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Abstract
Prominently used in support vector machines and logistic re-
gressions, kernel functions (kernels) can implicitly map data
points into high dimensional spaces and make it easier to
learn complex decision boundaries. In this work, by replac-
ing the inner product function in the softmax layer, we ex-
plore the use of kernels for contextual word classification. In
order to compare the individual kernels, experiments are con-
ducted on standard language modeling and machine transla-
tion tasks. We observe a wide range of performances across
different kernel settings. Extending the results, we look at
the gradient properties, investigate various mixture strategies
and examine the disambiguation abilities.

1. Introduction
With neural networks, tasks such as language modeling (LM)
and machine translation (MT) are generally approached by
factorizing the target sentence probability into products of
target word posterior probabilities [1, 2, 3]. In order to clas-
sify over the target vocabulary, it is necessary to compute a
context vector, learn a projection matrix and normalize the
similarity scores between the two probabilities. While vari-
ous model architectures are proposed to calculate the context
vectors [4, 5, 6], most of them use a softmax layer with the in-
ner product function to compute the word posterior probabil-
ities. [7] identify a shortcoming with the formulation above
which they call the “Softmax Bottleneck”. The problem lies
in the exponential-and-logarithm calculation when using the
cross-entropy criterion, which results in a low-rank log word
posterior probability matrix. Hypothesizing that natural lan-
guage is high-rank, the authors argue that the “Softmax Bot-
tleneck” is a limiting factor of the expressiveness of the mod-
els. One natural thought on this problem is its similarity to
the lack of expressiveness of a logistic regression model or a
support vector machine (SVM) with a simple linear kernel.

By implicitly transforming data points into high dimen-
sional feature spaces, kernels can increase the expressiveness
of the classifier and allow for more complex decision bound-
aries [8]. Note that a kernel is deemed valid when it corre-

sponds to a scalar product in some feature space [8], or its
corresponding Gram matrix is positive semidefinite [9]. Yet
empirical results [10, 11] also show that conditionally posi-
tive semidefinite kernels can perform well in some applica-
tions. In this work, we do not enforce the positive semidefi-
niteness of kernels.

Motivated to examine the performances of various ker-
nels in LM and MT, we structure this work as follows:

1. We implement individual kernels in replacement of the
inner product function in the softmax layer and test
them on LM and MT tasks.

2. We look at the gradient properties of several kernels
and analyze the observed performance differences.

3. We investigate various mixtures of kernels.
4. We further examine and compare the disambiguation

abilities of the linear kernel and a mixture of kernels.

2. Related Work
The softmax layer with the inner product similarity function
has limits in terms of expressiveness: [7] identify the “Soft-
max Bottleneck”, demonstrating its incapabilities to repre-
sent arbitrary target distributions. As a solution, they propose
the “Mixture-of-Softmaxes” (MoS) architecture. [12] rean-
alyze the problem and suggest to include an extra sigmoid
function in the softmax formula. [13] develop weight norm
initialization and normalization methods on top of MoS. [14]
extend the architecture and introduce a regularization term to
encourage equal contributions of mixture components.

Kernels are generally considered to be a family of energy
functions, which can implicitly map data points into high di-
mensional spaces, allowing for the learning of complex deci-
sion boundaries [8]. [15] provide detailed and extensive in-
formation on the topic of learning with kernels using SVMs.
[16] curates an incomplete list of popular kernels. [17] build
on kernel logistic regression and develop a classification al-
gorithm called import vector machine. [18] explore the use
of arccosine kernels in a multilayer nonlinear transformation
setup. [19] introduce a vector of binary latent variables and
propose to use a bilinear scoring function in the softmax.



In pursuit of more powerful word representations, [20]
and [21] propose to embed words into Gaussian distributions
to better capture entailment properties and multiple meanings
of words. [22] show that an n-dimensional Poincaré ball is a
suitable space, in which one can embed words to better rep-
resent hierarchies. [23] describe a re-parametrization trick to
automate the process of renormalizing word vector norms.

3. Methodology
3.1. Generalized Softmax

According to [12], because of the “logarithm of exponen-
tial” calculation in the “softmax and cross entropy” setup,
the non-linearity of the logarithm of the activated logit is a
prerequisite to break the “Softmax Bottleneck”. While the
paper presents a Sigsoftmax activation function applied on
logits calculated with inner products, we explore many non-
linear kernel functions for the logit calculation, including the
ones traditionally used in SVMs.

Specifically, we use a generalized softmax layer

p(wv|h) =

K∑
k=1

πk
exp(Sk(Wv, h̃k))∑V

v′=1 exp(Sk(Wv′ , h̃k))
, (1)

with Wv being the v-th column of the projection matrix
W and h̃k being the k-th transformed context vector. W
is shared across K mixture components and each compo-
nent uses kernel Sk to calculate the logits. Both the mixture
weight πk

πk =
exp(MT

k h)∑K
k′=1 exp(MT

k′h)
(2)

and the transformed context vector h̃k

h̃k = tanh(CT
k h) (3)

depend on the original context vector h. In this setup, matrix
W ∈ Rd×V , M ∈ Rd×K and Ck ∈ Rd×d are all trainable
model parameters, where d is the hidden dimension size.

There are two main motivations behind this generalized
setup: first, by mapping h to h̃k, we hope to transform the
context vector into the respective feature space and generate
different logit distributions over the vocabulary; second, by
explicitly conditioning πk on h, we hope the model is able
to select which kernel is more appropriate for each context.
Note that, in Equation 1, Wv does not have a subscript of k,
which means we tie the projection matrices across the ker-
nels. This greatly limits the expressiveness of our model, but
is a compromise because of memory limitations.

3.2. Individual Kernels

In total, we implement and experiment with 9 individual
kernels S(Wv, h) – linear (lin), logarithm (log), power
(pow), polynomial (pol), radial basis function (rbf), sym-
metric spherical Gaussian (ssg) [20], symmetric spherical

mixtures of Gaussian (mog) [21], non-parametric hyperbolic
(hpb) [23] and wavelet (wav) [24]:

Slin = WT
v h, (4)

Slog = −log(||Wv − h||p + 1), (5)
Spow = −||Wv − h||p, (6)

Spol = (αWT
v h+ c)p, (7)

Srbf = exp(−γ||Wv − h||2), (8)

Sssg = log

∫
N(µWv

,ΣWv
)N(µh,Σh), (9)

Smog =
∑
i,j

log

∫
N(µi,Wv ,Σi,Wv )N(µj,h,Σj,h), (10)

Shpb = −acos(1 +
2||Wv − h||2

(1− ||Wv||2)(1− ||h||2)
), (11)

Swav = cos(
||Wv − h||2

a
)exp(

−||Wv − h||2

b
). (12)

These individual kernels can all be thought of as energy
functions between the context vector h and the word vector
Wv . Because of the exponential calculation outside of the
logit calculation, these kernels may result in numerically un-
stable computations. For example, using the rbf kernel re-
sults in an exponential-of-exponential operation, which eas-
ily blows up when Wv and h are distant. We nonetheless
implement and examine the properties of these kernels.

Additionally, the memory consumption may blow up
when using certain kernels. This is because the dimension
reduction step in d common to all kernels may not always
be immediately executable. In this case, all pairwise simi-
larities/distances between the context vectors and the word
vectors have to be cached. To reduce memory usage, we ap-
ply several tricks: 1. use spherical covariance matrices, 2.
simplify the wavelet kernel and 3. rewrite the formula of the
power of the vector difference norm

||Wv − h||p = (||Wv||2 + ||h||2 − 2WT
v h)

p
2 , (13)

which also suggests that ||Wv − h||p can be thought of as a
vector norm regularized version of the inner product.

4. Experiments
4.1. Experimental Setup

In this work, two datasets are used: Switchboard (SWB) for
LM and IWSLT 2014 German→English (IWSLT) for MT.
SWB is a relatively small dataset, with a vocabulary size of
30k and a training token count of 25M. For SWB, we use a
standard 2-layer LSTM to generate context vectors, with 512
hidden dimensions and 0.1 dropout on the embedded word
vectors. For IWSLT, we follow the setup in [25], using 160k
parallel training sentences and 10k joint BPE merge opera-
tions. The transformer architecture is used to produce con-
text vectors. We use 512 hidden dimensions in the encoder
and decoder stacks, 1024 hidden dimensions in the fully-
connected layers and 4 attention heads. As in Equation 1,



the context vectors are compared with the word vectors in
the projection matrices. Hyperparameters of the kernels are
tuned with grid search to give the best performance on the
development set. We vary K and Sk to test various kernel
settings. We use the Fairseq toolkit [26] to conduct the ex-
periments.

4.2. Individual Kernels

The performances of models using individual kernels are
summarized in Table 1. References from the literature are
included to show the relative strengths of the kernels.

Method SWB IWSLT
(PPL) (BLEU[%])

Ref. [27] [28]
47.6 35.2

lin 46.8 34.3
log 103.0 0.4
pow 46.8 32.8
pol 47.3 31.7
rbf 284.9 0.0
ssg 49.9 34.6
mog 46.7 34.2
hpb 122.6 0.3
wav 289.7 0.0

Table 1: Performance of individual kernels.

Compared to the lin kernel, all other individual kernels
have the exact same number of parameters and comparable
run time. The only difference lies in how the logits are cal-
culated. On both datasets, we see consistent behavior. While
lin serves as a reasonably good baseline, pow, pol, ssg
and mog are on the same level of performance, even slightly
outperforming lin in some cases (mog on SWB and ssg
on IWSLT). log and hpb are worse, giving much higher
perplexity (PPL) and values close to zero in BLEU[%] [29].
Among all 9 kernels, rbf and wav perform the worst.

4.3. Gradient Properties

As shown in Section 4.2, a wide range of performances is ob-
served across different kernels. In order to understand why
some kernels perform better than others, we select four sim-
ple kernels (rbf, wav, log and pow) and plot their function
graphs in Figure 1.

All kernels have their maximum values at ||Wv − h||p =
0. In this case, the context vector h is exactly the same as
the word vector Wv . The gradient properties, however, vary
across these kernels. When far away from the optimum, pow
has a constant non-zero gradient. On the other hand, rbf,
wav and log have near-zero gradients. As ||Wv − h||p ap-
proaches zero, the absolute gradient of log increases, while
non-negligible gradients show up in rbf and wav only when
||Wv − h||p is close to zero. We think strong supervised sig-
nals in the gradients are helpful for model convergence. Con-
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Figure 1: Graphs of rbf, wav, log and pow (p = 2).

sidering these gradient properties, we expect performances
among these kernels to be: rbf ≈ wav < log < pow. The
results in Table 1 fits our expectations very well. This fur-
ther suggests that when selecting and designing alternative
kernels, the gradient properties across the domain of the pa-
rameters should be carefully considered.

4.4. Mixtures of Kernels

Inspired by the MoS approach, we train LMs combining the
outputs of multiple kernels according to Equation 1 on SWB.
Similar to [14], we add the variance of the mixture weights,
scaled by ρ and averaged over data N , to the standard cross
entropy loss:

Lreg = Lce +
ρ

N

∑
N

VarN (πk) (14)

ρ Variance PPL
0.001 4.74 46.8
0.01 4.98 46.6
0.1 3.67 47.2
1 3.81 47.4

Table 2: Regularization of π.

Name Mixture settings PPL
mos 9×lin 47.8
mixbig 1 of each kernel 47.1
mix1 lin, log, rbf, hpb, wav 46.6
mix2 3×lin, log 46.5
mix3 lin, log, pow, pol 47.3
mix4 lin, log, rbf, hpb 47.1
mix5 2×lin, 2×rbf 46.7

Table 3: Performance of mixtures of kernels.



Model Prediction
Ground Truth ... books can end up being outdated very quickly
lin ... books can end up being outdated very soon
mixbig ... books can end up being outdated very quickly
Ground Truth ... if you vote for a republican or vote for a democrat
lin ... if you vote for a republican or vote for a republican
mixbig ... if you vote for a republican or vote for a democrat

Table 4: Some examples of the disambiguation abilities of lin vs mixbig.

Performances of MoS systems for different values of ρ
are depicted in Table 2. We decide to run all mixture exper-
iments with ρ = 0.1, as it seems to be a good compromise
between regularization and performance.

The detailed mixture settings and perplexity results are
summarized in Table 3. Specifically, we select “mos” to
try to reproduce the “Softmax Bottleneck” paper [7] and
“mixbig” to test a big mixture of each kernel. “mix1”,
“mix2”, ..., and “mix5” are selected randomly to explore the
kernel combination space. We also experiment with more
mixture settings, but unfortunately with tied projection ma-
trices, only those mixtures with the lin kernel give good
performance. Note that weighted matrices are tied and mul-
tiple instances of the same kernel may be included in a mix-
ture component. In this case, each mixture component is free
in learning its own context vectors.

Compared to the individual kernels, the decoding speed
of the mixture models is slowed down by a factor of two
on average. The increased number of parameters because
of context vector projection is negligible when the projec-
tion matrices are tied. As can be seen, all the mixture set-
tings in Table 3 have similar performances to the simple lin
setup in Table 1. This is very likely because they all have at
least one linear component, and the linear components con-
sistently receive a total weight above 50%. So we conclude
that mixtures of kernels using a shared projection matrix can-
not significantly improve over the baseline. We find no fun-
damental difference between the open-sourced ”Mixture-of-
Softmaxes” implementation [7] and ours. Unfortunately, we
can not replicate the results from the original paper. We do
note that they use different datasets and include many more
techniques like activation regularization and averaged SGD
optimization.

4.5. Disambiguation Abilities

In theory, there is a potential drawback of the lin ker-
nel used together with the softmax layer. Consider when
two words v1 and v2 are close syntactically and/or seman-
tically. It is a common observation that their corresponding
word vectors are also close together after successful training
[30, 31, 32]. In this case, for any context vector h, the logits
WT

v1h and WT
v2h will be similar as well. Although the al-

ternative kernels studied here also suffer from this problem:
S(Wv1 , h) ≈ S(Wv2 , h) when Wv1 ≈ Wv2 , with non-linear

activations the difference between the logits may be ampli-
fied, making it easier to disambiguate the words.

To show potentially better disambiguation properties
of kernel mixtures, we take a more detailed look at
the LM task. For the lin model, the projection ma-
trix is extracted and the pairwise word distances are cal-
culated using inner product. This is then used to ex-
tract word clusters in the embedding space. Two of
the extracted clusters are: {quickly, slowly, soon,
quick, easily} and {republicans, politicians,
democrat, republican, democrats}. We suspect
that it might be difficult for the lin model to distinguish
words in these clusters, as their similarity scores are very
close. It turns out that this is also what we observe when
looking at the example sentences shown in Table 4. This sug-
gests that even if diversifying the output layer with different
kernels does not result in immediate improvements in terms
of perplexity – a kernel-mixture-based method may still be
superior in other aspects.

5. Conclusion
Motivated by the similarity between the “Softmax Bottle-
neck” problem and the lack of expressiveness of a logistic
regression model or an SVM with a simple linear kernel, we
explore the use of kernel functions in the softmax layer for
contextual word classification:

1. In replacement of the inner product function, kernels
and mixtures of kernels are used in the softmax layer.
Our experiments with 9 different individual kernels on
LM and MT exhibit a wide range of performances,
with lin, pol, pow, ssg and mog being the best-
performing ones.

2. Examining the gradient properties, we give reasons
why some kernels perform better than others and argue
that the gradient properties of a kernel function across
the domain of the parameters is worthy of careful con-
sideration.

3. In mixture settings consisting of at least one lin ker-
nel, lin consistently receives a large weight.

4. While not significantly better than the lin kernel, we
observe cases where the mixture model is better at dis-
ambiguating similar words.



In our mixture experiments, projection matrices are
shared due to memory constraints. This greatly limits the
expressiveness of the model. The next step is to untie the
word embeddings across different kernels and allow for the
learning of even more complex decision boundaries.
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