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Abstract

This paper describes the ESPnet-ST group’s
IWSLT 2021 submission in the offline speech
translation track. This year we made various
efforts on training data, architecture, and au-
dio segmentation. On the data side, we inves-
tigated sequence-level knowledge distillation
(SeqKD) for end-to-end (E2E) speech transla-
tion. Specifically, we used multi-referenced
SeqKD from multiple teachers trained on dif-
ferent amounts of bitext. On the architecture
side, we adopted the Conformer encoder and
the Multi-Decoder architecture, which equips
dedicated decoders for speech recognition and
translation tasks in a unified encoder-decoder
model and enables search in both source and
target language spaces during inference. We
also significantly improved audio segmenta-
tion by using the pyannote.audio toolkit
and merging multiple short segments for long
context modeling. Experimental evaluations
showed that each of them contributed to large
improvements in translation performance. Our
best E2E system combined all the above tech-
niques with model ensembling and achieved
31.4 BLEU on the 2-ref of tst2021 and 21.2
BLEU and 19.3 BLEU on the two single refer-
ences of tst2021.

1 Introduction

This paper presents the ESPnet-ST group’s
English→German speech translation (ST) system
submitted to the IWSLT 2021 offline speech trans-
lation track. ESPnet (Watanabe et al., 2018)
has been widely used for many speech applica-
tions; automatic speech recognition (ASR), text-
to-speech (Hayashi et al., 2020), speech transla-
tion (Inaguma et al., 2020), machine translation
(MT), and speech separation/enhancement (Li et al.,
2021). The purpose of this submission is not only
to show the recent progress on ST researches, but
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also to encourage future research by building strong
systems along with the open-sourced project.

This year we focused on (1) sequence-level
knowledge distillation (SeqKD) (Kim and Rush,
2016), (2) Conformer encoder (Gulati et al., 2020),
(3) Multi-Decoder architecture (Dalmia et al.,
2021), (4) model ensembling, and (5) better seg-
mentation with a neural network-based voice activ-
ity (VAD) system (Bredin et al., 2020) and a novel
algorithm to merge multiple short segments for
long context modeling. Our primary focus was
E2E models, although we also compared them
with cascade systems with our best effort. All
experiments were conducted with the ESPnet-ST
toolkit (Inaguma et al., 2020), and the recipe is pub-
licly available at https://github.com/espnet/
espnet/tree/master/egs/iwslt21.

2 Data preparation

In this section, we describe data preparation for
each task. The corpus statistics are listed in
Table 1. We removed the off-limit talks fol-
lowing previous evaluation campaigns1. To fit
the GPU memory, we excluded utterances hav-
ing more than 3000 speech frames or more than
400 characters. All sentences were tokenized
with the tokenizer.perl script in the Moses
toolkit (Koehn et al., 2007).

2.1 ASR

We used Must-C (Di Gangi et al., 2019), Must-C
v22, ST-TED (Jan et al., 2018), Librispeech (Panay-
otov et al., 2015), and TEDLIUM2 (Rousseau et al.,
2012) corpora. We used the cleaned version of ST-
TED following (Inaguma et al., 2019). The speech

1https://sites.google.com/
view/iwslt-evaluation-2019/
speech-translation/off-limit-ted-talks

2https://ict.fbk.eu/
must-c-release-v2-0/
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#Hour #Sentence

ASR
Must-C 408 × 3 0.68M
Must-C v2 458 × 3 0.74M
ST-TED (cleaned) 200 × 3 0.40M
Librispeech 960 0.28M
TEDLIUM2 210 × 3 0.27M

E2E-ST
Must-C 408 × 3 0.68M
Must-C v2 458 × 3 0.74M
ST-TED (cleaned) 200 × 3 0.40M

MT
Must-C

-

0.68M
Must-C v2 0.74M
ST-TED (cleaned) 0.40M
Europarl 1.82M
Commoncrawl 2.39M
Paracrawl 34.37M
NewsCommentary 0.37M
WikiTitles 1.38M
RAPID 1.63M
WikiMatrix 1.57M

Table 1: Corpus statistics

data was augmented by three-fold speed pertur-
bation (Ko et al., 2015) with speed ratios of 0.9,
1.0, and 1.1 except for Librispeech. We removed
case information and punctuation marks except for
apostrophes from the transcripts. The 5k unit vo-
cabulary was constructed based on the byte pair
encoding (BPE) algorithm (Sennrich et al., 2016)
with the sentencepiece toolkit3 using the En-
glish transcripts only.

2.2 E2E-ST

We used Must-C, Must-C v2, and ST-TED only.
The shared source and target vocabulary of BPE16k
units was constructed using cased and punctuated
transcripts and translations.

2.3 MT

We used available bitext for WMT204 in addition to
the in-domain TED data used for E2E-ST systems.
We first performed perplexity-based filtering with
an in-domain n-gram language model (LM) (Moore
and Lewis, 2010). We controlled the WMT data
size by thresholding and obtained three data pools:
5M, 10M, and 20M sentences. Next, we removed
non-printing characters and performed language
identification with the langid.py toolkit (Lui
and Baldwin, 2012)5 and kept sentences whose lan-

3https://github.com/google/
sentencepiece

4Europarl, Commoncrawl, Paracrawl, NewsCommentary,
WikiTitles, RAPID and WikiMatrix

5https://github.com/saffsd/langid.py

Filtering method #Sentence

WMT5M WMT10M WMT20M

In-domain LM 5.00M 10.00M 20.00M
+ langid 3.42M 7.90M 15.33M
+ length/character 3.15M 7.77M 15.01M

Table 2: MT bitext filtering
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Figure 1: Block diagram of Conformer architecture

guage IDs were identified correctly on both English
and German sides. We also removed sentences hav-
ing more than 250 tokens in either language or a
source-target length ratio of more than 1.5 with the
clean-corpus-n.perl script in Moses. Fi-
nally, we removed sentences having CJK and other
unrelated characters in either language with the
built-in regex module in Python. The resulting
data size is shown in Table 2. We found that our
filtering strategy removed 22-37% of data. Note
that the above filtering process was performed over
the WMT data only. For each data size, the joint
source and target vocabulary of BPE32k units was
constructed using cased and punctuated sentences
after the filtering. We did not use additional mono-
lingual data.

3 System

3.1 Conformer encoder
Conformer encoder (Gulati et al., 2020) is a stacked
multi-block architecture and has shown consistent
improvement over a wide range of E2E speech
processing applications (Guo et al., 2020). The
architecture of each block is depicted in Figure 1.
It includes a multi-head self-attention module, a
convolution module, and a pair of position-wise
feed-forward modules in the Macaron-Net style.
While the self-attention module learns the long-
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Figure 2: The Multi-Decoder (MD) architecture de-
composes the overall ST task with ASR and MT sub-
nets while maintaining E2E differentiability.

range global context, the convolution module aims
to model the local feature patterns synchronously.
Recent studies have shown improvements by intro-
ducing Conformer in the E2E-ST task (Guo et al.,
2020; Inaguma et al., 2021b), which motivated us
to adopt this architecture as our system.

3.2 SeqKD

Sequence-level knowledge distillation (Se-
qKD) (Kim and Rush, 2016) is an effective
method to transfer knowledge in a teacher model
to a student model via discrete symbols. Our
recent studies (Inaguma et al., 2021a,b) showed a
large improvement in ST performance with this
technique. Unlike the previous studies, however,
we used more training data than bitext in ST
training data to train teacher MT models. We
translated source transcripts in the ST training
data by the teacher MT models with a beam width
of 5 and then replaced the original ground-truth
translation with the generated translation. We used
cased and punctuated transcripts as inputs to the
MT teachers. We also combined both the original
and pseudo translations as data augmentation
(multi-referenced training) (Gordon and Duh,
2019).

3.3 Multi-Decoder architecture

The Multi-Decoder is an E2E-ST model using
Searchable Hidden Intermediates to decompose
the overall ST task into ASR and MT sub-
tasks (Dalmia et al., 2021). As shown in Figure 2,
the Multi-Decoder consists of two encoder-decoder
models, an ASR sub-net and a subsequent MT sub-
net, where the hidden representations of the ASR
decoder are passed as inputs to the encoder of the
MT sub-net. During inference, the best ASR de-
coder hidden representations are retrieved using
beam search decoding at this intermediate stage.

Since this framework decomposes the overall
ST task, it brings several advantages of cascaded

approaches into the E2E setting. For instance, the
Multi-Decoder allows for greater search capabil-
ities and separation of speech and text encoding.
However, one trade-off is a greater risk of error
propagation from the ASR sub-net to the down-
stream MT sub-net. To alleviate this issue, we
condition the decoder of the MT sub-net on the
ASR encoder hidden representations in addition to
the MT encoder hidden representations using multi-
source cross-attention. This improved variant of
the architecture is called the Multi-Decoder with
Speech Attention.

3.4 Model ensembling

We use posterior probability combination to ensem-
ble models trained with different data and archi-
tectures. During inference, we perform a posterior
combination at each step of beam search decoding
by first computing the softmax normalized poste-
rior probabilities for each model in the ensemble
and then taking the mean value. In this ensembling
approach, a single unified beam search operates
over the combined posteriors of the models to find
the most likely decoded sequence.

3.5 Segmentation

How to segment audio during inference signif-
icantly impacts ST performances (Gaido et al.,
2020; Pham et al., 2020; Potapczyk and Przybysz,
2020; Gaido et al., 2021). This is because the ST
systems are usually trained with utterances seg-
mented based on punctuation marks (Di Gangi
et al., 2019) while the audio segmentation by voice
activity detection (VAD) at test time does not ac-
cess such meta information. Since VAD splits a
long speech recording into chunks by silence re-
gions, it would prevent models from extracting se-
mantically coherent contextual information. There-
fore, it is very important to seek a better segmen-
tation strategy in order to minimize this gap in
training and test conditions and evaluate models
correctly. In fact, the last year’s winner obtained
huge improvements by using their own segmenta-
tion strategy.

Motivated by this fact, we investigated two
VAD systems apart from the provided segmenta-
tion. Specifically, we used WebRTC6 and pyan-
note.audio (Bredin et al., 2020)7 toolkits. For We-

6https://github.com/wiseman/
py-webrtcvad

7https://github.com/pyannote/
pyannote-audio
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Algorithm 1 Merge short segments after VAD for
long context modeling
1: function MERGESEGMENT(x,Mdur,Mint)
2: Q← V AD(x) . {(s1, e1), · · · , (sM , eM )}
3: while True do
4: Nmerge ← 0
5: Qnext ← {} . Queue
6: S, T ← s1, e1 . Start/End time
7: for (sm, em) ∈ Q do
8: if em−S < Mdur and sm−E < Mint then
9: Nmerge ← Nmerge +1 . Merge segments

10: else
11: Qnext.enqueue((S,E))
12: S ← sm . Reset
13: end if
14: E ← em
15: end for
16: Q← Qnext

17: if Nmerge = 0 then
18: break
19: end if
20: end while
21: return Q
22: end function

bRTC, we set the frame duration, padding duration,
and aggressive mode to 10ms, 150ms, and 3, re-
spectively. For pyannote.audio, we used a publicly
available model pre-trained on the DIHARD cor-
pus (Ryant et al., 2019).

However, we observed that VAD systems are
more likely to generate short segments because
they do not take contextual information into ac-
count. Therefore, we propose a novel algorithm to
merge multiple short segments into a single chunk
to enable long context modeling by self-attention
in both encoder and decoder modules. The pro-
posed algorithm is shown in Algorithm 1. We first
perform VAD and obtain multiple segments. Then,
we check the segments in a greedy way from left
to right and merge adjacent segments if (1) the to-
tal utterance duration is below a threshold Mdur

[10ms] and (2) the time interval of the two seg-
ments is below a threshold Mint [10ms]. This pro-
cess continues until no segment is merged in an
iteration. Although recent studies proposed simi-
lar methods (Potapczyk and Przybysz, 2020; Gaido
et al., 2021), our algorithm is a bottom-up approach
while theirs are top-down.

4 Experimental setting

In this section, we describe the experimental setting
for each task. The detailed configurations for each
task are summarized in Table 3.

Configuration ASR
E2E-ST

MT
non-MD MD

Warmup step 25k 25k 25k 8k
Learning rate factor 10.0 2.5 12.5 1.0
Batch size 200 utt 128 utt 120 utt 65k tok
Epoch 30 30 30 40
Validation metric Accuracy BLEU BLEU BLEU
Model average 5 5 5 5
Beam width 10 4 16, 10 4

Table 3: Summary of training configuration

4.1 Feature extraction

We extracted 80-channel log-mel filterbank coef-
ficients computed with 25-ms window size and
shifted every 10-ms with 3-dimensional pitch fea-
tures using the Kaldi toolkit (Povey et al., 2011).
The features were normalized by the mean and the
standard deviation calculated on the entire train-
ing set. We applied SpecAugment (Park et al.,
2019) with mask parameters (mT ,mF , T, F ) =
(2, 2, 40, 30) and time-warping for both ASR and
E2E-ST tasks.

4.2 ASR

We used both Transformer and Conformer archi-
tectures. The encoder had two CNN blocks fol-
lowed by 12 Transformer/Conformer blocks fol-
lowing (Karita et al., 2019; Guo et al., 2020). Each
CNN block consisted of a channel size of 256 and
a kernel size of 3 with a stride of 2 × 2, which
resulted in time reduction by a factor of 4. Both
architectures had six Transformer blocks in the de-
coder. In both encoder and decoder blocks, the
dimensions of the self-attention layer dmodel and
feed-forward network dff were set to 512 and 2048,
respectively. The number of attention heads H was
set to 8. The kernel size of depthwise separable con-
volution in Conformer blocks was set to 31. We op-
timized the model with the joint CTC/attention ob-
jective (Watanabe et al., 2017) with a CTC weight
of 0.3. We also used CTC scores during decod-
ing but did not use any external LM for simplicity.
We adopted the best model configuration from the
Librispeech ASR recipe in ESPnet.

4.3 MT

We used the Transformer-Base and -Big configura-
tions in (Vaswani et al., 2017).

4.4 E2E-ST

We used the same Conformer architecture as ASR
except for the vocabulary. We initialized the en-



Model
WER (↓)

Librispeech TEDLIUM2 Must-C
test-other test tst-COMMON

Transformer 9.4 6.4 7.0
Conformer 7.1 6.2 5.6

Table 4: Word error rate (WER) of ASR systems

VAD Mdur Mint
WER (↓)

tst2010 tst2015 tst2018 tst2019 Avg.

Provided

– – 18.2 32.1 23.5 20.8 23.65
1500 200 14.4 29.3 18.4 15.5 19.40
2000 200 12.7 27.7 16.4 11.5 17.08
2500 200 14.5 29.9 15.1 12.2 17.93

WebRTC

– – 35.3 35.1 44.0 22.7 34.28
1500 200 19.4 26.7 27.7 13.8 21.90
2000 200 19.8 27.7 27.1 11.9 21.63
2500 200 22.9 29.5 27.1 11.6 22.78

pyannote

– – 9.5 24.0 15.5 7.3 14.08
1500 200 8.0 23.0 12.4 7.3 12.68
1500 100 7.5 22.2 12.4 6.5 12.15
2000 200 10.3 22.5 12.2 6.5 12.88
2000 150 9.6 21.8 12.3 6.1 12.45
2000 100 8.1 21.5 12.0 5.8 11.90
2000 50 7.3 21.9 12.4 5.9 11.88

Table 5: Impact of audio segmentation for ASR

coder parameters with those of the Conformer ASR.
On the decoder side, we initialized parameters like
BERT (Devlin et al., 2019), where weight parame-
ters were sampled fromN (0, 0.02), biases were set
to zero, and layer normalization parameters were
set to β = 0, γ = 1. This technique led to better
translation performance and faster convergence.

5 Results

5.1 ASR

5.1.1 Architecture
We compared Transformer and Conformer ASR ar-
chitectures in Table 4. We observed that Conformer
significantly outperformed Transformer. Therefore,
we use the Conformer encoder in the following
experiments.

5.1.2 Segmentation
Next, we investigated the VAD systems and the pro-
posed segment merging algorithm for long context
modeling in Table 5. We used the same decoding
hyperparameters tuned on Must-C. We firstly ob-
served that merging short segments was very effec-
tive probably because it alleviated frame classifica-
tion errors in the VAD systems. Among three audio
segmentation methods, we confirmed that pyan-
note.audio significantly reduced the WER while
WebRTC had negative impacts compared to the
provided segmentation. Specifically, we found that

the dihard option in pyannote.audio worked very
well while the rest options did not. The optimal
maximum duration Mdur was around 2000 frames
(i.e., 20 seconds). In the last experiments, we tuned
the maximum interval Mint among {50, 100, 150,
200} and found 50 and 100 (i.e., 0.5 and 1 second)
was best on average. Compared to the provided
segmentation, we obtained a 49.6% improvement
on average.

5.2 MT

In this section, we show the results of our MT
systems used for cascade systems and pseudo la-
beling in SeqKD. We report case-sensitive detok-
enized BLEU scores (Papineni et al., 2002) with the
multi-bleu-detok.perl script in Moses.
We carefully investigated the effective amount of
WMT training data to improve the performance of
the TED domain. The results are shown in Table 6.
We confirmed that adding the WMT data improved
the performance by more than 4 BLEU. Regarding
the WMT data size, using up to 10M sentences was
helpful, but 20M did not show clear improvements,
probably because of the undersampling of the TED
data. Oversampling as in multilingual NMT (Ari-
vazhagan et al., 2019) could alleviate this problem,
but this is beyond our scope.

After training with a mix of the WMT and TED
data, we also tried to finetune the model with the
TED data only, but this did not lead to clear im-
provement, especially for the IWSLT test sets. In-
creasing the model capacity was not helpful, al-
though the conclusion might change by adding
more training data and evaluating the model in
other domains such as news. Because our primary
focus to use MT systems was pseudo labeling for
SeqKD, we decided to use the Base configuration
to speed up decoding.

Finally, we checked the BLEU scores on the
Must-C training data used for SeqKD. We observed
that adding more WMT data decreased the BLEU
score, from which we can conclude that using more
WMT data gradually changed the MT output from
the TED style. Therefore, we decided to use the
models trained on WMT5M and WMT10M as teachers
for SeqKD.

5.3 Speech translation

5.3.1 E2E-ST
SeqKD The results are shown in Table 7. We
first observed the baseline Conformer model



Model
BLEU (↑)

Must-C Must-C v2 tst2010 tst2015 tst2018 tst2019 Must-C
dev tst-COMMON tst-COMMON Train

Base (Must-C only) – 30.02 29.86 27.28 24.92 21.13 20.37

Base (WMT5M) 31.31 34.13 33.85 31.61 32.44 28.30 28.28 45.68
+ Big 27.32 29.11 28.85 27.61 28.44 24.42 23.92 –

Base (WMT10M) 33.28 35.09 34.80 33.58 33.26 29.24 28.87 38.31
+ In-domain finetune 30.67 35.50 35.30 30.79 31.43 25.35 26.10 –

Base (WMT20M) 33.15 35.06 34.87 33.26 33.56 29.94 29.08 33.60

Table 6: BLEU scores of text-based MT systems

ID Model
BLEU (↑)

Must-C Must-C v2
tst2010 tst2015 tst2018 tst2019

dev tst-COMMON tst-HE tst-COMMON

-

Bidir SeqKD (E2E) (Inaguma et al., 2021b) 25.67 27.01 25.36 – – – – –
Multi-Decoder (E2E) (Dalmia et al., 2021) – 26.4 – – – – – –
RWTH (Cascade) (Bahar et al., 2021) – 26.50 26.80 – – 28.4 – –
KIT (E2E) (Pham et al., 2020) – 30.60 – – 24.27 21.82 – –
KIT (Cascade) (Pham et al., 2020) – – – – 26.68 24.95 – –
SRPOL (E2E) (Potapczyk and Przybysz, 2020) – – – – 29.44 24.6 – 23.96

A1 Baseline (X) 25.14 35.63 22.63 36.07 21.40 18.18 16.69 17.39
A2 + SeqKD (Y) 26.31 29.29 26.33 29.50 23.34 21.24 21.09 22.25
A3 + 2ref SeqKD (X+Y) 26.50 30.59 26.21 30.92 23.00 22.18 20.38 21.59
A4 + 3ref SeqKD (X+Y+Z) 27.66 30.90 27.44 31.07 24.97 22.66 22.20 23.41

B1 MD + 2ref SeqKD – 30.78 – – – – – 23.78

C1 Conformer ASR→ Base MT (WMT10M) 27.01 29.42 26.13 29.75 25.04 23.17 23.05 23.19

Table 7: BLEU scores of ST systems. X: original, Y: WMT5M, Z: WMT10M. For unsegmented test sets, we used
pyannote.audio with Mdur = 2000 and Mint = 100.

(A1) achieved 35.63 BLEU on the Must-C
tst-COMMON set, and it is the new state-of-the-
art record to the best of our knowledge. Surpris-
ingly, it even outperformed text-based MT sys-
tems in Table 6. On the other hand, unlike our
observations in (Inaguma et al., 2021a,b), SeqKD
(A2-4) degraded the performance on the Must-
C tst-COMMON set. However, the results on
the Must-C dev and tst-HE sets showed com-
pletely different trends, where we observed better
BLEU scores by SeqKD in proportion to the WMT
data used for training the teachers. Therefore, af-
ter tuning audio segmentation, we also evaluated
the models on the unsegmented IWSLT test sets.
Here, we used the pyannote.audio based segmenta-
tion with (Mdur,Mint) = (2000, 100) as described
in §5.1.2. Then, we confirmed large improvements
with SeqKD by 2-6 BLEU, and therefore we de-
cided to determine the best model based on the
IWSLT test sets. Multi-referenced training consis-
tently improved the BLEU scores on the IWSLT
sets. For example, A4 outperformed A1 by 6.02
BLEU on tst2019 although the tst2019 set was
well-segmented (WER: 6.0%). Given these obser-
vations, we recommend evaluating ST models on

ID Ensembled Models tst2019

- B1 21.06
E1 B1, A4 22.51
E2 B1, A4, A1 22.83
E3 B1, A4, A1, A3 23.36
E4 B1, A4, A1, A3, A2 23.61

Table 8: BLEU (↑) scores of ensembled E2E-ST sys-
tems on tst2019, using the provided segmentation with
Mdur = 2000 and Mint = 100

multiple test sets for future research.

Multi-Decoder architecture We combined the
SeqKD and Multi-Decoder techniques in our B1
system. B1, which used a conformer ASR encoder
and 2ref SeqKD, showed an improvement of 2.19
BLEU on tst2019 over A3, the encoder-decoder
which also used 2ref SeqKD. B1 also achieved
a slightly higher result on tst2019 compared to A4
which used 3ref SeqKD. These results suggest
that the Multi-Decoder architecture is indeed com-
patible with SeqKD.

Model ensemble As shown in Table 8, ensem-
bling our various ST systems using the posterior
combination method described in §3.4 showed im-



VAD Mdur Mint
BLEU (↑)

tst2010 tst2015 tst2018 tst2019 Avg.

Provided† – – – – – 20.1 –

Provided
(E2E)

– – 21.99 19.94 19.29 19.70 20.23
1000 200 22.62 20.54 19.80 20.54 20.88
1500 200 23.00 21.66 20.14 21.50 21.58
2000 200 22.95 21.58 20.03 21.34 21.48

WebRTC
(E2E)

– – 13.13 12.97 11.07 13.32 12.62
1000 200 20.95 20.66 17.09 20.87 19.89
1500 200 21.00 20.99 17.67 21.05 20.18
2000 200 20.25 21.81 17.08 20.71 19.96

pyannote
(E2E)

– – 22.26 16.84 17.78 19.98 19.22
1500 200 25.00 22.22 21.97 22.67 22.97
1500 100 25.92 22.81 22.51 22.88 23.53
2000 200 24.10 21.98 21.00 22.71 22.45
2000 150 24.25 22.26 21.41 22.99 22.73
2000 100 24.97 22.66 22.20 23.41 23.31
2000 50 24.50 20.67 22.14 22.89 22.55

pyannote
(Cascade)

1500 200 25.06 22.65 23.01 22.51 23.31
1500 100 25.56 22.85 23.03 22.82 23.57
2000 200 24.41 22.76 22.15 22.08 22.85
2000 150 24.50 23.03 23.12 23.11 23.44
2000 100 25.04 23.17 23.05 23.19 23.61
2000 50 24.33 20.79 23.12 23.11 22.84

Table 9: Impact of audio segmentation for ST. A4 was
used for the E2E model. † (Potapczyk and Przybysz,
2020)

provements over the best single model, B1. We
found that an ensemble of all of our models, A1-4
and B1, achieved the best result of 23.61 BLEU
on tst2019 and outperformed B1 by 2.55 BLEU.
Although A1 as a single system performs worse
on tst2019 than the other single systems as shown
in Table 7, including it in an ensemble with the
two best single systems, B1 and A4, still yielded a
slight gain of 0.32 BLEU (E2). Therefore, we can
conclude that weak models are still beneficial for
ensembling.

5.3.2 Segmentation
Similar to §5.1.2, we also investigated the im-
pact of audio segmentation for E2E-ST mod-
els. To this end, we used the A4 model. Note
that we used the same decoding hyperparameters
tuned on Must-C. The results are shown in Ta-
ble 9. We confirmed a similar trend to ASR. Al-
though (Mdur,Mint) = (1500, 100) showed the
best performance on average, we decided to use
(Mdur,Mint) = (2000, 100) for submission con-
sidering the best performance on the latest IWSLT
test, tst2019.

5.3.3 Cascade system
We also evaluated the cascade system with the Con-
former ASR and the Transformer-Base MT trained
on the WMT10M data (C1). The MT model was
trained by feeding source sentences without case

information and punctuation marks. The results in
Table 9 showed that the BLEU scores correlated to
the WER in Table ,5 and the performance was com-
parable with that of A4. Although there is some
room for improving the performance of the cascade
system further by using in-domain English LM, it
is difficult to conclude which modeling (cascade
or E2E) is effective because the cascade system
had more model parameters in the ASR decoder
and MT encoder. This means that the E2E model
could also be enhanced by using a similar amount
of parameters.

5.3.4 Final system
Our final system was the best ensemble system E4,
using the pyannote.audio based segmentation with
(Mdur,Mint) = (2000, 200)8. This system, which
was our primary submission, scored 24.14 BLEU
on tst2019 as shown in Table 10. Compared to the
result in Table 8, it improved by 0.53 BLEU thanks
to better audio segmentation. It was also slightly
higher than the IWSLT20 winner’s submission by
SPROL (Potapczyk and Przybysz, 2020).

We also present the results on tst2020 and
tst2021 in Table 10. Our primary submission E4
outperformed the result of last year’s winner sys-
tem on tst2020.

6 Conclusion

In this paper, we have presented the ESPnet-ST
group’s offline systems on the IWSLT 2021 submis-
sion. We significantly improved the baseline Con-
former performance with multi-referenced SeqKD,
Multi-Decoder architecture, segment merging al-
gorithm, and model ensembling. Our future work
includes scaling training data and careful analysis
of the performance gap in different test sets.
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System Segmentation
Segment
merging Mint

BLEU (↑)
tst2019 tst2020 tst2021

ref1 ref2 both

IWSLT’20 winner♣
given – – 20.1 21.5 – – –
own – – 23.96 25.3 – – –

E4 (primary) pyannote 3 200 24.14 25.6 19.3 21.2 31.4

E4+* pyannote 3 200 24.41 25.5 19.7 20.6 30.8
E4+* pyannote 3 100 24.87 26.0 19.5 21.1 31.3
E4+* given 3 100 23.72 25.1 19.4 21.4 31.5
E4+* given 7 – 21.10 22.3 17.4 18.4 27.7
B1 pyannote 3 100 23.78 25.0 18.9 20.9 31.1

Table 10: BLEU scores of submitted systems on tst2020 and tst2021. ♣ (Potapczyk and Przybysz, 2020). Mdur =
2000 was used for the segment merging algorithm. *Late submission (not official). E4+ denotes E4 trained for
more steps.
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