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Abstract

We introduce (1) a novel neural network structure
for bilingual modeling of sentence pairs that allows effi-
cient capturing of bilingual relationship via biconstituent
composition, (2) the concept of neural network bipars-
ing, which applies to not only machine translation (MT)
but also to a variety of other bilingual research areas,
and (3) the concept of a biparsing-backpropagation train-
ing loop, whichwe hypothesize that can efficiently learn
complex biparse tree patterns. Our work distinguishes
from sequential attention-basedmodels, which are more
traditionally found in neuralmachine translation (NMT)
in three aspects. First, our model enforces composi-
tional constraints. Second, ourmodel has a smaller search
space in terms of discovering bilingual relationships from
bilingual sentence pairs. Third, our model produces ex-
plicit biparse trees, which enable transparent error anal-
ysis during evaluation and external tree constraints dur-
ing training.

1. Introduction

In this paper, we introduce a neural network structure
for modeling of bilingual sentence pairs that features
efficient capturing of bilingual relationships by learn-
ing explicit compositional biconstituent structures, as
opposed to conventional attention-based NMT models,
which learn flat token-to-token bilingual relationships
requiring numerous parallel corpora. Token-to-token
bilingual relationship formalism is inefficient in two as-
pects. First, it lacks compositional structure, which is
the key to generalizing biphrases from bitokens and gen-
eralizing bisentences from biphrases. Second, there are
no constraints on the space of all possible token align-
ments, resulting in the attention layer inefficiently ex-
ploring strategys for such a huge search space. Ourmodel
skips directly to the compositional structure, represent-

ing bilingual relationships by recursively composing bi-
constituents with one extra degree of ordering flexibil-
ity.

We propose a new training strategy based on what
we call a biparsing-backpropagation training loop,
inspired by our hypothesis that good biparse trees lead
to better models, and better models will compute bet-
ter biparse trees, forming a faster feedback loop to ef-
ficiently capture bilingual relationships in low resource
scenarios. When biparsing a corpus, desirable tree pat-
terns tend to show up repeatedly because they explain
more bilingual phenomenon, which will be learned dur-
ing backpropagation. In the next epoch, these learned
patterns will help compute more accurate biparse trees,
revealing more complex and desirable tree patterns.

The paper is divided into two main parts. We begin
in the first part below by laying out the basic formal-
ism of soft transduction grammars and soft biparse
trees, which are the neural network analogous to sym-
bolic transduction grammars and symbolic biparse trees.
We then introduce several competitive neural network
designs and explains how the design decisions we make
are suitable in terms of the generalizablity of the neural
network structure and the expressiveness of the trans-
duction grammar. In the second part, we explain how
our neural network model implements the formalism of
a soft transduction grammar, together with a pipeline
for the biparsing-backpropagation training loop. After-
wards, a small experiment is presented demonstrating
how this feedback loop discovers biparse tree patterns
by showing how biparse trees evolve over time.

2. Related works

To our knowledge there is no published research inNMT
that works with biparse trees besides the basic TRAAM
model (Addanki andWu, 2014), which is an incomplete



model that can perform neither MT nor biparsing on its
own. However, there have been many attempts to incor-
porate monolingual trees (mostly syntactic trees) into
MT systems.

Most of the related work started from the seq2seq
architecture, linearizing a syntactic parse tree into a flat
sequence in depth first search order, which we hypoth-
esize is a non-optimal representation since linearizing
inevitably separates related sibling tree nodes apart, re-
sulting in unnecessary distant dependencies. Vinyals
et al. (2015) trained a seq2seq model translating from
monolingual sentences to their linearized parse trees (with-
out tokens), effectively building a neural network syn-
tactic parser. Aharoni and Goldberg (2017) proposed
linearizing the target parse tree with tokens, resulting in
a model that can translate from a source sentence to a
target parse tree (with tokens). Furthermore, Ma et al.
(2018) proposed a way to linearize an entire weighted
parse forest into a sequence. Another variation of this
was proposed by Wang et al. (2018) introducing addi-
tional connections to LSTM, so that when generating a
tree node, an LSTMunit has direct access to output from
its parent node.

Another approach is to use a recursive unit natu-
rally following the tree structure, so that linearization
is no longer required at the encoder side, which is an
improvement but still requiring syntactic parse trees as
additional input. Eriguchi et al. (2017) proposed us-
ing Tree-LSTM (Tai et al., 2015) to encode source sen-
tences along the topology of a syntactic parse tree.

3. Soft transduction grammars

We propose a new concept called a soft transduction
grammar, which uses soft biparse trees to explain sen-
tence pairs, in contrast to traditional transduction gram-
mars which use biparse trees. Our new soft transduc-
tion grammar has the advantage of not having to keep
track of a combinatorically exploding number of nonter-
minal categories and rules, thus significantly reducing
computational complexitywhile retaining its expressive-
ness of bilingual relationships.

Formally, a soft transduction grammar consists of:
• An output language vocabulary and an input lan-
guage vocabulary.

• A function bi_lexicon_embed that takes a bicon-
stituent as input, and returns a biconstituent em-
bedding.

• A function bi_lexicon_readout that takes a bi-

constituent embedding as input, and returns a bilex-
icon.

• A function bi_lexicon_evaluate that takes a bi-
constituent as input, and returns a degree of good-
ness based on whether the given biconstituent is
a valid bilexicon.

• A function bi_compose that takes (1) a list of bi-
constituent embeddings in output language order,
(2) the list of the same biconstituent embeddings
in input language order as input, and returns a
composed biconstituent embedding.

• A function bi_decompose that takes a biconstituent
embedding as input, and returns (1) a list of bicon-
stituent embeddings in the output language order,
(2) a list of the same biconstituent embeddings in
the input language order.

• A function bi_compose_evaluate that takes (1) a
list of biconstituent embeddings in the output lan-
guage order, (2) a list of the same biconstituent
embeddings in the input language order as input,
and returns a degree of goodness based onwhether
the given biconstituents ”do compose nicely.”

A soft transduction grammar is capable of perform-
ing a variety of bilingual tasks using algorithms simi-
lar to those of a symbolic transduction grammar. These
bilingual tasks include:

• Parallel sentence embedding: Takes a bilingual
sentence pair as input, and returns an biconstituent
embedding.

• Parallel sentence generation: Takes a biconstituent
embedding as input, and generates a bilingual sen-
tence pair. Note that getting back the exact origi-
nal sentence is unlikely for a long sentence if bi-
constituent composition is lossy. However, we
hypothesize that a good soft transduction gram-
marwill try to preserve the syntactic/semantic struc-
ture of the original sentence pair.

• Tree recognition: Takes a biparse tree as input,
and calculates a degree of goodness.

• Biparsing: Takes a bilingual sentence pair as in-
put, and finds the best biparse tree.

• Transduction: Takes an input language sentence
as input, and returns a sentence in output langauge
(or vise versa).

3.1. Inversion transduction grammar

Weareworkingwith a special type of transduction gram-
mar, called ITGs, or inversion transduction grammars



(Wu, 1997) which has an empirically appropriate order-
ing flexibility, small enough to retain efficient compu-
tation and general enough to explain almost every align-
ment in natural language transductions. When an ITG
composes child biconstituents into a parent biconstituent,
the input language constituents may read in either the
same order as the output language constituents or the re-
verse order with the output language constituents. When
working with soft transduction grammars, all biparse
trees will have their nonterminal categories and preter-
minal categories be replaced with biconstituent embed-
dings. We call such biparse trees soft biparse trees.

To keep themodel simple, weworkwith parse/biparse
trees in 2 Normal Form, which means a biconstituent
has exactly 2 child biconstituents. In addition, the size
of a bilexicon must be restricted to avoid overfitting.
In our work, a bilexicon must satisfy min(le, lf ) ≤ 2
where le is output language phrase length and lf is in-
put language phrase length. Note that in this paper the
letter e and f always refer to the output language and the
input language respectively.

4. Gated RAAM: composing and decomposing
embedding vectors

Our improvement on recursive auto-associative mem-
ory, which we call Gated RAAM or GRAAM, can re-
cursively compose two embeddings into one (of the same
dimension) while being more specialized to recursively
unfold it back to the original embeddings when com-
pared with conventional RAAMs or recursive auto en-
coders, for two reasons: (1) the loss is directly defined
as the reconstruction error of the recursively unfolded
original embedding, and (2) both the composer and the
decomposer networks apply gated connections similar
to an LSTM (long short term memory) (Hochreiter and
Schmidhuber, 1997) or a GRU (gated recurrent unit)
(Cho et al., 2014), thus being able to learn from error
signals multiple composition and decomposition steps
away.

Note that GRAAM is a monolingual concept. How
to generalize it bilingually will be introduced in the next
section.

We introduce the new concept of decaying unfold-
ing recursive loss, that directly targets leaf node re-
construction while encouraging the RAAM or GRAAM
network to prioritize remembering closer children over
distant children. In contrast, the original unfolding re-
cursive loss (Socher et al., 2011) doesn’t account for

the fact that for a natural language parse tree, shallower
terminals (often representing main sentence structures)
should be prioritized over deeper ones (often represent-
ing supplementary modifiers or even nested clauses).
To solve this problem, our new decaying unfolding loss
has different weightings for leaves of different depths.
At each level deeper into the tree, the reconstruction
loss is scaled by a decaying factor γ. In our model, we
choose γ = 0.5.

Along with the new loss metric, we propose a pair
of new composer and decomposer designs, solving the
vanishing gradient problem brought by the decaying un-
folding recursive loss, borrowing the gated connection
idea from LSTM and GRU.

First we introduce the decomposer. The decomposer
takes an embedding y as input, and returns the decom-
posed children x̂0, x̂1, denoted as x̂0, x̂1 = decompose(y).
The decomposer consists of two sub-components of an
identical structure (but having different sets of internal
parameters), one for predicting the left children and one
for predicting the right children. This sub-component
is mathematically equivalent to a GRU having no other
input but its cell state: x̂0 = GRU0(y, 0) and x̂1 =
GRU1(y, 0) where 0 is the zero vector.

Next we introduce the composer. The composer takes
two child embeddings x0, x1 and returns composed em-
bedding y, denoted as y = compose(x0, x1). Note that
a Tree-LSTM (Tai et al., 2015) does not work, because
it doesn’t satisfy the requirement that backpropagation
from either y to x0 or from y to x1 should not cause the
vanishing gradient problem. Here is our new structure:

x =

[
x0
x1

]
(1)

p0 = x⊗ σ(W0x+ b0) (2)

p1 = x⊗ σ(W1x+ b1) (3)

c= tanh(W2

[
p0
p1

]
+ b2) (4)

f0 = W3x+ b3 (5)

f1 = W4x+ b4 (6)

[y0;kc; y1] = softmax([f0; 0; f1]T )T (7)

y = x0 ⊗ k0+ c ⊗kc + x1 ⊗ k1 (8)

whereW0,W1,W2,W3,W4,b0,b1,b2,b3,b4 are inter-
nal parameters.

The GRAAM composer is different from a GRU in
the sense that it has two cell states tomerge. In GRU, the



forget gate ensures that the weight of the update can-
didate and the weight of the original cell state sum to
1. In GRAAM composer, however, the forget gate has
to ensure that the weights of update candidate kc , and
the weights of the two original cell states k0,k1 sum to
1. This is the reason that a softmax function is required.

5. Gated Parallel RAAM: representing
bilingual relationships

In order to model bilingual translation relationships, we
introduce a generalization ofGRAAMcalledGatedPar-
allel RAAM orGPRAAM, equippedwith two new con-
cepts:

(1) Parallel composer/decomposer in contrast to
integrated composer/decomposer (fromTRAAM).Our
new design ensures that the loss of mispredicting the
output language order is of the same magnitude as the
loss of mispredicting the input language order, which
we hypothesize could prevent the network from priori-
tize learning from either language’s ordering.

(2)Parallel biconstituent embedding in contrast to
integrated biconstituent embedding (from TRAAM).
Our new design enables learning frommonolingual data,
because the way that the two GRAAMs are loosely cou-
pled makes it possible to break the transduction model
into two monolingual language models (or vise versa
put them back). Being able to decouple enables mono-
lingual training as a bootstrap step, which we hypothe-
size could greatly reduce the number of bilingual train-
ing epochs required.

An integrated composer/decomposer contains one
composer and one decomposer. The composer com-
poses an additional permutation bit along with the two
child biconstituent embeddings, whereas the decomposer
decomposes the composed biconstituent embedding back
into the two child biconstituent embeddings togetherwith
a permutation bit, as shown in Figure 1. It suffers from
penalty unfairness: (1) when mispredicting both the in-
put and the output language order, error signals are com-
ing from the two predicted embeddings (but not the per-
mutation bit); (2) whenmispredicting only the input lan-
guage order, error signal are coming from only the pre-
dicted permutation bit; (3) when mispredicting only the
output language order, error signals are coming from all
three predictions (which is totally undesirable).

A parallel composer/decomposer contains two com-
poser/decomposer, one composing/decomposing child
biconstituents in the output language order, and the other

Figure 1: integrated composer/decomposer with inte-
grated embedding

composing/decomposing in the input language order, as
shown in Figure 2. The penalties for mispredicting bi-
constituent orderings are fair.

We also propose the new idea that a biconstituent
embedding can also be decoupled into two separated
embedding vectors: an output language partition and
an input language partition. Such a design is called
parallel embedding. This new design makes it pos-
sible to decouple the entire soft transduction grammar
into two soft CFGs, and having them bootstrapped sep-
arately on monolingual corpora. The parallel embed-
ding design requires a pair of bridges that can translate
between an output language partition and an input lan-
guage partition: (1) the output language to input lan-
guage bridging function or e_f_bridge, and (2) the in-
put language to output language bridging function or
f_e_bridge, as shown in Figure 3. The bridges can be
implemented by various neural network structures, and
in our work, both e_f_bridge and f_e_bridge are imple-
mented by a simple 3-layer feedforward network with
residual connections.

6. Implementation details

Our complete model consists of (1) a GPRAAM, (2)
an input language word embedding lookup table, (3)
an output language word readout layer, and (4) an in-
put language word readout layer. These components
together implement all the functions required in the soft
transduction grammar formalism, whichwill be explained
below.

Note that with parallel embedding design, a bicon-
stituent embedding consists of both an output language
embedding and an input language embedding.

bi_lexicon_embed: implementing this function re-
lies on the fact that our model can be broken down into



Figure 2: parallel composer/decomposer with integrated embedding

Figure 3: parallel composer/decomposer with parallel embedding

an output language model and an input language model,
with each monolingual language model capable of com-
posing a monolingual phrase into a monolingual em-
bedding. To compose a monolingual phrase, perform
viterbi parsing on the phrase and then use the monolin-
gual GRAAM to recursively compose constituents.

bi_lexicon_readout: the output language phrase is
generated by the output language model from the out-
put language embedding. Similarly, the input language
phrase is generated by the input language model from
the input language embedding. To generate a monolin-
gual phrase from a monolingual embedding, we recur-

sively decompose it using corresponding GRAAM.

bi_lexicon_evaluate the bilexicon degree of good-
ness is computed from the reconstruction error. The re-
construction error is a sum of (1) E→E reconstruction
error computed by reconstructing the output language
phrase from output language embedding, (2) E→F re-
construction error computed by reconstructing the in-
put language phrase from output language embedding
(with the help from embedding bridge), (3) F→E re-
construction error and (4) F→E reconstruction er-
ror, where (3) and (4) are computed in ways similar to
those of (1) and (2), respectively.



bi_compose the output language embedding is com-
puted by composing output language child embeddings
with output language GRAAM; the input language em-
bedding is computed by composing input language child
embeddings with input language GRAAM.

bi_decompose: the output language child embed-
dings are computed by decomposing the output language
parent embedding; the input language child embeddings
are computed by decomposing the input language par-
ent child embedding. After the child embeddings have
been computed, we have two hypothesis: either (1) the
left/right output language child aligns to the left/right in-
put language child or (2) the left/right output language
child aligns to the right/left input language child. The
embedding bridges are applied to test which permuta-
tion incurs less bridging error.

bi_compose_evaluate: the degree of goodness of a
biconstituent composition is computed from the recon-
struction error. The reconstruction error is a sum of (1)
E→E reconstruction error computed by reconstruct-
ing back the child output language embeddings from
the composed output language embedding, (2) E→E
reconstruction error computed by reconstructing back
the child input language embeddings from the composed
output language embedding, (3) F→E reconstruction
error and (4) F→F reconstruction error, where (3)
and (4) are computed in ways similar to those of (1) and
(2), respectively.

6.1. Training

The training pipeline is divided into three steps. Firstly,
we break the bilingual corpus into output language and
input language corpus and perform monolingual parse
backpropagation training loop, in which each sentence
is Viterbi parsed, followed by backpropagation on the
reconstruction loss along the parse tree. After this step,
both the output language GRAAM and the input lan-
guageGRAAMshould have already learned how to com-
pose monolingual sentences. Secondly, we bootstrap
the two embedding bridges by training them individu-
ally on the parallel embedding dataset (which is a byprod-
uct from the previous step). Finally, we perform a bi-
parse backpropagation training loop on bilingual cor-
pus, in which each sentence pair is Viterbi biparsed, fol-
lowed by backpropagation on reconstruction loss along
the biparse tree.

7. Experiments

As proof of concept, we have experimental results on
the Chinese-English blocks world dataset, that has 90
parallel training sentences and 25 parallel development
sentences, comprised of commands manipulating dif-
ferent colored objects over different shapes. The dataset
was kept simple so as to provide an easy and transpar-
ent view of how the model was discovering biparse tree
patterns through epochs.

During the stage of bilingual training, we monitored
how the Viterbi biparse trees evolved over time to have a
transparent visualization of how themodel was learning.
We first analyzed a short sentence, as shown in Figure
4.

• Epoch#5: The biparse tree didn’t make sense.
• Epoch#10: The model correctly learned the noun
bilexicons. The verb ”put” was mistranslated as ”
上” (which means ”on”), but considering the fact
that the training data only contained ”on” not ”un-
der”, the model had found a good explanation.

• Epoch#15: The model improved its understand-
ing of how constituents compose. ”On the red cir-
cle” is a better constituent than ”the block on”.

• Epoch#20: Nothing was improved. This biparse
tree was finalized.

We then analyzed a longer sentence, as shown in
Figure 5.

• Epoch#5: The biparse tree didn’t make sense.
• Epoch#10: Themodel correctly learned some noun
bilexicons. Consistent with what was happening
with the shorter sentence, the model tried to use
its special understanding of ”put” and ”on” to in-
terpret this sentence pair and it worked to some
degree.

• Epoch#15: Themodel gotmost part of the biparse
tree correct, but was a little bit confused of how
to handle the determinant ”the”.

• Epoch#20: The model correctly figured out how
to handle determinant ”the”.

• Epoch#25: Nothing was improved. This biparse
tree was finalized.

As can be seen our model has done an excellent job
capturing bilingual generalization in our experiments.
We also compared the performance of our model with
the Transformer (Vaswani et al., 2017) for Chinese to
English MT on this dataset. We understand the fact
that such comparison is to some extend unfair since the
Transformer (as well as many other NMT systems) is



Figure 4: The Viterbi biparse tree of a short dev sentence at different epochs, demonstrating the process of themodeling
learning bilingual generalizations. Noun biphrases were learned at epoch#10 and longer biconstituents were learned
at epoch#15.

Figure 5: The Viterbi biparse tree of a longer dev sentence at different epochs, demonstrating the process of the
modeling learning bilingual generalizations. Noun biphrases were learned at epoch#10, followed by determinant
”the” being learned at epoch #20.

not designed for low-resource training. Nevertheless,
our model had a BLEU score 0.78 and the transformer
scored 0.71.

8. Conclusion

The twin concepts of soft transduction grammar and soft
biparsing have been proposed in this paper, bringing a
new approach to the field of bilingual deep learning. We
have introduced new neural network implementation of
the soft transduction grammar, and demonstrated its ex-
cellent ability in capturing generalization of bilingual
relationships with a small amount of data. Its desir-
able properties include its compositional structure en-
forcement, constrained search space and explicit rep-
resentation of tree structure. Besides MT and bipars-
ing, various tasks are naturally incorporated as subprob-

lems, such as parallel sentence evaluation, parallel sen-
tence embedding, and parallel sentence generation, and
a high degree of compatibility with monolingual lan-
guage models is retained.

We are currently pursuing several directions for fu-
ture development. We are deploying performance opti-
mizations so that experiments can be completed on large
corpora in a reasonable amount of time. We are also
trying alternative composer, decomposer and bridge de-
signs to see the impact of different architectures. Fur-
thermore, in contrast to learning from bilingual corpora,
we areworking on incorporating external tree constraints
so that the model can be forced to learn certain biparse
tree patterns.
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