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Abstract
In a pipeline speech translation system, automatic speech
recognition (ASR) system will transmit errors in recognition
to the downstream machine translation (MT) system. A stan-
dard machine translation system is usually trained on paral-
lel corpus composed of clean text and will perform poorly
on text with recognition noise, a gap well known in speech
translation community. In this paper, we propose a training
architecture which aims at making a neural machine trans-
lation model more robust against speech recognition errors.
Our approach addresses the encoder and the decoder simul-
taneously using adversarial learning and data augmentation,
respectively. Experimental results on IWSLT2018 speech
translation task show that our approach can bridge the gap
between the ASR output and the MT input, outperforms the
baseline by up to 2.83 BLEU on noisy ASR output, while
maintaining close performance on clean text.

1. Introduction
A pipeline spoken language translation (SLT) system inte-
grates two main modules: source language speech recogni-
tion (ASR) and source-to-target text translation (MT). The
ASR system transforms the input audios into automatic tran-
scriptions which the MT system translates into texts in the
target language. However, since the two systems are trained
separately using different parallel corpora, there is a mis-
match between the output of ASR and the expected input
of MT system. The former does not provide punctuation
or case information, and contains recognition errors such as
omission, repetition, homophones errors, etc. In contrast, a
standard MT system is usually trained on written text which
is much cleaner.

Although an end-to-end speech translation model [1, 2]
seems to be a promising solution to alleviate the problem of
error propagation, due to the scarcity of training data in the
form of speech aligned with text and translation, currently
the pipeline system is still the best performing model so far.

Prior works attempting to enhance the robustness of
speech translation suffer from two main limitations: they
either require training data in the form of speech aligned

with either translation or both transcription and translation,
or use artificially generated noise. The first problem is faced
by end-to-end models [1, 2] and [3, 4]. Such speech-to-
transcription-to-translation data is extremely costly to ac-
quire since it requires two human (even expert) labeling pro-
cesses for each sentence. We are only aware of four such cor-
pora that are publicly available: Fisher and Callhome Span-
ish–English Speech Translation Corpus [5], Speech transla-
tion TED corpus [6], MaSS [7] and MuST-C [8]. All of them
are far less than what is necessary for training even a single
ASR or MT model. The works relying on artificial noise in-
clude [9, 10] etc. They only achieve minor improvements on
noisy input but harm the translation quality on clean text.

On the other hand, we observe that, when examined sep-
arately, in either ASR or MT, there exist many large par-
allel corpora, some to the scale of billions of sentences
pairs. Yet they cannot be linked together to form the
speech-to-translation pairs that the end-to-end models need,
or the speech-to-transcription-to-translation triplets that ro-
bust pipeline speech translation systems need.

In this paper, we introduce a training architecture that
breaks the data barrier, allowing us to use both ASR and
MT corpora simultaneously without having to explicitly link-
ing the two. The main idea is to force both the encoder
and decoder of a neural machine translation (NMT) model
to behave consistently in face of ASR-induced noise. The
speech-to-transcription data is introduced into NMT’s train-
ing process to provide additional supervise signals for both
the encoder and decoder. Those additional supervise signals
do not rely on the existence of translation so they are decou-
pled from NMT’s usual objective. Therefore the two types of
data can be used independently. Our work has the following
advantages compared with previous works:

• Actual ASR Adaptation. Instead of simulated noise,
our architecture can incorporate real ASR output, sig-
nificantly improving the MT system’s performance on
actual speech translation tasks.

• Easy Data Acquisition. Ours is the first unified train-
ing framework that utilizes both actual ASR and NMT
corpora but does not require speech-to-transcription-



to-translation alignments. Instead, datasets for ASR
and NMT can be collected independently and our net-
work combines them in a single training process. This
is a huge advantage since parallel corpora for both
ASR and NMT are relatively easy to obtain separately
but it is very costly to bridge the gap between the
two to produce a sufficiently large audio-to-text-to-
translation dataset.

• Robustness. Due to its ability to use both ASR and
NMT corpora simultaneously, our approach improves
the performance on noisy input without sacrificing the
translation quality on clean data.

The paper is organized as follows. In the next section,
we give a brief overview of related work. In Section 3, we
describe our MT architecture. Finally, we discuss the exper-
imental results in Section 4, followed by a conclusion.

2. Related work
Recently some researchers have attempted to address the
problem of speech translation using an end-to-end approach
[1, 2, 11, 12]. While this is definitely a very promising di-
rection, however, due to the scarcity of speech-to-translation
data, these works either use synthetic speech corpora which
are generated by a text-to-speech (TTS) system [1, 2] or do
not directly predict the translation [13, 14]. In [13] seq2seq
model was used to align speech with translated text, and [14]
can only generate bags of words. As demonstrated by the re-
sults of IWSLT2018 Speech Translation Task [6], at present,
the most effective way to do spoken language translation is
still a pipeline system.

Sequence-to-sequence models are known to be sensitive
to noise [15]. As the translation model has not been trained to
cope with ASR errors, they tend to work poorly when stacked
with an ASR system [15–17]. There are a couple of prob-
lems. Firstly, the ASR output is devoid of punctuation and
case information, which is very important for downstream
translation systems. This issue has been addressed by some
works such as [18, 19]. Secondly, ASR also introduces other
errors such as missing words, repetition, homophones, etc.

In order to solve the homophone noise produced by ASR
systems, [20] uses a source language pronunciation dictio-
nary and a language model to simulate possible misidenti-
fication errors in ASR and use them to augment the phrase
table of an SMT system. [21] combined textual and pho-
netic information in the embedding layer of neural networks.
Their approach relies on additional resources and addresses
only one type of speech recognition error.

Data augmentation is an important method to improve
the performance of neural networks. [9] simulates the noise
existing in the real output of the ASR system and inject them
into the clean parallel data so that NMT can work under
similar word distributions during training and testing. [10]
shows that with a simple generative noise model, moderate

gains can be achieved in translating erroneous speech tran-
scripts, provided that type and amount of noise are properly
calibrated. [22] uses generic Gaussian noise to perturb the in-
puts to the NMT training and robustify the model through ad-
versarial training. All the above work with simulated noise,
which, as will be demonstrated in Section 4, does not realis-
tically reflect the ASR output and causes suboptimal speech
translation quality.

Using real ASR output as training input to the translation
model is a natural idea. Some work with ASR’s final out-
put directly [3] while some use its internal representations
such as word lattices to explicitly model uncertainty of the
upstream system [4]. They all require speech-to-transcript-
to-translation data which is very rare.

3. Approach
The proposed training scheme takes two kinds of parallel cor-
pora as input. The first corpus, also called ASR data, con-
sists of speech-transcription pairs. The second corpus is the
NMT’s training data, in the form of source-translation pairs.
Our approach consists of two phases: the ASR data pro-
cessing and the adversarial NMT training. At the first step,
we process the ASR data which provides audios and man-
ual transcriptions. A trained ASR model is utilized to rec-
ognize the audios, after which a re-segmentation algorithm
is used to align the automatic transcriptions with its corre-
sponding manual transcriptions in a sentence-wise manner.
The aligned sentence-wise transcription pairs are then sent
to the next stage of the proposed training scheme. In the sec-
ond stage, we treat the manual transcription as a supervised
signal for the automatic transcription which is combined with
the NMT’s usual objectives to co-train the model.

3.1. Processing the ASR data

A trained ASR model is used to automatically generate the
transcriptions given the audios. Obviously, the proposed
approach is highly dependent on the accuracy of the ASR
model, and it would be more beneficial to use in-domain data
of the given ASR model as well. But to make the work repro-
ducible and consistent among a wide range of ASR data, we
use an open source ASR model without limiting the domain
of the ASR data.

In general, the automatic transcriptions generated by an
ASR system are not accompanied by their sentence-wise seg-
mentation. However, training an NMT system works with
parallel corpora of sentences. Therefore the next step is to
align the automatic transcription with the manual transcrip-
tion and segmentation to generate sentence pairs. We exploit
the automatic re-segmentation algorithm described in [23]
for this purpose.

The re-segmentation algorithm calculates the Leven-
shtein ratio between automatic and manual transcriptions.
By backtracking the decision of the distance algorithm, the
alignment of the given word sequence with the existing sen-
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Figure 1: The training architecture. Manual transcription and automatic transcription are aligned before input to the encoder.
The encoder output is sent to the discriminator and decoder module. The discriminator forces the encoder to produce similar
representations for both clean and noisy versions of the same sentence. The decoder output of manual transcription serves as the
reference of automatic transcription. The final training objective is the sum of Lenc, Ldec, together with the normal objective
Lnormal.

tence segmentation and manual transcription can be found
for reference. In this way, sentence segmentation is trans-
formed into the recognition of reference. Dynamic program-
ming is used to solve the re-segmentation problem.

3.2. NMT training architecture

The conventional NMT model consists of two procedures for
projecting a source sentence x to its target sentence y: the
encoder Enc(·) is responsible for encoding x as a sequence
of representations Hx, while the decoder Dec(·) produces y
with Hx as input. The model is optimized by minimizing
the negative log-likelihood of the target translation y given
source sentence x. Denoting the parameters of encoder and
decoder as θenc and θdec, respectively, the loss function L
can be written as

L(x, y;θenc,θdec) = − 1

|y|

|y|∑
j=1

logP (yj |y<j , x;θenc,θdec)

(1)
Our adversarial training architecture is illustrated in Fig-

ure 1. As described in the previous subsection, the automatic
transcriptions are aligned to the manual transcriptions in sen-
tence level. We denote the automatic transcription sentence
as xauto and the manual transcription sentence as xmanual. Note
that our main concern is to make the encoder extract similar
feature representations from xauto and xmanual, and hence ob-
tain similar results on final translation. Since the translation
process can be viewed as y = Dec(Enc(x)), we introduce two

intermediate objectives: Lenc forces the encoder to produce
similar representations for xauto and xmanual; and Ldec forces
the decoder to produce similar results for Hauto = Enc(xauto)
and Hmanual = Enc(xmanual).

Identical to the work of [22], Lenc(xauto, xmanual) is
treated as the training objective of an adversarial learning
framework [24] . In an adversarial learning framework, there
are two networks which we called the generator network and
the discriminator network. The output of the generator needs
to imitate the real samples in the training set as much as
possible. The input of the discriminator is the real sample
or the output of the generator and the target of discrimi-
nator network is to distinguish the output of the generated
network from the real sample while the generator network
should cheat the discriminator network as much as possible.
The two networks oppose each other and adjust the parame-
ters constantly, so as to make the discriminator network un-
able to judge whether the output of the generated network
is true or not. In this work, the encoder serves as the gen-
erator G, which defines a policy for generating a sequence
of hidden representations of Hx given the input sentence x.
An additional discriminator D is introduced into the train-
ing architecture which distinguishes the encoder output of
the automatic transcription Hauto from the encoder output of
the manual transcription Hmanual. The goal of the generator,
in this case the encoder is to produce similar output for xauto
and xmanual which could fool the discriminator, while the dis-
criminator D tries to correctly distinguish the two outputs.



Formally, the adversarial learning objective can be writ-
ten as

Lenc(xauto, xmanual;θenc,θdis)

=Exmanual∼S [− logD(G(xmanual))]

+Exauto∼S [− log(1−D(G(xauto)))]
(2)

where S denotes the set of transcription sentences after align-
ment. Specifically, when backpropagated, the gradients of
Lenc are replaced by their additive inverse while other gradi-
ents remain unchanged, so that all parameters including en-
coder parameters θenc and the discriminator parameters θdis

can be updated in tandem. In such manner, high efficiency in
training is attained.

A common idea to handle Ldec is using the adversar-
ial learning framework [25]. Here we introduce a simpler
but effective method. We first decode Hmanual and obtain
the translation ŷmanual with regard to xmanual. We argue that
ŷmanual is the best quality translation of xauto the current NMT
could ever produce thus can serve as the reference for xauto.
Ldec(xauto, ŷmanual) is then calculated by Eq 1 as one training
objective.

Of course, the two loss functions above must be com-
bined with the usual MT loss computed on the translation
corpus, Lnormal(xtrain, ytrain) where xtrain and ytrain denote the
parallel translation corpus. Lnormal is also calculated by
Eq 1.

Finally, our training objective is the sum of the three:

L = αLenc + βLdec + Lnormal (3)

where the two hyper-parameters α, β balance the weights
of different loss functions. The impact of the two hyper-
parameters will be discussed further in Section 4.2.

The proposed method only alters the NMT’s training pro-
cess, remaining the inference procedure unchanged.

4. Experiments
4.1. Setup

We conducted experiments on the dataset provided by
IWSLT2018 Speech Translation Task, which addresses the
problem of translating English audio to German text. The
provided training data consists of five parts: TED cor-
pus, Speech-translation TED corpus, TED LIUM corpus,
WMT18 data and OpenSubtitles0218. Among them, TED
corpus, Speech-translation TED corpus, WMT18 data and
OpenSubtitles2018 contain parallel sentence pairs, which are
then used to train our baseline NMT model. The statistics of
the raw training data set are listed in Table 1. Dev2010 and
tst2010 are used as the development set and test set in this
experiment respectively. The quality of speech translation is
measured by the 4-gram BLEU scores [26].

For our baseline model, we followed the normal data
preprocessing steps: norm-punc, tokenized and lowercased
source and target sides using Moses scripts and we cleaned

Table 1: Statistics of the Training Data

Corpus #Sentences
WMT18 41M

OpenSubtitles2018 22M
TED WIT3 0.2M

Speech-translation TED 0.17M
TED LIUM2 0.09M

data by removing sentences whose number of tokens are over
100 and the length ratio of source/target is less than 1/2 or
larger than 2. We follow [27] to split words into subword
units. The numbers of merge operations in byte pair encod-
ing (BPE) are set to 64K. Our model uses the Transformer
architecture [28] which is solely based on attention mech-
anisms and dominates most of the sequence-to-sequence
tasks. Our hyper-parameters of the Transformer models fol-
low the transformer_big configuration of tensor2tensor [29],
an open-source implementation of the Transformer model.
Both encoder and decoder have 6 layers. The dimension for
hidden layers is 1024 while the inner size of the feed-forward
network is 4096. The head number of multi-head attention
layer is set to 16. Label smoothing and dropout are adopted
in the model training.

Speech-translation TED corpus and TED LIUM cor-
pus provide both audio data and transcriptions. However,
since the transcriptions provided in TED LIUM2 are nei-
ther human-generated nor human-annotated, we only use the
Speech-translation TED corpus in the adversarial training
phase.

IWSLT2018 provides a trained ASR so we can focus on
the NMT part of the pipeline. We use the provided ASR sys-
tem to get the automatic transcriptions from the input audio,
and then align these transcriptions with the manual transcrip-
tions following the method presented in Section 3.1. The
transcription sentences are sorted by Word Error Rate (WER)
and the top 1h bad sentences are excluded from the subse-
quent training process.

Our adversarial stability training initializes the model pa-
rameters with the baseline model. And the discriminator
module optimized by Lenc is composed of two sub-layers.
The sentence embedding which is the average of source rep-
resentations is fed to the discriminator. The first sub-layer
of the discriminator is a multi-head self-attention over the
output of the encoder stack and the second is a feed-forward
network. We tested the effects of Lenc and Ldec on neural
machine translation and speech translation respectively. Fi-
nally, we applied Lenc and Ldec to our system at the same
time and obtained the optimal results.

4.2. Results

Firstly, experiments on Lenc and Ldec are performed indi-
vidually. For Lenc, we set β to 0.0 and varied α in this part.
Figure 2 reports the BLEU scores of speech translation on
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Figure 2: BLEU scores on tst2010, using ASR tran-
scripts as inputs, varying α
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Figure 3: BLEU scores on tst2010, using clean refer-
ence transcripts as inputs, varying α
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Figure 4: BLEU scores on tst2010, using ASR tran-
scripts as inputs, varying β
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Figure 5: BLEU scores on tst2010, using clean refer-
ence transcripts as inputs, varying β

tst2010 set at different training steps. The training starts from
the baseline model with the BLEU score of 19.05. Perfor-
mance on α = {0.1, 0.5, 1.0} are all better than the baseline
system, showing that Lenc is effective in improving transla-
tion performance. We found that the larger α achieved better
scores than the smaller ones, though this improvement is not
significant. Meanwhile, the curve shows that a larger α will
make the training more unstable. Figure 3 shows the BLEU
scores on tst2010 set with manual transcriptions as input. It
is meant to test how adversarial stability training affects the
model performance on the clean text. The figure shows that
introducing Lenc has some negative impact on the transla-
tion of the clean text at the start of the training phrase, but
this negative impact will gradually decrease as the training
progress goes on. If we choose a proper α, say α = 0.1, we
can improve the quality of speech translation while maintain-
ing close performance on the clean text.

For Ldec, we set α to 0.0 and varied β in this part. Like
the previous two figures, Figure 4 and Figure 5 report the
BLEU scores of speech translation on tst2010 with the au-
tomatic transcription and manual transcription as inputs, re-
spectively. Figure 4 indicates that the data augmentation
method we applied is advantageous to speech translation. It
makes a huge improvement from the baseline model. Larger
β has better performance on speech translation. However, as
Figure 5 shows, larger β may harm the model’s performance
when fed with clean text. With β set to 0.1 or 0.5, we get fair

results.
We then incorporated both Lenc and Ldec in the training

phase. Table 2 shows the results. The best performance is
obtained with α = 0.5 and β = 0.5, achieving 2.83 BLEU
improvement compared with the baseline system.

Table 2: BLEU score on tst2010 for speech translation sys-
tem

System BLEU score
dev2010 ∆ tst2010 ∆

Baseline System 19.00 19.05
[22] 19.42 +0.42 19.23 +0.18

Our work
α = 0.1

β = 0.1 20.75 +1.75 20.67 +1.62
β = 0.5 21.14 +2.14 21.66 +2.61

α = 0.5
β = 0.1 20.89 +1.89 20.75 +1.70
β = 0.5 21.25 +2.25 21.88 +2.83

We also carefully implemented the work of [22], adding
Gaussian noise with standard variance equals to 0.01 to the
input word embedding, and then trying to enforce consistent
outputs with their original counterpart using adversarial sta-
bility training. We reported its BLEU score on tst2010 for
speech translation task in Table 2. It is clear that training
with generic artificial noise only brings minor improvement.

5. Conclusions
In this paper, we propose a training architecture that uses
speech-to-transcription data to robustify an NMT model in



a speech translation scenario. As an intermediate objective,
we make the encoder produce a similar output through adver-
sarial stability training. We treat the translation of the man-
ual transcription as the reference of automatic transcription
to enforce the decoder consistency. This approach allows for
easy incorporation of ASR data into an NMT’s training pro-
cess. Experiments on IWSLT2018 speech translation task
demonstrate the effectiveness and robustness of the proposed
approach.
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