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(2) LIG, CNRS et Université Grenoble Alpes, F 38 000 Grenoble

pierre.godard@limsi.fr, laurent.besacier@uga.fr, francois.yvon@limsi.fr

Abstract
One of the basic tasks of computational language doc-

umentation (CLD) is to identify word boundaries in an un-
segmented phonemic stream. While several unsupervised
monolingual word segmentation algorithms exist in the lit-
erature, they are challenged in real-world CLD settings by
the small amount of available data. A possible remedy is to
take advantage of glosses or translation in a foreign, well-
resourced, language, which often exist for such data. In this
paper, we explore and compare ways to exploit neural ma-
chine translation models to perform unsupervised boundary
detection with bilingual information, notably introducing a
new loss function for jointly learning alignment and segmen-
tation. We experiment with an actual under-resourced lan-
guage, Mboshi, and show that these techniques can effec-
tively control the output segmentation length.

1. Introduction
All over the world, languages are disappearing at an unprece-
dented rate, fostering the need for specific tools aimed to aid
field linguists to collect, transcribe, analyze, and annotate en-
dangered language data (e.g. [1, 2]). A remarkable effort
in this direction has improved the data collection procedures
and tools [3, 4], enabling to collect corpora for an increasing
number of endangered languages (e.g. [5]).

One of the basic tasks of computational language doc-
umentation (CLD) is to identify word or morpheme bound-
aries in an unsegmented phonemic or orthographic stream.
Several unsupervised monolingual word segmentation al-
gorithms exist in the literature, based, for instance, on
information-theoretic [6, 7] or nonparametric Bayesian tech-
niques [8, 9]. These techniques are, however, challenged in
real-world settings by the small amount of available data.

A possible remedy is to take advantage of glosses or
translations in a foreign, well-resourced language (WL),
which often exist for such data, hoping that the bilingual con-
text will provide additional cues to guide the segmentation
algorithm. Such techniques have already been explored, for
instance, in [10, 11] in the context of improving statistical
alignment and translation models; and in [12, 13, 14] using
Attentional Neural Machine Translation (NMT) models. In
these latter studies, word segmentation is obtained by post-
processing attention matrices, taking attention information as

a noisy proxy to word alignment [15].1

In this paper, we explore ways to exploit neural machine
translation models to perform unsupervised boundary detec-
tion with bilingual information. Our main contribution is a
new loss function for jointly learning alignment and segmen-
tation in neural translation models, allowing us to better con-
trol the length of utterances. Our experiments with an actual
under-resourced language (UL), Mboshi [18], show that this
technique outperforms our bilingual segmentation baseline.

2. Recurrent architectures in NMT
In this section, we briefly review the main concepts of re-
current architectures for machine translation introduced in
[19, 20, 21].2 In our setting, the source and target sentences
are always observed and we are mostly interested in the at-
tention mechanism that is used to induce word segmentation.

2.1. RNN encoder-decoder

Sequence-to-sequence models transform a variable-length
source sequence into a variable-length target output se-
quence. In our context, the source sequence is a sequence
of words w1, . . . , wJ and the target sequence is an un-
segmented sequence of phonemes or characters ω1, . . . , ωI .
In the RNN encoder-decoder architecture, an encoder con-
sisting of a RNN reads a sequence of word embeddings
e(w1), . . . , e(wJ) representing the source and produces a
dense representation c of this sentence in a low-dimensional
vector space. Vector c is then fed to an RNN decoder pro-
ducing the output translation ω1, . . . , ωI sequentially.

At each step of the input sequence, the encoder hidden
states hj are computed as:

hj = φ(e(wj), hj−1) . (1)

In most cases, φ corresponds to a long short-term memory
(LSTM) [25] unit or a gated recurrent unit (GRU) [26], and
hJ is used as the fixed-length context vector c initializing the
RNN decoder.

On the target side, the decoder predicts each word ωi,
given the context vector c (in the simplest case, hJ , the last

1This assumption is further discussed in [16] and [17].
2The Transformer model of [22] arguably yields better translation per-

formance, but the underlying soft alignments provided by the multi-head,
multi-layered attention mechanism are harder to exploit [23, 24].



hidden state of the encoder) and the previously predicted
words, using the probability distribution over the output vo-
cabulary VT :{

P (ω |ω1, . . . , ωi−1, c) = g(ωi−1, si, c)

ωi = argmaxωk
P (ω = ωk |ω1, . . . , ωi−1, c) ,

(2)

where si is the hidden state of the decoder RNN and g is
a nonlinear function (e.g. a multi-layer perceptron with a
softmax layer) computed by the output layer of the decoder.
The hidden state si is then updated according to:

si = f(si−1, e(ωi−1), c) , (3)

where f again corresponds to the function computed by an
LSTM or GRU cell.

The encoder and the decoder are trained jointly to maxi-
mize the likelihood of the translation Ω = Ω1, . . . ,ΩI given
the source sentence w = w1, . . . , wJ . As reference target
words are available during training, Ωi (and the correspond-
ing embedding) can be used instead of ωi in Equations (2)
and (3), a technique known as teacher forcing [27].3

2.2. The attention mechanism

Encoding a variable-length source sentence in a fixed-length
vector can lead to poor translation results with long sentences
[20]. To address this problem, [21] introduces an attention
mechanism which provides a flexible source context to better
inform the decoder’s decisions. This means that the fixed
context vector c in Equations (2) and (3) is replaced with a
position-dependent context ci, defined as:

ci =

J∑
j=1

αijhj , (4)

where weights αij are computed by an attention model made
of a multi-layer perceptron (MLP) followed by a softmax
layer. Denoting a the function computed by the MLP, then{

eij = a(si−1, hj)

αij =
exp(eij)∑J

k=1 exp(eik)
,

(5)

where eij is known as the energy associated to αij . Lines
in the attention matrix A = (αij) sum to 1, and weights αij
can be interpreted as the probability that target word ωi is
aligned to source word wj . [21] qualitatively investigated
such soft alignments and concluded that their model can cor-
rectly align target words to relevant source words (see also
[28, 29]). Our segmentation method (Section 3) relies on the
assumption that the same holds when aligning characters or
phonemes on the target side to source words.

3As discussed below, teacher forcing will also be used at “test” time in
our scenario, since we are not training these models for a translation task,
but a word segmentation task.

3. Attention-based word segmentation
Recall that our goal is to discover words in an unsegmented
stream of target characters (or phonemes) in the under-
resourced language. In this section, we first describe a base-
line method inspired by the “align to segment” of [13, 14].
We then propose two extensions providing the model with
a signal relevant to the segmentation process, so as to move
towards a joint learning of segmentation and alignment.

3.1. Align to segment

An attention matrix A = (αij) can be interpreted as a soft
alignment matrix between target and source units, where
each cell αij corresponds to the probability for target sym-
bols ωi (here, a phone) to be aligned to the source word wj
(cf. Equation (5)). In our context, where words need to be
discovered on the target side, we follow [13, 14] and perform
word segmentation as follows:

1. train an attentional RNN encoder-decoder model with
attention using teacher forcing (see Section 2);

2. force-decode the entire corpus and extract one atten-
tion matrix for each sentence pair.

3. identify boundaries in the target sequences. For each
target unit ωi of the UL, we identify the source word
wai to which it is most likely aligned : ∀i, ai =
argmaxj αij . Given these alignment links, a word seg-
mentation is computed by introducing a word bound-
ary in the target whenever two adjacent units are not
aligned with the same source word (ai 6= ai+1).

Considering a (simulated) low-resource setting, and
building on [15]’s work, [12] propose to smooth attentional
alignments, either by post-processing attention matrices, or
by flattening the softmax function in the attention model
(see Equation (5)) with a temperature parameter T .4 This
makes sense as the authors examine attentional alignments
obtained while training from UL phonemes to WL words.
But when translating from WL words to UL characters, this
seems less useful: smoothing will encourage a character to
align to many words.5 This technique is further explored by
[30], who make the temperature parameter trainable and spe-
cific to each decoding step, so that the model can learn how
to control the softness or sharpness of attention distributions,
depending on the current word being decoded.

3.2. Towards joint alignment and segmentation

One limitation in the approach described above lies in the
absence of signal relative to segmentation during RNN train-
ing. Attempting to move towards a joint learning of align-
ment and segmentation, we propose here two extensions

4In this case, αij =
exp(eij/T )∑J

k=1
exp(eik/T )

.
5A temperature below 1 would conversely sharpen the alignment distri-

bution. We did not observe significant changes in segmentation performance
varying the temperature parameter.



aimed at introducing constraints derived from our segmen-
tation heuristic in the training process.

3.2.1. Word-length bias

Our first extension relies on the assumption that the length
of aligned source and target words should correlate. Being
in a relationship of mutual translation, aligned words are ex-
pected to have comparable frequencies and meaning, hence
comparable lengths.6 This means that the longer a source
word is, the more target units should be aligned to it. We
implement this idea in the attention mechanism as a word-
length bias, changing the computation of the context vector
from Equation (4) to:

ci =
∑
j

ψ(|wj |)αij hj (6)

where ψ is a monotonically increasing function of the length
|wj | of word wj . This will encourage target units to attend
more to longer source words. In practice, we choose ψ to
be the identity function and renormalize so as to ensure that
lines still sum to 1 in the attention matrices. The context
vectors ci are now computed with attention weights α̃ij as:{

α̃ij =
|wj |∑

j |wj |αij
αij

ci =
∑
j α̃ij hj .

(7)

We finally derive the target segmentation from the attention
matrix A = (α̃ij), following the method of Section 3.1.

3.2.2. Introducing an auxiliary loss function

Another way to inject segmentation awareness inside our
training procedure is to control the number of target words
that will be produced during post-processing. The intuition
here is that notwithstanding typological discrepancies, the
target segmentation should yield a number of target words
that is close to the length of the source.7

To this end, we complement the main loss function with
an additional term LAUX defined as:

LAUX(Ω |w) = |I − J −
I−1∑
i=1

α>i,∗αi+1,∗| (8)

The rationale behind this additional term is as follows: re-
call that a boundary is then inserted on the target side when-
ever two consecutive units are not aligned to the same source
word. The dot product between consecutive lines in the at-
tention matrix will be close to 1 if consecutive target units
are aligned to the same source word, and closer to 0 if they
are not. The summation thus quantifies the number of target

6Zipf’s “Law of Abbreviation”, a language universal, states that frequent
words tend to be short. Additionally, experimental psychology also corre-
lates word length and conceptual complexity [31].

7Arguably, this constraint should better be enforced at the level of mor-
phemes, instead of words.

units that will not be followed by a word boundary after seg-
mentation, and I−

∑I−1
i=1 α

>
i,∗αi+1,∗ measures the number of

word boundaries that are produced on the target side. Min-
imizing this auxiliary term should guide the model towards
learning attention matrices resulting in target segmentations
that have the same number of words on the source and target
sides.
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(b) with auxiliary loss

Figure 1: Effect of the auxiliary loss (LNLL) on an example
attention matrix for a sentence pair. Lines are indexed by tar-
get characters (or phonemes) and columns, by source words;
lighter squares correspond to higher attention weights αij .

Figure 1 illustrates the effect of our auxiliary loss on an
example. Without auxiliary loss, the segmentation will yield,
in this case, 8 target segments (Figure 1a), while the attention
learnt with auxiliary loss will yield 5 target segments (Fig-
ure 1b); source sentence, on the other hand, has 4 tokens.8

4. Experiments and discussion
In this section, we describe implementation details for our
baseline segmentation system and for the extensions pro-
posed in Section 3.2, before presenting data and results.

4.1. Implementation details

Our baseline system is our own reimplementation of Bah-
danau’s encoder-decoder with attention in PyTorch [32].9

The last version of our code, which handles mini-batches
efficiently, heavily borrows from Joost Basting’s code.10

Source sentences include an end-of-sentence (EOS) symbol
(corresponding towJ in our notation) and target sentences in-
clude both a beginning-of-sentence (BOS) and an EOS sym-
bol. Padding of source and target sentences in mini-batches
is required, as well as masking in the attention matrices and
during loss computation. Our architecture follows [21] very
closely with some minor changes.

8We count here the end-of-sentence token corresponding to the last col-
umn in the attention matrices.

9https://pytorch.org/. We use version 0.4.1.
10https://github.com/bastings/annotated_encoder_

decoder.



Encoder We use a single-layer bidirectional RNN [33] with
GRU cells: these have been shown to perform simi-
larly to LSTM-based RNNs [34], while computation-
ally more efficient. We use 64-dimensional hidden
states for the forward and backward RNNs, and for
the embeddings, similarly to [13, 14]. In Equation (1),
hj corresponds to the concatenation of the forward and
backward states for each step j of the source sequence.

Attention The alignment MLP model computes func-
tion a from Equation (5) as a(si−1, hj) =
v>a tanh(Wasi−1 + Uahj) – see Appendix A.1.2 in
[21] – where va, Wa, and Ua are weight matrices.
For the computation of weights α̃ij in the word-length
bias extension (Equation (7)), we arbitrarily attribute a
length of 1 to the EOS symbol on the source side.

Decoder The decoder is initialized using the last backward
state of the encoder and a non-linear function (tanh)
for state s0. We use a single-layer GRU RNN; hid-
den states and output embeddings are 64-dimensional.
In preliminary experiments, and as in [35], we ob-
served better segmentations adopting a “generate first”
approach during decoding, where we first generate the
current target word, then update the current RNN state.
Equations (2) and (3) are accordingly modified into:{

P (ωi |ω1, . . . , ωi−1, ci) = g(ωi−1, si−1, ci)

si = f(si−1, ωi, ci) .

During training and forced decoding, the hidden state
si is thus updated using ground-truth embeddings
e(Ωi). Ω0 is the BOS symbol. Our implementation of
the output layer (g) consists of a MLP and a softmax.

Training We train for 800 epochs on the whole corpus with
Adam (the learning rate is 0.001). Parameters are up-
dated after each mini-batch of 64 sentence pairs.11 A
dropout layer [36] is applied to both source and target
embedding layers, with a rate of 0.5.12 The weights
in all linear layers are initialized with Glorot’s normal-
ized method (Equation (16) in [37]) and bias vectors
are initialized to 0. Embeddings are initialized with the
normal distribution N (0, 0.1).13 Except for the bridge
between the encoder and the decoder, the initialization
of RNN weights is kept to PyTorch defaults. During
training, we minimize the NLL loss LNLL (see Sec-
tion 2.1), adding optionally the auxiliary loss LAUX

(Section 3.2.2). When the auxiliary loss term is used,
we schedule it to be integrated progressively so as to

11Mini-batches are created anew through shuffling and length-sorting at
each epoch.

12We also tried to add a dropout layer after the encoder and decoder RNNs
(only for the “output” state, not the state values used inside the recursion)
but this harmed our segmentation results.

13This seemed to slightly improve segmentation results when compared
to Glorot’s normalized method.

avoid degenerate solutions14 with coefficient λAUX(k)
at epoch k defined by:

λAUX(k) =
max(k −W )

K
(9)

where K is the total number of epochs and W a
wait parameter. The complete loss at epoch k is thus
LNLL+λAUX·LAUX. After trying values ranging from
100 to 700, we set W to 200. We approximate the ab-
solute value in Equation (8) by |x| ,

√
x2 + 0.001, in

order to make the auxiliary loss function differentiable.

4.2. Data and evaluation

Our experiments are performed on an actual endangered lan-
guage, Mboshi (Bantu C25), a language spoken in Congo-
Brazzaville, using the bilingual French-Mboshi 5K corpus of
[18]. On the Mboshi side, we consider alphabetic representa-
tion with no tonal information. On the French side,we simply
consider the default segmentation into words.15

We denote the baseline segmentation system as BASE, the
word-length bias extension as BIAS, and the auxiliary loss
extensions as AUX. We also report results for a variant of
AUX (AUX+RATIO), in which the auxiliary loss is computed
with a factor corresponding to the true length ratio rMB/FR

between Mboshi and French averaged over the first 100 sen-
tences16 of the corpus. In this variant, the auxiliary loss is
computed as |I − rMB/FR · J −

∑I−1
i=1 α

>
i,∗αi+1,∗|.

We report segmentation performance using precision, re-
call, and F-measure on boundaries (BP, BR, BF), and tokens
(WP, WR, WF). We also report the exact-match (X) metric
which computes the proportion of correctly segmented ut-
terances.17 Our main results are in Figure 2, where we re-
port averaged scores over 10 runs. As a comparison with
another bilingual method inspired by the “align to segment”
approach, we also include the results obtained using the sta-
tistical models of [10], denoted Pisa, in Table 1.

BP BR BF WP WR WF X

46.18 18.31 26.22 17.73 8.82 11.78 0.97

Table 1: Equivalent segmentation results with Pisa [10].

14When the NLL loss has not “shaped” yet the attention matrices into
soft alignments, the auxiliary loss can lead to trivial optimization solutions,
in which a single column in the attention matrices has a certain number
of weights set to 1 (to reach the proper value in the sum term from Equa-
tion (8)), while all other weights in the matrices are zeroed. The model is
subsequently unable to escape this solution.

15Several other units were also considered (lemmas, morphs, part-of-
speech tags) but they did not lead to better performance (results not reported
here). Investigation of subword units such as byte pair encodings (BPE) is
left for future work.

16This is a plausible supervision in the CLD scenario, and enables to relax
assumption that number of words should be the same on target and source.

17The exact-match metric includes single-word utterances.



Figure 2: Boundary and token metrics (F-measure, precision, recall), and sentence exact-match (X) with methods BASE, BIAS,
AUX, and AUX+RATIO, on the Mboshi 5K corpus. Horizontal colored lines correspond to values averaged over the 10 runs.

4.3. Discussion

A first observation is that our baseline method BASE im-
proves vastly over Pisa’s results (by a margin of about 30%
on boundary F-measure, BF).

4.3.1. Effects of the word-length bias

The integration of a word-bias in the attention mechanism
seems detrimental to segmentation performance, and results
obtained with BIAS are lower than those obtained with BASE,
except for the sentence exact-match metric (X). To assess
whether the introduction of word-length bias actually en-
courages target units to “attend more” to longer source word
in BIAS, we compute the correlation between the length of
source word and the quantity of attention these words re-
ceive (for each source position, we sum attention column-
wise:

∑
i α̃ij). Results for all segmentation methods are in

Table 2. BIAS increases the correlation between word lengths
and attention, but this correlation being already high for all
methods (BASE, or AUX and AUX+RATIO), our attempt to
increase it proves here detrimental to segmentation.

BASE BIAS AUX AUX+RATIO

0.681 0.729 0.665 0.662

Table 2: Correlation (avg. over 10 runs) between word length
and attention (p-value for Pearson coefficient is 0 for each
run) for methods BASE, BIAS, AUX, and AUX+RATIO.

4.3.2. Effects of the auxiliary loss

For boundary F-measures (BF) in Figure 2, AUX performs
similarly to BASE, but with a much higher precision, and de-



method #tokens #types avg. tok. len avg. sent. len

BASE 40.7K 8.2K 3.14 7.94
BIAS 39.7K 8.9K 3.22 7.75
AUX 32.3K 9.1K 3.95 6.31
AUX+RATIO 28.6K 9.6K 4.47 5.58

ground-truth 30.6K 5.3K 4.19 5.96

Table 3: Statistics on segmentations produced by methods
BASE, BIAS, AUX, and AUX+RATIO, on the Mboshi 5K cor-
pus: number of tokens, types, average token length (in char-
acters), average sentence lengths (in tokens), averaged over
10 runs.

graded recall, indicating that the new method does not over-
segment as much as BASE. More insight can be gained from
various statistics on the automatically segmented data pre-
sented in Table 3. The average token and sentence lengths
for AUX are closer to their ground-truth values (resp. 4.19
characters and 5.96 words). The global number of tokens
produced is also brought closer to its reference. On token
metrics, a similar effect is observed, but the trade-off be-
tween a lower recall and an increased precision is more fa-
vorable and yields more than 3 points in F-measure. These
results are encouraging for documentation purposes, where
precision is arguably a more valuable metric than recall in a
semi-supervised segmentation scenario.

They, however, rely on a crude heuristic that the source
and target sides (here French and Mboshi) should have the
same number of units, which are only valid for typologically
related languages and not very accurate for our dataset.

As Mboshi is more agglutinative than French (5.96 words
per sentence on average in the Mboshi 5K, vs. 8.22 for
French), we also consider the lightly supervised setting
where the true length ratio is provided. This again turns out
to be detrimental to performance, except for the boundary
precision (BP) and the sentence exact-match (X). Note also
that precision becomes stronger than recall for both bound-
ary and token metrics, indicating under-segmentation. This
is confirmed by an average token length that exceeds the
ground-truth (and an average sentence length below the true
value, see Table 3).

Here again, our control of the target length proves effec-
tive: compared to BASE, the auxiliary loss has the effect to
decrease the average sentence length and move it closer to its
observed value (5.96), yielding an increased precision, an ef-
fect that is amplified with AUX+RATIO. By tuning this ratio,
it is expected that we could even get slightly better results.

5. Related work
The attention mechanism introduced by [21] has been further
explored by many researchers. [38], for instance, compare a
global to a local approach for attention, and examine several
architectures to compute alignment weights αij . [39] addi-

tionally propose a recurrent version of the attention mecha-
nism, where a “dynamic memory” keeps track of the atten-
tion received by each source word, and demonstrate better
translation results. A more general formulation of the atten-
tion mechanism can, lastly, be found in [40], where structural
dependencies between source units can be modeled.

With the goal of improving alignment quality, [41] com-
putes a distance between attentions and word alignments
learnt with the reparameterization of IBM Model 2 from
[42]; this distance is then added to the cost function during
training. To improve alignments also, [15] introduce several
refinements to the attention mechanism, in the form of struc-
tural biases common in word-based alignment models. In
this work, the attention model is enriched with features able
to control positional bias, fertility, or symmetry in the align-
ments, which leads to better translations for some language
pairs, under low-resource conditions. More work seeking to
improve alignment and translation quality can be found in
[43, 44, 45, 46, 47, 48].

Another important line of reseach related to work studies
the relationship between segmentation and alignment qual-
ity: it is recognized that sub-lexical units such as BPE [49]
help solve the unknown word problem; other notable works
around these lines include [50] and [51].

CLD has also attracted a growing interest in recent
years. Most recent work includes speech-to-text transla-
tion [52, 53], speech transcription using bilingual supervi-
sion [54], both speech transcription and translation [55], or
automatic phonemic transcription of tonal languages [56].

6. Conclusion

In this paper, we explored neural segmentation methods ex-
tending the “align to segment” approach, and proposed ex-
tensions to move towards joint segmentation and alignment.
This involved the introduction of a word-length bias in the
attention mechanism and the design of an auxiliary loss. The
latter approach yielded improvements over the baseline on
all accounts, in particular for the precision metric.

Our results, however, lag behind the best monolingual
performance for this dataset (see e.g. [57]). This might be
due to the difficulty of computing valid alignments between
phonemes and words in very limited data conditions, which
remains very challenging, as also demonstrated by the re-
sults of Pisa. However, unlike monolingual methods, bilin-
gual methods generate word alignments and their real benefit
should be assessed with alignment based metrics. This is left
for future work, as reference word alignments are not yet
available for our data.

Other extensions of this work will focus on ways to mit-
igate data sparsity with weak supervision information, either
by using lists of frequent words or the presence of certain
word boundaries on the target side or by using more sophis-
ticated attention models in the spirit of [15] or [40].
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A. Appendix



Figure 3: Statistics on segmentations produced by methods BASE, BIAS, AUX, and AUX+RATIO, on the Mboshi 5K corpus:
number of tokens, types, average token length (in characters), average sentence lengths (in tokens). Solid (teal-colored) lines
correspond to average values (10 runs). Dashed (red) lines indicate the ground-truth values in the Mboshi 5K corpus.


