures and TED talks from 

English to German for IWSLT Evaluation 2019. We propose 
layer-tied self-attention for end-to-end speech translation. Our 
method takes advantage of sharing weights of speech encoder 
and text decoder. The representation of source speech and the 
representation of target text are coordinated layer by layer, so 
that the speech and text can learn a better alignment during the 
training procedure. We also adopt data augmentation to enhance 
the parallel speech-text corpus. The En-De experimental results 
show that our best model achieves 17.68 on tst2015. Our ASR 

achieves WER of 6.6% on TED-LIUM test set. The En-Pt 
model can achieve about 11.83 on the MuST-C dev set. 

1. Introduction 

End-to-end Speech Translation is a promising task that attracts 
a lot of attention in recent years [1-5,11]. Compared to a 
traditional cascaded system [9,10] that performs ASR and MT 
separately, the end-to-end speech translation model complies 

with the encoder-decoder structure, which has advantages  
including 1) avoiding compounding errors between ASR and 
MT; 2) performing lower latency without the separate ASR 
component. 

However, the translation quality speech translation is still 
hard to achieve the SOTA text translation performance. The 
main reason lies that the parallel speech-text translation corpus 
is hard to obtain, so that the learning process becomes a low-

resource learning task. Previous studies [1-4] tend to address the 
training data sparseness by introducing multi-task learning. 
With multi-task learning framework, the translation model can 
get benefits from ASR corpus and MT corpus separately. The 
study [5] directly generates the speech data given text data by 
TTS system, but the generated data may face the low diversity 
in speaker voices in the synthetic data.  

The state-of-the-art speech translation models mostly adopt 
the architecture in [1]. The encoder consists of CNN layers for 

down-sampling and stacked RNN cells to deeply represent the 
speech features, while the decoder performs attentive RNN 
under autoregressive mechanism. Roughly speaking, the 
encoder is for projecting the down-sampled source speech 
feature into a deep semantic space. The decoder is for 
generating text tokens based on the speech deep representation. 
When the encoder and decoder networks become deep, the 
information from source low-level layers is hard to pass to the 

high level in the decoder, even with an attention mechanism, 
which causes alignment information reduction. The CNN 

layers aggravate the information reduction after down-
sampling. 

The information reduction problem was discussed in the 
previous works [7,8] in text translation. They coordinate the 
encoder layers and decoder layers, so that the decoder neuron 

can also refer to the low-level neuron of source sentences to 
generate target sentences. Inspired by the mentioned works, in 
this paper, we introduce a layer-wise tied structure for end-to-
end speech translation. We build connections between speech 
representation neurons and text representation neurons, which 
shorten the path between target text and source speech. We 
replace the RNN cell in encoder and decoder with self- 
attention to speed up the training and inference. 

To make full use of the allowed data resource, we also use 

text translation data augmentation methods. 
The rest of the paper is organized as follows. We first 

describe the processing for speech and text training data in 
Section 2, following is our full system and the training details. 
The experiments and results are presented in Section 4. 

2. Data Processing 

The paper focuses on IWSLT end-to-end speech translation task 

from English to German/Portugal. All experiments were 
performed under requirements of IWSLT 2019 evaluation 
campaign speech translation task. All the training data are listed 
in Table 1, Table 2 and Table 3. 
 

Table 1. Speech training data 
 

Corpus # of seg. Speech hours 

TED-LIUM2 92973 212h 
TED-LIUM3 268263 452h 
IWSLT-no-label 948 180h 
How2 184949 297h 

 
 

Table 2. text training data 

 

Corpus Raw 

Europarl 1.7M 
ParaCrawl corpus 36.35M 
Common Crawl corpus 2.39M 
News Commentary v13 0.28M 

Rapid corpus of EU press releases 1.32M 
Open Subtitles2018 22.51M 

 
 

Table 3. Parallel speech translation corpus 
 



Corpus Speech Hour Text sentences 

MuST-C 400h 0.22M 
IWSLT-
label 

271h 0.17M 

 

2.1. Speech data preprocessing 

For TED-LIUM2, we follow the approach implemented in the 
Kaldi toolkit [25] to do the cleaning and re-segmenting1. After 

this process, the data size has been reduced to 145 hours from 
212 hours. Based on these data, we trained a TDNN neural 
acoustic model as an initial model which used 8 layers TDNN 
architecture. We use 40-dimension mel frequency cepstral 
coefficient (MFCC) and 200-dimension i-vector as the input 
feature. 

For TED-LIUM3, we follow the way the same as TED 
LIUM2, then we got clean data of 385 hours. 

For IWSLT Speech Translation data, 270 hours of data are 
labeled, but some transcripts do not match well to their 
corresponding audio, we do forced alignment with the initial 
model and reduce the size to 226 hours. And about 180 hours of 
unlabeled data are recognized by our initial model, then we 
splice the fragments to at most 20 seconds. It will be recognized 
by ASR system which described in Section 3.2.1 to get the 
transcripts 

There are only fbank and pitch features for How2 data, so we 

don’t do cleaning or segmenting. 
To increase the amount of training set, we apply speed 

perturbation (except for How2 corpus) with speed factors 0.9 
and 1.1. 

After data filtration and speed perturbation, the total speech 
data includes, TED LIUM2 of 435 hours, TED LIUM3 of 1154 
hours, labeled IWSLT of 680 hours, no-labeled IWSLT of 540 
hours, How 2 of 297 hours, MuST-C En-De of 1200 hours, 

MuST-C En-Pt of 375 hours. 

2.2. Text data preprocessing 

We only use text training data that contains parallel data for data 
augmentation in the end-to-end Speech Translation Task. The 

text data includes TED data, data provided by WMT2018 and 
OpenSubtitles2018. The data is preprocessed before training. 
Sentences longer than 100 words are removed. For one sentence 
pair, if the length rate of source/target is less than 1/2 or larger 
than 2, it will be removed. We then use n-gram language model 

                                                        
1 https://github.com/kaldi-asr/kaldi/blob/master/egs/ 

tedlium/s5_r2/local/run_cleanup_segmentation.sh 

to cross filter the corpus following [28]. For an English sentence, 
if its perplexity computed by English language model is larger 
than the perplexity computed by German language model, it 
will be removed. For a German sentence, if its perplexity 
computed by German language model is larger than the 
perplexity computed by English language model, it will be 

removed. 
    After filtering about 37M parallel En-De sentences in total 
are used for training. 

3. System Description 

3.1. Speech Translation with Tied Layer Structure 

Our speech translation model structure is depicted in Fig.1. 
The encoder consists of CNN layers and self-attention layers. It 
takes speech filter-bank feature, delta and delta-delta [21] as 3-
channel input. The input passes a 2-layer CNN with kernel size 
of hyper-parameter k and max-pooling with stride of 2. The 
output of the CNN passes through a stacked self-attention based 
network. The decoder consists of self-attention network and co-

attention network. The self-attention network in the encoder and 
decoder is layer-wise tied.  

The proposed method can be described mathematically as 

follows. Given an input speech filter-bank feature x ∈ 𝑅𝑡×𝑓 , 
where t is the feature length and f is the frequency channel. we 

stack x, x-delta, x-delta-delta as the input of CNN with shape [t, 
f, depth], where the depth is 3. The encoder consists of 2-layer 

CNN module φc, L blocks of self-attention module and feed-

forward layer, represented as 𝜑𝑠
𝑙  and 𝜑𝑓

𝑙  for l’th block. The 

decoder consists of L blocks of self-attention module, target-
source co-attention module and feed-forward layer, represented 

as 𝜑𝑠
𝑙 , 𝜑𝑡

𝑙  and 𝜑𝑓
𝑙  for the l’th block.  

Then the encoding process is formulated as: 

h𝑖
0 = φc(x, x′, x′′; k),                     (1) 

h𝑖
𝑙 = φf

l (φs
l (Hl−1)) , 0 < 𝑙 < 𝐿         (2) 

where k is the kernel-size hyper-parameter of φ
c
. We get the 

CNN output with φc.   Hl = {ℎ1
𝑙 , ℎ2

𝑙 , … , ℎ𝑡
𝑙 }. After L blocks 

of self-attention and feed-forward layer, we get HL in the last 
layer.  

The decoding process at j + 1’th step is the same with that 

in [8]. We directly refer them here. 

sj+1
𝑙 = φf

l(𝜑𝑡
𝑙(φs

l (Sj+1
𝑙−1), 𝐻𝐿)),        (3) 

Sj+1
𝑙 = 𝑆𝑗

l ∪ {𝑠𝑗+1
𝑙 }.                             (4) 

where S represents the hidden states at the target side. For any 

l that < 0 ≤ l < L,  parameters of φs
l  are shared. The hyper 

parameter k in (1) is selected based on the average speech rate. 
For a language whose average rate is v phoneme/sec, supposing 
the frame rate is f frames/sec, the frames per phoneme can be 
f/v. We suggest 𝑘 = 𝑓/𝑣. In this report, we use k=9.  

Fig.1. The proposed architecture 



3.2. Data Augmentation-MT synthesis 

We know that the performance of end-to-end system largely 
depends on the data quality and quantity. We can improve the 
quality via the preprocessing described in Section 2. For 
quantity, the original parallel speech translation data is less than 
0.5M after filtering duplicated data. It is far from enough for 

training a speech translation system. So we train an ASR and 
MT system firstly to do data augmentation. 

3.2.1. ASR system 

The ASR system in data augmentation is for English speech 

transcription. With fast development of end-to-end ASR 
techniques, the end-to-end models can achieve comparable or 
even better performance compared to the traditional ASR. 

In our ASR system we consider the following structures, 
- CTC, in which a blank token is leveraged for handling 

differences in the length of input acoustic features and output 
tokens [12–16]. 

- Attention based Seq2Seq, which are language models 

conditioned on input speech. In this method, an attention 
mechanism is utilized for automatically determining which 
acoustic features should be used to predict the next token [17–
22]. 

- Recurrent neural network (RNN), transducers and recurrent 
neural aligners have been developed for use in online decoding 
[23, 24]. 

For implementation, we use espnet[26] tool for end-to-end 
ASR training. The input features is passed in to a 2-blocks of 

VGG-like layer. Each layer comprises 64 kernels with shape 
3 × 1 and a stride of 2 × 1, followed by layer normalization 

and ReLU activation. 
The followed encoder network is represented by 5-layer 

bidirectional long short-term memory (BLSTM) with 1024 
hidden units per layer. We use a location-aware attention 
mechanism. The attention vectors are fed into a 2-layer LSTM 
decoder. When training and decoding, it adopts hybrid 
CTC/attention. 

Espnet combines the log probability of RNN LM during 
decoding by using the shallow-fusion technique. We use all the 
sentences in Table 1 to train a BPE encoder with vocab size is 
5000. Add then we got a vocabulary which size is 5053 to train 
an RNN LM. 

As an evidence verification, we also conduct experiments 
with traditional TDNN system which consists of 6 layers TDNN 
architecture. Each hidden layer contains 850 units. 40 

dimensional static MFCC and 100 dimension i-vector are 
extracted for training. 

3.2.2. Text MT system 

We use Transformer[29] to train the text machine translation 
system following the hyper-parameter settings based on 

Tensor2Tensor transformer relative big settings. The 
transformer is a 6-layer model with model size of 1024, a feed 
forward network size of 8192, and 16 heads relative attention. 
The model is trained on the full dataset described in Table 2 and 
filtered following Section 2.2.  

To match the output of ASR, we remove all the punctuation 
on the source side except “”. For both sides, we apply 
tokenization and BPE[30]. The vocabulary size is about 20K for 

both sides. 

3.2.3. Pipeline Based Data Augmentation 

We apply the above ASR and text MT system on all the dataset 
in Table 1 to obtain the English transcripts and their 
corresponding synthetic German translation. After translation, 
we also filter the data as described in Section 2.2, as the 
generated target sentences contain noise. 

4. Experiments 

In this section, we report our experiments for the IWSLT 2018 
speech translation evaluation TED task under end-to-end 
condition. We mainly test our systems on tst2015 for translation 
experiments and TED-LIUM test set for ASR experiments. 
Case sensitive BLEU is used for our translation evaluation 
metric. WER is used for the ASR evaluation metric. 

For speech features, we use 40-dimensional filter banks, and 

cepstral mean variance normalization (CMVN) is performed at 
the speaker level to mitigate recording variations. 

For the layer-tied speech translation model, the hyper-
parameter kernel-size k in CNN is set as 9 in our experiments. 
The model size of shared self-attention is 512, the feed forward 
network size is 1024. We use 10-layer blocks for encoder and 
decoder. Considering the memory capacity, we do not use the 
same big setting like text MT model described in Section 3.2.2. 

4.1. Results of ASR 

We begin by investigating the impact of CTC’s weight and 
LM’s weight which use for computing the cross entropy and 
decoding respectively. The model described in Section 3.2.1 is 

training with only the TED-LIUM2 data. 
 

Table 4. WER with different CTC’s weight 
(LM’s weight is 0.1) 

 

CTC’s weight WER(%) 

0.0 17.4 

0.2 13.1 
0.5 13.0 
0.8 13.6 

 
Table 5. WER with different LM’s weight 

(CTC’s weight is 0.5) 
 

LM’s weight WER(%) 

0.1 13.0 
0.5 13.0 
0.7 12.5 
0.8 12.8 

 
We see that when we set CTC’s weight as 0.5 meanwhile 

LM’s weight is 0.7, it gets the best performance. And then we 
train the E2E ASR model in such weights with different training 
data. And we apply SpecAugment[27] for data augmentation at 
Exp. A2~A4. 

 
Table 6. WER for speech recognition with different 

training data on TED-LIUM test set 
 

Exp. Data set WER(%) 

A0 TED-LIUM2 12.5 
A1 A0 + IWSLT 9.5 
A2 A1 + SpecAugment 8.8 
A3 A2 + How2 + MuST-C 8.2 



A4 A3 + TED-LIUM3 6.6 

 
  We compare the E2E and cascade ASR in the following table. 
For TDNN, as the feature of How2 data is different from other 
data, we exclude How2 data here. From the table, we can see 

that the E2E system outperforms the cascade along with 
increasing training data, which proves that the end-to-end 
system depends largely on data amount. 
 
            Table 7. WER (%) with different networks 
 

 TDNN E2E 

TED-LIUM2 11.3 12.5 
All training data 10.2 6.6 

 

4.2. Results of text MT 

We remove the punctuation on source side of testing sets with 
the same rules as for the training set. Table 8 shows the BLEU 
scores tested on tst13~15 for the text MT system described in 
Section 3.2.2.  
 

Table 8. BLEU scores of text MT system  
 

 Tst10 Tst11 Tst12 Tst13 Tst14 Tst15 

En-
De 

33.17 30.91 31.84 31.81 28.97 29.99 

 
As our system doesn’t focus on the cascade speech 

translation task, we only use ASR and MT for data 
augmentation. So we don’t conduct any special optimization for 
cascade speech translation.  The BLEU score of cascade ASR 

and MT on tst15 is about 18.50. It can be seen as a test-bed for 
cascade result but not used as the submitted model for the 
evaluation task.  

4.3. Results of End-to-End Speech Translation 

In this section, we describe our experimental results of end-to-
end speech translation. As a matter of fact, the training time of 
end-to-end speech translation is much more than text translation, 
even the amount of the training corpus for text translation is 
much more than speech translation corpus. It is hard to achieve 
complete convergence sometimes. So in our work we just keep 
training as long time as we can for all the models.  

Shown in Table 9, we can find the performance of end-to-end 
speech translation with only must-c corpus is lower than text 

translation by about 20 points. The data augmentation can bring 
about 8.13 points improvement.  
 

Table 9. Data augmentation effect on En-De direction 
 

 
Tst15 
BLEU 

Must-c 9.55 
+ IWLST-labeled+ data-augmentation 17.68 

 
As the memory capacity limitation, running a deeper model 

like 10-layer transformer causes Out-of-Memory issue in our 
server. So we share the self-attention layers in our model as 
described in Section 3.1. But according to our experience, the 

over-parameterized network can always generate better 
translation, while the shared attention may cause the quality 

reduction due to the reduced model capacity. So we compare 
the shared attention and the original transformer in Table 9 and 
Table 10. 

Table 11 shows that the shared attention can reduce the 
parameters, which reduce memory accordingly. So with the 
same memory limitation, the shared attention can achieve 

deeper layers. Notice that we compare the model capacity with 
the same other hyper-parameter settings, like unit number, FFN 
size.  
 

Table 11. Shared attention vs. non-shared attention 
 

 Parameters Model capacity 

non-shared 
structure 

67M 6 layers 

Shared attention 49M 10 layers 

   
Table 12 compares the BLEU scores between shared 

attention and non-shared attention. As the memory 
consumption reduces because of sharing weights, we can use 

bigger setting. With bigger model setting, the BLEU scores 
improve on both tst13 and tst14. It is possible that if the server 
memory is enough, the over-parameterized big model may get 
further improvement. 
 

Table 12 BLEU score of shared/non-shared attention on En-
De direction 

 

 
layer 

Model 
size 

FFN Tst13 Tst14 

non-shared  6 512 1024 15.51 14.12 
Shared attention 6 1024 4096 15.55 14.93 

 
For En-Pt direction, we adopt the tied-layer Transformer 

upon on MuST-C En-Pt corpus. But we don’t apply data 

augmentation for this direction, because we don’t have enough 
En-Pt parallel corpus to train the text translation module. So the 
whole data we use is only MuST-C data and get the BLEU score 
of 11.83 on MuST-C dev data. 

5. Conclusions 

In this paper, we present our end-to-end speech translation 
system for IWSLT 2019 evaluation. Our results show that the 

system with data augmentation performs significantly better 
than the raw data baseline. The shared attention with bigger 
model size and feed forward network perform better than non-
shared attention, which is especially suitable for the limited 
memory. We also find that there still exists large room to 
improve the speech translation quality in order to achieve the 
performance of text machine translation. 
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