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Abstract

The recent advances introduced by neural machine transla-
tion (NMT) are rapidly expanding the application fields of
machine translation, as well as reshaping the quality level
to be targeted. In particular, if translations have to fit some
given layout, quality should not only be measured in terms
of adequacy and fluency, but also length. Exemplary cases
are the translation of document files, subtitles, and scripts
for dubbing, where the output length should ideally be as
close as possible to the length of the input text. This pa-
per addresses for the first time, to the best of our knowledge,
the problem of controlling the output length in NMT. We in-
vestigate two methods for biasing the output length with a
transformer architecture: i) conditioning the output to a given
target-source length-ratio class and ii) enriching the trans-
former positional embedding with length information. Our
experiments show that both methods can induce the network
to generate shorter translations, as well as acquiring inter-
pretable linguistic skills.

1. Introduction
The sequence to sequence [1, 2] approach to Neural Machine
Translation (NMT) has shown to improve quality in various
translation tasks [3, 4, 5]. While translation quality is nor-
mally measured in terms of correct transfer of meaning and
of fluency, there are several applications of NMT that would
benefit from optimizing the output length, such as the trans-
lation of document elements that have to fit a given layout –
e.g. entries of tables or bullet points of a presentation – or
subtitles, which have to fit visual constraints and readability
goals, as well as speech dubbing, for which the length of the
translation should be as close as possible to the length of the
original sentence.

Current NMT models do not model explicitly sentence
lengths of input and output, and the decoding methods do not
allow to specify desired number of tokens to be generated.
Instead, they implicitly rely on the observed length of the
training examples [6, 7].

Sequence-to-sequence models have been also applied to
text summarization [8] to map the relevant information found
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in a long text into a limited-length summary. Such models
have shown promising results by directly controlling the out-
put length [9, 10, 11, 12]. However, differently from MT, text
summarization (besides being a monolingual task) is charac-
terized by target sentences that are always much shorter than
the corresponding source sentences. While in MT, the distri-
bution of the relative lengths of source and target depends on
the two languages and can significantly vary from one sen-
tence pair to another due to stylistic decisions of the transla-
tor and linguistic constraints (e.g. idiomatic expressions).

In this work, we propose two approaches to control the
output length of a transformer NMT model. In the first ap-
proach, we augment the source side with a token represent-
ing a specific length-ratio class, i.e. short, normal, and long,
which at training time corresponds to the observed ratio and
at inference time to the desired ratio. In the second approach,
inspired by recent work in text summarization [12], we en-
rich the position encoding used by the transformer model
with information representing the position of words with re-
spect to the end of the target string.

We investigate both methods, either in isolation or com-
bined, on two translation directions (En-It and En-De) for
which the length of the target is on average longer than the
length of the source. Our ultimate goal is to generate transla-
tions whose length is not longer than that of the source string
(see example in Table 1). While generating translations that
are just a few words shorter might appear as a simple task, it
actually implies good control of the target language. As the
reported examples show, the network has to implicitly apply
strategies such as choosing shorter rephrasing, avoiding re-
dundant adverbs and adjectives, using different verb tenses,
etc. We report MT performance results under two training
data conditions, small and large, which show limited degra-
dation in BLEU score and n-gram precision as we vary the
target length ratio of our models. We also run a manual eval-
uation which shows for the En-It task a slight quality degra-
dation in exchange of a statistically significant reduction in
the average length ratio, from 1.05 to 1.01.

2. Background
Our proposal is based on the transformer architecture and a
recently proposed extension of its positional encoding aimed
to control the length of generated sentences in text summa-



SRC It is actually the true integration of the man and the machine.

MT Es ist tatsächlich die wahre Integration von Mensch und Maschine.

MT* Es ist die wirkliche Integration von Mensch und Maschine.------

SRC So we thought we would look at this challenge and create an exoskeleton that would help deal with this issue.

MT Quindi abbiamo pensato di guardare a questa sfida e creare un esoscheletro che potesse aiutare ad affrontare questo problema.

MT* Pensavamo di guardare a questa sfida e creare un esoscheletro che potesse aiutare a risolvere il problema.---

Table 1: German and Italian human and machine translations (MT) are usually longer than their English source (SRC). We
investigate enhanced NMT (MT*) that can also generate translations shorter than the source length. Text in red exceeds the
length of the source, while underlined words point out the different translation strategy of the enhanced NMT model.

Figure 1: Training NMT with three length ratio classes permits to get outputs of different length at inference time.

rization.

2.1. Transformer

Transformer [13] is a sequence-to-sequence architecture that
processes sequences using only attention and feed forward
layers. Its core component is the so-called multi-head at-
tention, which computes attention [1, 14] between two se-
quences in a multi-branch fashion [15]. Within the encoder
or the decoder, each layer first computes attention between
two copies of the same sequence (self-attention). In the de-
coder, this step is followed by an attention over the encoder
output sequence. The last step in each layer is a two-layered
time-distributed feed-forward network, with a hidden size
larger than its input and output. Attention and feed-forward
layers are characterized by a position-invariant processing
of their input. Thus, in order to enrich input embeddings
in source and target with positional information, they are
summed with positional vectors of the same dimension d,
which are computed with the following trigonometric encod-
ing (PE):

PE(pos, 2i) = sin

(
pos

10000
2i
d

)
(1)

PE(pos, 2i+ 1) = cos

(
pos

10000
2i+1

d

)
(2)

for i = 1, . . . , d/2.

2.2. Length encoding in summarization

Recently, an extension of the positional encoding [12] was
proposed to model the output length for text summarization.
The goal is achieved by computing the distance from every
position to the end of the sentence. The new length encoding

is present only in the decoder network as an additional vec-
tor summed to the input embedding. The authors proposed
two different variants. The first variant replaces the variable
pos in equations (1-2) with the difference len − pos, where
len is the sentence length. The second variant attempts to
model the proportion of the sentence that has been covered
at a given position by replacing the constant 10000 in the
denominator of equations (1-2) with len.1 As decoding is
performed at the character level, len and pos are given in
number of characters. At training time, len is the observed
length of the reference summary, while at inference time it is
the desired length.

3. Methods
We propose two methods to control the output length in
NMT. In the first method we partition the training set in three
groups according to the observed length ratio of the refer-
ence over the source text. The idea is to let the model learn
translation variants by observing them jointly with an extra
input token. The second method extends the Transformer
positional encoding to give information about the remaining
sentence length. With this second method the network can
leverage fine-grained information about the sentence length.

3.1. Length Token Method

Our first approach to control the length is inspired by tar-
get forcing in multilingual NMT [16, 17]. We first split the
training sentence pairs into three groups according to the
target/source length ratio (in terms of characters). Ideally,
we want a group where the target is shorter than the source
(short), one where they are equally-sized (normal) and a last

1Notice that the denominator varies with i according to a power function.



group where the target is longer than the source (long). In
practice, we select two thresholds tmin and tmax according
to the length ratio distribution. All the sentence pairs with
length ratio between tmin and tmax are in the normal group,
the ones with ratio below tmin in short and the remaining in
long. At training time we prepend a length token to each
source sentence according to its group (<short>, <normal>,
or <long>), in order to let a single network to discriminate
between the groups (see Figure 1). At inference time, the
length token is used to bias the network to generate a trans-
lation that belongs to the desired length group.

3.2. Length Encoding Method

Inspired by [12], we use length encoding to provide the net-
work with information about the remaining sentence length
during decoding. We propose two types of length encoding:
absolute and relative. Let pos and len be, respectively, a to-
ken position and the end of the sequence, both expressed in
terms of number characters. Then, the absolute approach en-
codes the remaining length:

LEabs(len, pos, 2i) = sin

(
len− pos

10000
2i
d

)
(3)

LEabs(len, pos, 2i+ 1) = cos

(
len− pos

10000
2i+1

d

)
(4)

where i = 1, . . . , d/2.
Similarly, the relative difference encodes the relative po-

sition to the end. This representation is made consistent with
the absolute encoding by quantizing the space of the relative
positions into a finite set of N integers:

LErel(len, pos, 2i) = sin

(
qN (pos/len)

10000
2i
d

)
(5)

LErel(len, pos, 2i+ 1) = cos

(
qN (pos/len)

10000
2i+1

d

)
(6)

where qN : [0, 1] → {0, 1, .., N} is simply defined as
qN (x) = bx×Nc. As we are interested in the character
length of the target sequence, len and pos are given in terms
of characters, but we represent the sequence as a sequence
of BPE-segmented subwords [18]. To solve the ambiguity,
len is the character length of the sequence, while pos is the
character count of all the preceding tokens. We prefer a rep-
resentation based on BPE, unlike [12], as it leads to better
translations with less training time [19, 20]. During training,
len is the observed length of the target sentence, while at in-
ference time it is the length of the source sentence, as it is the
length that we aim to match. The process is exemplified in
Figure 2.

3.3. Combining the two methods

We further propose to use the two methods together to com-
bine their strengths. In fact, while the length token acts as a

soft constraint to bias NMT to produce short or long transla-
tion with respect to the source, actually no length information
is given to the network. On the other side, length encoding
leverages information about the target length, but it is agnos-
tic of the source length.

3.4. Fine-Tuning for length control

Training an NMT model from scratch is a compute inten-
sive and time consuming task. Alternatively, fine-tuning a
pre-trained network shows to improve performance in several
NMT scenarios [21, 22, 23, 24, 25]. For our length control
approaches, we further propose to use fine-tuning an NMT
model with length information, instead of training it from
scratch. By adopting a fine-tuning strategy, we specifically
aim; i) to decouple the performance of the baseline NMT
model from that of the additional length information, ii) con-
trol the level of aggressiveness that can come from the data
(length token) and the model (length encoding), and iii) make
the approaches versatile to any pre-trained model. More im-
portantly, it will allow to transform any NMT model to an
output length aware version, while getting better improve-
ments on the quality of the generated sequences.

4. Experiments
4.1. Data and Settings

Our experiments are run using the English→Italian/German
portions of the MuST-C corpus [26], which is extracted from
TED talks, using the same train/validation/test split as pro-
vided with the corpus (see Table 2). As additional data, we
use a mix of public and proprietary data for about 16 mil-
lion sentence pairs for English-Italian (En-It) and 4.4 mil-
lion WMT14 sentence pairs for the English-German (En-
De). While our main goal is to verify our hypotheses on
a large data condition, thus the need to include proprietary
data, for the sake of reproducibility in both languages we
also provide results with systems only trained on TED Talks
(small data condition). When training on large scale data we
use Transformer with layer size of 1024, hidden size of 4096
on feed forward layers, 16 heads in the multi-head attention,
and 6 layers in both encoder and decoder. When training
only on TED talks, we set layer size of 512, hidden size of
2048 for the feed forward layers, multi-head attention with 8
heads and again 6 layers in both encoder and decoder.

In all the experiments, we use the Adam [27] optimizer
with an initial learning rate of 1 × 10−7 that increases lin-
early up to 0.001 for 4000 warm-up steps, and decreases af-
terwards with the inverse square root of the training step. The
dropout is set to 0.3 in all layers but the attention, where it
is 0.1. The models are trained with label smoothed cross-
entropy with a smoothing factor of 0.1. Training is per-
formed on 8 Nvidia V100 GPUs, with batches of 4500 tokens
per GPU. Gradients are accumulated for 16 batches in each
GPU [28]. We select the models for evaluation by applying
early stopping based on the validation loss. All texts are to-



Figure 2: Transformer architecture with decoder input enriched with (relative) length embedding computed according to the
desired target string length (12 characters in the example).

Pairs Train Dev Test
En-It (MuST-C) 241,618 1,210 2,574
En-De (MuST-C) 229,703 1,423 2,641
En-De (WMT14) 4,471,497 6,003 3,003

Table 2: Train, validation and test data size in number of
examples.

Pairs Set short normal long Total
En-It train 64185 117589 59844 241618

dev 247 576 487 1210
test 599 1200 775 2574

En-De train 53417 103951 72335 229703
dev 311 624 488 1423
test 554 1240 847 2641

Length ratio [0, 1] (1, 1.2] (1.2,∞)

Table 3: Train data category after assigning the length tokens
(normal, short and long).

kenized with scripts from the Moses toolkit [29], and then
words are segmented with BPE [18] with 32K joint merge
rules.

For evaluation we take the best performing checkpoint on
the dev set according to the loss. The size of the data clus-
ters used for the length token method and their corresponding
target-source length ratios are reported in Table 3. The value
of N of the relative encoding is set to a small value (5), as in
preliminary experiments we observed that a high value (100)
produces results similar to the absolute encoding.

4.2. Models

We evaluate our Baseline Transformer using two decoding
strategies: i) a standard beam search inference (standard),
and ii) beam search with length penalty (penalty) set to 0.5
to favor shorter translations [30].

Length token models are evaluated with three strategies
that correspond to the tokens prepended to the source test set

at a time (short, normal, and long), and reported as Len-Tok.
Length encoding (Len-Enc) models are evaluated in a length
matching condition, i.e. output length has to match input
length. We report the relative (Rel) and absolute (Abs) strate-
gies of the approach as discussed in Section 3.2. In the small
data condition, we additionally evaluated how the fine-tuning
strategy compares with a model trained from scratch. In the
large data condition, we added a setting that combines both
the length-token and length-encoding strategies.

4.3. Evaluation

To evaluate all models’ performance we compute BLEU [31]
with the multi-bleu.perl implementation2 on the single-
reference test sets of the En-It and En-De pairs. Given the
absence of multiple references covering different length ra-
tios, we also report n-gram precision scores (BLEU∗), by
multiplying the BLEU score by the inverse of the brevity
penalty [31]. BLEU∗ scores is meant to measure to what
extent shorter translations are subset of longer translations.

The impact on translation lengths is evaluated with
the mean sentence-level length ratios between MT output
and source (LRsrc) and between MT output and reference
(LRref ).

5. Results

We performed experiments in two conditions: small data
and larger data. In the small data condition we only use the
MuST-C training set. In the large data condition, a baseline
model is first trained on large data, then it is fine-tuned on
the MuST-C training set using the proposed methods. Tables
4 and 5 lists the results for the small and large data condi-
tions. For the two language directions they show BLEU and
BLEU* scores, as well as the average length ratios.

2A script from the Moses SMT toolkit: http://www.statmt.org/moses



Small Data
Pairs English-Italian English-German
Models Strategy BLEU BLEU∗ LRsrc LRref BLEU BLEU∗ LRsrc LRref

Baseline standard 32.33 32.33 1.05 1.03 31.32 31.41 1.11 0.98
penalty 32.45 32.45 1.04 1.02 30.80 31.36 1.09 0.97

Training from scratch
normal 32.54 32.54 1.04 1.02 31.48 31.76 1.12 1.00

Len-Tok short 31.62 32.90 0.97 0.95 28.53 31.15 1.02 0.90
long 31.16 31.16 1.10 1.08 30.31 30.31 1.22 1.09

Len-Enc Rel match 30.96 30.96 1.03 1.01 29.04 30.67 1.06 0.95
Len-Enc Abs match 30.26 30.26 1.01 1.04 27.60 29.58 1.02 0.91

Fine-tuning the baseline model
normal 32.41 32.41 1.05 1.02 31.64 31.64 1.12 0.99

Len-Tok short 32.67 32.80 1.01 0.99 30.12 31.34 1.07 0.94
long 32.00 32.00 1.06 1.04 31.35 31.35 1.15 1.02

Len-Enc Rel match 32.10 32.10 1.05 1.03 30.73 31.58 1.09 0.97
Len-Enc Abs match 31.24 31.24 1.02 1.01 30.29 31.65 1.07 0.95

Table 4: Performance of the baseline and models with length information trained from scratch and or by fine-tuning, in terms
of BLEU, BLEU∗, mean length ratio of the output against the source (LRsrc) and the reference (LRref ). italics shows the best
performing model under each category, while bold shows the wining strategy.

5.1. Small Data condition

The baselines generate translations longer than the source
sentence side, with a length ratio of 1.05 for Italian and 1.11
for German. Decoding with length penalty (penalty) slightly
decreases the length ratios but they are still far from our goal
of LRsrc=1.00.
Fine-tuning. A comparison of the models trained from
scratch (central portion of Table 4) with their counterparts
fine-tuned from the baseline (last portion of Table 4) shows
that the models in the first group generally generate shorter
translations, but of worse quality. Additionally, the results
with fine-tuning are not much different from the baseline.
Existing models can be enhanced to produce shorter sen-
tences, and little variation is observed in their translation
quality.
Length tokens. Fine-tuning with Len-Tok (Fourth sec-
tion in Table 4) gives a coarse-grained control over the
length, while keeping BLEU scores similar to the base-
line or slightly better. Decoding with the token normal
leads to translations slightly shorter than the baseline for
En-It (LRsrc=1.05 and LRref=1.02), while the token small
strongly reduces the translation lengths up to almost the
source length (LRsrc=1.01). In the opposite side, the token
long generates longer translations which are slightly worse
than the others (32.00). A similar behavior is observed for
En-De, where the LRsrc goes from 1.12 to 1.07 when chang-
ing normal with short, and to 1.15 with long. The results with
the token long are not interesting for our task and are given
only for the sake of completeness.
Length Encoding. The last section of Table 4 lists the re-
sults of using length encoding (Len-Enc) relative (Rel) and
absolute (Abs). The two encodings lead to different gener-
ated lengths, with Abs being always shorter than Rel. Un-
fortunately, these improvements in the lengths correspond to

a significant degradation in translation quality, mostly due to
truncated sentences.

5.2. Large data condition

Our Baselines for the large data condition generate sentences
with length ratios over the source comparable to the small
data condition (LRsrc and LRref), but with better translation
quality: 35.46 BLEU points for En-It and 33.96 for En-De.
Length penalty slightly reduces the length ratios, which re-
sults in a 0.3 BLEU points improvement in Italian and -0.3 in
German because of the brevity penalty. In the latter case, the
BLEU* is slightly better than the standard baseline output.
Also for the large data condition, while the length penalty
slightly helps to shorten the translations, its effect is minimal
and insufficient for our goal.
Length tokens. In En-It there is no noticeable difference
in translation quality between the tokens normal and short,
while there is a degradation of ∼ 0.7 points when using
long. This last result is consistent with the ones observed
before. Also in this case the token short does not degrade
the BLEU score, and obtains the highest precision BLEU*
with 36.22. In En-De we obtain the best results with token
normal (34.46), which matches the length distribution of the
references. The token short generates much shorter outputs
(LRsrc=1.05), which are also much shorter than the reference
(LRref = 0.93). Consequently the BLEU score degrades sig-
nificantly (30.61), and also the BLEU* is 1 point lower than
with the token normal. Longer translations can be generated
with the token long, but they always come at the expense of
lower quality.
Length encoding. For En-It, Len-Enc Rel in Table 5
achieves a LRsrc of 1.01 with a slight degradation of 0.3
BLEU points over the baseline, while in the case of Abs the
degradation is higher (-1.6) and LRsrc is similar (1.02). Also



Large Data Condition
Pairs English-Italian English-German
Models Strategy BLEU BLEU∗ LRsrc LRref BLEU BLEU∗ LRsrc LRref

Baseline standard 35.46 35.46 1.05 1.03 33.96 34.06 1.13 0.99
penalty 35.75 35.75 1.04 1.01 33.64 34.19 1.11 0.98
normal 35.48 35.48 1.05 1.02 34.10 34.24 1.12 1.00

Len-Tok short 35.39 36.22 1.00 0.98 30.61 33.27 1.05 0.93
long 34.71 34.71 1.08 1.05 33.46 33.46 1.21 1.08

Len-Enc Rel match 35.18 35.18 1.01 0.99 33.61 33.74 1.11 0.98
Len-Enc Abs match 33.86 33.86 1.02 1.00 30.79 33.29 1.03 0.92
Tok+Enc Rel short 34.51 35.91 0.96 0.94 30.08 32.62 1.01 0.90

normal 35.40 35.40 1.02 0.99 33.41 34.09 1.08 0.96
Tok+Enc Abs short 33.96 33.96 1.01 0.99 29.28 32.28 1.01 0.90

normal 33.90 33.90 1.01 1.00 31.19 33.61 1.03 0.92

Table 5: Large scale experiments comparing the baseline, length token, length encoding and their combination.

in En-De the degradation of Rel over the baseline is only -
0.3, but the reduction in terms of LRsrc is very small (1.11 vs
1.13). On the other side, Abs produces much shorter trans-
lations (1.03 LRsrc) at the expense of a significantly lower
BLEU score (30.79). When computing the BLEU* score, the
absolute encoding is only 0.45 points lower than the relative
encoding (33.29 vs 33.74), but -0.8 lower than the baseline.
Token + Encoding. So far, we have observed generally good
results using the token method and translating with the to-
kens short and normal. while the length encoding generally
produces a more predictable output length, in particular for
the absolute variant. In the last experiment, we combine the
two methods in order to have a system that can capture dif-
ferent styles (short, normal, long), as well as explicitly lever-
aging length information. The results listed in the last por-
tion of Table 5 (Tok+Enc) show that the relative encoding
Rel produces better translations than Abs, but again it has
less predictability in output length. For instance, in En-It the
LRsrc of Rel is 0.96 with token short and 1.02 with normal,
while for En-De it is 1.01 with short and 1.08 with normal.
On the other side, the Abs produces LRsrc of 1.01 with both
tokens in En-It and also with short in En-De, and it increases
to only 1.03 with normal.
Controlling output length. In order to achieve LRsrc as
close as possible to 1.0, we set the target length during gener-
ation equal to the source length when using the length encod-
ing methods. However, one advantage of length encoding is
the possibility to set the target length to modify the average
output length. We illustrate this option by using the Tok+Enc
Rel system for En-It, and translating with the tokens normal
or short and different scaling factors for the target length.
The results, listed in Table 6, show that we are able to ap-
proach an LRsrc of 1.0 with both tokens and the BLEU score
is not affected with token normal (35.45) or improves with
token short (35.11).
Discussion. Length token is an effective approach to gener-
ate translations of different lengths, but it does not allow a
fine-grained control of the output lengths and its results de-
pend on the partition of the training set into groups, which is

Token Scale BLEU BLEU∗ LRsrc LRref

1.00 34.51 35.91 0.96 0.94
short 1.10 34.82 35.60 0.98 0.96

1.20 35.11 35.25 0.99 0.97
1.00 35.40 35.40 1.02 0.99

normal 0.98 35.49 35.49 1.01 0.99
0.93 35.46 35.67 1.00 0.98

Table 6: Results for En-It with Tok+Enc Rel by scaling the
target length with different constant factors.

a manual process. Length encoding allows to change the out-
put length, but the two variants have different effects. Abso-
lute encoding is more accurate but generates sentences with
missing information. The relative encoding produces better
translations than the absolute encoding, but its control over
the translation length is more loose. The increased length
stability is captured by the standard deviation of the length
ratio with the source, which is 0.14 for length tokens,∼ 0.11
for relative encoding and ∼ 0.07 for absolute encoding. The
advantage of the combined approach is that it can generate
sentences with different style to fit different length groups,
and the output length can also be tuned by modifying the
target length, while no important quality degradation is ob-
served. Additionally, the standard deviation of the lengths is
the same as for the length encoding used.

5.3. Human Evaluation and Analysis

After manually inspecting the outputs of the best perform-
ing models under the large data condition, we decided to
run a human evaluation only for the En-It Len-Tok model.
As our ultimate goal is to be able to generate shorter trans-
lations and as close as possible to the length of the source
sentences, we focused the manual evaluation on the Short
output class and aimed to verify possible losses in quality
with respect to the baseline system. We ran a head-to-head
evaluation 3 on the first 10 sentences of each test talk, for a

3We used crowd-sourcing via figure-eight.com.



% of Wins LRsrc

Baseline 21.96 1.06
Len-Tok 17.99 1.01
P-value < 0.05 < 0.001

Table 7: Manual evaluation on En-It (large data) ranking
translation quality of the baseline (standard) and token short
translation against the reference translation.

EN And we in the West couldn’t understand
MT E noi occidentali non riuscivamo a capire
MT* In occidente non riuscivamo a capire

EN how much this would restrict freedom of speech
MT quanto questo avrebbe limitato la libertà
MT* quanto limitasse la libertà

EN this is a really extraordinary honor for me
MT questo è un onore davvero straordinario per me
MT* per me è un onore straordinario

EN And this was done
MT E questo è stato fatto in modo che
MT* E questo fu fatto in modo che

Table 8: Examples of shorter translation fragments obtained
by paraphrasing (italics), drop of words (red), and change of
verb tense (underline).

total of 270 sentences, by asking annotators to blindly rank
the two system outputs (ties were also permitted) in terms of
quality with respect to a reference translation.4 We collected
three judgments for each output, from 19 annotators, for a
total of 807 scores (one sentence had to be discarded). Inter-
annotator agreement measured with Fleiss’ kappa was 0.35
(= fair agreement). Results reported in Table 7 confirm the
small differences observed in BLEU scores: there are only a
4% more wins for the Baseline and almost 60% of ties. The
small degradation in quality of the shorter translations is sta-
tistically significant5 (p < 0.05), as well as their difference
in length (p < 0.001).

Notice that the evaluation was quite severe towards the
shorter translations, as even small changes of the meaning
could affect the ranking. After the manual evaluation, we
analyzed sentences in which shorter translations were unani-
mously judged equal or better than the standard translations.
We hence tried to identify the linguistic skills involved in the
generation of shorter translations, namely: (i) use of abbrevi-
ations, (ii) preference of simple verb tenses over compound
tenses, (iii) avoidance of not relevant adjective, adverbs, pro-
nouns and articles, (iv) use of paraphrases. Table 8 shows
examples of the application of the above strategies as found
in the test set.

4Evaluators were asked to tell which version of the sentence was best or
if they were equivalent, given that a version is good if both the meaning of
the reference is preserved and the grammar is correct.

5We used randomization tests with 15K repetitions [32].

6. Related works
As an integration of Section 2, we try to provide a more
complete picture on previous work with seq-to-seq models to
control the output length for text summarization, and on the
use of tokens to bias in different ways the output of NMT.

In text summarization, [9] proposed methods to control
output length either by modifying the search process or the
seq-to-seq model itself, showing that the latter being more
promising. [10] addressed the problem similarly to our to-
ken approach, by training the model on data bins of homoge-
neous output length and conditioning the output on a length
token. They reported better performance than [9]. Finally,
[12] proposed the extension of the positional encoding of
the transformer (cf. Section 2), reporting better performance
than [9] and [10].

The use of tokens to condition the output of NMT started
with the multilingual models [16, 17], and was then further
applied to control the use of the politeness form in English-
German NMT [33], in the translation from English into dif-
ferent varieties of the same language [34], for personalizing
NMT to user gender and vocabulary [35], and finally to per-
form NMT across different translation styles. [36],

7. Conclusion
In this paper, we have proposed two solutions for the problem
of controlling the output length of NMT. A first approach, in-
spired by multilingual NMT, allows a coarse-grained control
over the length and no degradation in translation quality. A
second approach, inspired by positional encoding, enables
a fine-grained control with only a small error in the token
count, but at the cost of a lower translation quality. A man-
ual evaluation confirms the translation quality observed with
BLEU score. In future work, we plan to design more flexi-
ble and context-aware evaluations which allow us to account
for short translations that are not equivalent to the original
but at the same time do not affect the overall meaning of the
discourse.
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