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Abstract

Multilingual Neural Machine Translation (MNMT) for low-
resource languages (LRL) can be enhanced by the presence
of related high-resource languages (HRL), but the related-
ness of HRL usually relies on predefined linguistic assump-
tions about language similarity. Recently, adapting MNMT
to a LRL has shown to greatly improve performance. In this
work, we explore the problem of adapting an MNMT model
to an unseen LRL using data selection and model adapta-
tion. In order to improve NMT for LRL, we employ per-
plexity to select HRL data that are most similar to the LRL
on the basis of language distance. We extensively explore
data selection in popular multilingual NMT settings, namely
in (zero-shot) translation, and in adaptation from a multilin-
gual pre-trained model, for both directions (LRL↔en). We
further show that dynamic adaptation of the model’s vocab-
ulary results in a more favourable segmentation for the LRL
in comparison with direct adaptation. Experiments show re-
ductions in training time and significant performance gains
over LRL baselines, even with zero LRL data (+13.0 BLEU),
up to +17.0 BLEU for pre-trained multilingual model dy-
namic adaptation with related data selection. Our method
outperforms current approaches, such as massively multilin-
gual models and data augmentation, on four LRL.1

1. Introduction
Neural Machine Translation (NMT) has become prevalent in
the past years, contributing to the flow of information across
languages and facilitating communication around the world.
However, NMT requires a large amount of “feature-label”
aligned data for building high-quality and usable systems [1].
For the majority of the world’s languages, these resources are
not available. Not benefiting from high quality MT (as it is
usually the case with HRL) means that people’s access to
different sources of information can be restricted.

Multilingual Neural Machine Translation (MNMT) owes
its success to cross-lingual knowledge transfer [2], which has
been particularly beneficial for languages lacking large paral-
lel data [3]. Previous works document further improvements
when using languages from the same family, however they
all rely on predefined linguistic assumptions about language

1Scripts to replicate the experiments and pre-trained models:
https://github.com/surafelml/adapt-mnmt

similarity. Another challenge for facilitating access to infor-
mation through MNMT is that relevant LRL data might not
be available at the time of training the initial seed model, or
not available at all. In most real-life applications, new needs
in terms of domains or language coverage arise continu-
ously, making monolithic MNMT models susceptible to out-
of-vocabulary words. Moreover, new relevant training data
in several (related or not) languages might become available
continuously. Taking advantage of relevant data for adapta-
tion is crucial to the performance of the final models [4, 5].

Recently, building a large scale MNMT model was
shown to be beneficial for LRL [6], even outperforming mod-
els specifically fine-tuned on the LRL data [7]. Another
approach optimizes embeddings through character n-grams
(i.e., soft decoupled encoding, SDE) [8]. A more recent
data augmentation approach showed improvements over all
the previous approaches by adapting the MNMT system us-
ing pseudo-bitext generated by converting the HRL to the
LRL [9]. Overall, research efforts in MT for LRL have
shown that pre-training a multilingual NMT model and ef-
ficiently utilizing the available data are crucial towards better
translation quality.

In this paper, we investigate the usefulness of language
similarity (distance between languages) as an indicator for
selecting which and how much related HRL data can lead
to the largest possible improvements. In analysing these as-
pects, we examine the potential of a pre-trained universal
(MNMT) model at two stages; i) without having access to
the test language data at training time (zero-shot translation),
and ii) after adapting it to the LRL with selected data based
on a language similarity criterion. We evaluate our hypothe-
sis in the following proposed settings;

Data Selection: We compute the perplexity of a LRL
language model on available HRL data, in order to choose
HRL data that are most similar to the LRL. Perplexity is
a well-established information-theoretic measure, also used
for measuring distance between languages [10]. We eval-
uate the data selection technique in different scenarios; in-
cluding a) language family, b) random, and c) our proposed
perplexity-based selection criterion.

Training and Inference: First we examine the perfor-
mance of the universal model in total absence of LRL data
(zero-shot). The evaluation involves both translation direc-
tions (LRL↔en). To date, model evaluation [7, 11, 8, 9] for
the en→LRL has not been investigated yet. This direction



is the most challenging one because of the small amount of
available target side data in the LRL and the morphological
richness of several LRL compared to English.

Adaptation of Pre-Trained Model: We experiment
with the adaptation of the multilingual NMT system by
preserving the initial model vocabulary (DirAdapt) or dy-
namically updating it to include new items (DynAdapt), as
in [12]. Following previous observations that more fre-
quent segmentation favors morphologically rich languages
and LRL [13, 14], we extend this approach by choosing dif-
ferent segmentation sizes that improve performance on the
LRL.

Based on the above three aspects, this work aims at find-
ing a viable way to improve a LRL translation task. The
contributions of our work are three-fold. In particular, we:

• Propose an effective data selection method to select
relevant data from several related HRL that, on the
same test languages, achieves better performance com-
pared to the most recent data augmentation approach.

• Explore the extreme case of a total absence of training
data in the test language by attempting zero-shot trans-
lation using a model trained with different portions of
related HRL data in both translation directions.

• Explore and compare approaches that aim to improve
the quality of LRL translation, including direct and dy-
namic adaptation of pre-trained models.

For a fair comparison with related works we utilize a
standard dataset (TED Talks [15]) comprising 58 languages
paired with English. Four languages are used as test. Two of
them are extremely low-resource (Azerbaijani and Belaru-
sian), while the other two (Galician and Slovak) are “rela-
tively” low-resourced. We conduct our experiments using
Transformer [16], which was shown to be superior for mul-
tilingual models [17] and in HRL benchmarks [18]. Experi-
mental results show the effectiveness of our approach, which
outperforms those presented in previous works.

2. Adapting Multilingual NMT
In this work, we aim to find a transfer-learning approach that
leads to an efficient utilization of a pre-trained large-scale
MNMT model. To achieve our goal of improving transla-
tion for the target LRL, we cast our approach as an unsu-
pervised model adaptation strategy, in which relevant data
for the adaptation are not supplied beforehand but have to be
identified on the fly.

2.1. Data Selection by Language Distance

Perplexity is a commonly used measure to assess the quality
of a language model [19], and has also been used to measure

distance between languages [10].2 In this work, we use per-
plexity to select HRL data that are similar to the LRL data.
We train a language model on the LRL data (LRLLM ) and
select training data with the lowest perplexity from related
HRL (Select-pplx). We compare this approach with:

2. Select-one – Taking all available data only from one
HRL related to the LRL.

3. Select-fam – Taking all available data from a set of
HRL related to the LRL belonging to the same lan-
guage family.

4. Select-rand – Randomly sampling an equal propor-
tion of data with Select-one and Select-pplx, from the
HRLs that are closely related to the LRL.

Perplexity is defined as the inverse probability of a test set
(i.e., the HRL training data) computed using the LRLLM .
Thus, given the segments of the HRL set and the LM, the
perplexity is computed as:

PP (S,LRLLM ) =
N

√√√√ N∏
i=1

1

P (wi|wi−1
1 )

(1)

Where: S is a HRL segment consisting the sequence
w1, w2, . . . wN , P(·) are the n-gram probabilities estimated
on the training set of LRLLM . The distance between the
LRL and the HRL is computed by evaluating the n-gram of
the latter using the n-gram model of the former. For each
HRL set, consisting of examples Sj , where j = 1 . . .m,
we select Sj with the lowest perplexity (i.e., closest to the
LRL) by computing PP (Sj , LRLLM ). We repeat the pro-
cess for each HRL, re-score the sentences of all HRL based
on their perplexity and select the necessary portion of data
determined by a pre-configured threshold.

2.2. Direct vs. Dynamic Adaptation

For adaptation, we pre-process the test language data either
i) using the pre-trained model’s segmentation rules, or ii) by
first learning a new segmentation model from the LRL data.
Thus, for the transfer-learning stage, we follow two strate-
gies:

1. DirAdapt: Vocabularies, segmentation rules and all
parameters of the pre-trained model are used without
any change.

2. DynAdapt: New vocabularies are generated using the
new segmentation rule, and portions of the pre-trained
model parameter are re-used.

In the DirAdapt case, the segmentation rules of the pre-
trained model are applied on the test language for the infer-
ence or adaptation stages. In the DynAdapt case, rules are

2We propose perplexity over popular data selection techniques in domain
adaptation [4, 20], because the large number of languages involved makes
training pairwise language models unfeasible for the scope of this work.



gl size Lang Select-fam Select-pplx

Train 10k pt 184k 98.65k
Dev 682 es 196k 79.51k
Test 1,007 it 204k 6.85k

Total: 584k 184k

Table 1: Data size for LRL gl, and selections using Select-
fam, and Select-pplx.

learned from the test language data and new vocabulary items
are generated accordingly. At adaptation time, if the entries
in the test language vocabulary are already present in the cur-
rent dictionary, all the relative pre-trained model weights are
transferred, while a random initialization of the embedding
layers and the pre-softmax linear transformation weight ma-
trix is performed for newly inserted vocabulary items. Un-
like [12], we first look for the test language segmentation that
maximizes the overlap with the pre-trained model vocabular-
ies.3

2.3. Zero-shot Translation

We specifically aim at assessing the potential of the large
scale MNMT model towards zero-shot translation (ZST).
Unlike with adaptation strategies, the translation is evaluated
in an extreme scenario, where the LRL has never been seen at
training time. This means that the transfer-learning to assist
the LRL translation is expected to come from multiple lan-
guages, particularly related languages, that are present in the
pre-trained model. We examine both a LRLunseen↔HRL
translation directions, where:

1. LRLunseen→ HRL: represents a condition where the
source side only sees related languages to the LRL, at
training time but no LRL data at all.

2. HRL → LRLunseen: represents a so-far unexplored
and more challenging condition, as discussed in Sec-
tion 1.

To evaluate the two scenarios we pre-train several mod-
els with data featuring different size and language combina-
tions. For constructing the data, we follow the perplexity-
based data-selection criterion described in §2.1. In this pro-
posal our objectives are; i) to evaluate how pre-trained mod-
els perform before an adaptation stage on unseen test lan-
guage data, and ii) how models trained on data with different
levels of language relatedness behave in addressing a zero-
shot translation.

Our expectation is that the more closely related language
pairs (HRL) to the test language (LRLunseen) are available,
the higher the performance of the pre-trained models will
be. Comparing the zero-shot translation against the adapted

3An alternative approach could be to remove the embedding and projec-
tion layers of the pre-trained model, however, preliminary results showed
lower performance; thus avoided from the scope of this work.

models using a similar data selection criterion and data of
the LRLunseen will shade more light on how much the pre-
training helps. Moreover, the zero-shot translation can signal
how robustly both the encoder and the decoder learn with-
out seeing the test language, but different combinations of
related languages.

3. Experiments
3.1. Data and Preprocessing

For our experiments we use the TED talks corpus [15], which
contains parallel data for 58 languages aligned to English.
As a first step, we use four LRLs paired with English (en)
for evaluating the two adaptation strategies; including Azer-
baijan (az), Belarusian (be), Galician (gl), and Slovak (sk),
and Turkish (tr), Russian (ru), Portuguese (pt), and Czech
(cs) as their HRL respectively. All languages are used are
used to train the massive MNMT model, except for the lan-
guage serving as test language at each time. The choice of the
test languages facilitates comparisons with previous works
on similar settings. As a second step, we select a single test
language pair (en↔gl) for an in-depth analysis of the data
selection strategies, the zero-shot inference and the adapta-
tion approaches. The data set size of the four LRL with their
linguistically closest HRL are used as in [7].

Before each experiment, data is segmented into subword
units using SentencePiece4. We use the same pre-processing
both for NMT and LM experiments. Following the recom-
mendation in [21], the segmentation rules are set to 8k. The
segmentation rules of the pre-trained models are used for
the ZST and experiments using DirAdapt. Unless otherwise
specified, the same number of segmentation rules is used for
the DynAdapt, first by learning the rules using the test lan-
guage.

3.2. Measuring Language Distance

For the related language data selection method, we focus on
one language, Galician (gl) as the test language, paired with
Portuguese (pt), in addition to Spanish (es) and Italian (it) as
further auxiliary languages. First, we select pt as the clos-
est language to gl (Select-one). Then, we include pt+es and
pt+es+it for the experiments with selection based on the lan-
guage family (Select-fam). For Select-pplx, we train a neural
language model5 on the Galician data to re-score sentences
from the training corpora of related languages and select the
sentences with the lowest perplexity until we match the cor-
pus size of Portuguese. Selection is made without replace-
ment, i.e., an English sentence can have translations in mul-
tiple languages. Statistics are shown in Table 1.

As proposed in Section §2.1, the distance between the
test language to the rest of the languages is evaluated using
perplexity of the Galician LM against the test sets of all other

4https://github.com/google/sentencepiece
5https://github.com/lverwimp/tf-lm
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Figure 1: Perplexity for different languages (Portuguese/pt,
Spanish/es, Italian/it, Basque/eu, Esperanto/eo) using the
Galician/gl LM.

languages. Figure 1 shows the closest languages. The rank-
ing reflects the proportion of each language in the mixed cor-
pus with our perplexity-based selection. Even though Gali-
cian is considered to be more closely related to Portuguese,
Spanish is behind it by only 4 perplexity points. Therefore,
Spanish data is equally valuable for enhancing NMT perfor-
mance on Galician.

In order to check if the improvement observed by adding
more languages is due to simply having more training data,
we set a maximum limit at time of data selection. We hence
select the same amount of data (i.e., 184k for the case of
Galician) using each of the following approaches: Select-
one, Select-rand, and Select-pplx.

3.3. Model and Settings

The LM used for data selection is a 1-layer LSTM model
with embedding and hidden layer of 512 units. We found that
the best results were obtained when keeping all other settings
as proposed in [22] (small model). We train the translation
models with the OpenNMT6 TensorFlow implementation of
the Transformer model [23]. The model parameters are set to
a 512 hidden unit and embedding dimension, 4 layers of self-
attentional encoder-decoder with 8 heads. At training time,
we use 4096 token level batch size with a maximum sentence
length of 100. For inference, we keep a 32 example level
batch size, with a beam search width of 5. LazyAdam [24]
is applied throughout all strategies with an initial learning
rate constant of 2. The learning rate increases linearly up
to 8, 000 warm-up training steps, and decreases afterwards
with an inverse square root of the training step. Given the
sparsity of the test language data, dropout [25] is set to 0.3.
The pre-trained models are run for up to 1M steps, and the
adaptations steps vary based on the amount of data used. In
all runs, models are observed to converge.

6http://opennmt.net/

3.4. Baselines and Comparison

Single language pair models (baselines) are trained from
scratch using only the test LRL data. First, results from the
adaptation and data-selection strategies are compared with
these baselines. Then, we compare against solutions previ-
ously proposed in literature, namely:

• A direct adaptation of the multilingual model to the
LRL, RapAdapt [7] and SDE [8].

• A massive multilingual model trained including all the
test LRL, avoiding adaptation (Many↔ Many) [6].

• A data-augmentation for LRL pair, followed by adap-
tation of a multilingual model (Data-Augment) [9].

In the first two cases (RapAdapt, SDE), a similar strategy
to our DirAdapt is implemented using an RNN model. For
a fair comparison with our Transformer-based approach, we
take the relative improvement (∆) between the single pair
baselines and the dynamically adapted models. The second
(Many↔Many) and third (Data-Augment) approaches uti-
lize the Transformer model, allowing us to directly compare
against the reported results. More interestingly, these com-
parisons bring together several approaches using the same
four test languages, aiming at improving the quality of LRL
translation. As a metric to evaluate translation quality, we
use BLEU [26].

4. Results and Analysis
4.1. Adaptation Does Matter

In Table 2, we show the ∆ between the baseline of [7] (Ra-
pAdapt) and the best performing adaptation approach (SDE),
against the ∆ between our baseline and our best performing
approach (DynAdapt). Even with stronger baselines, our ∆
is higher than in the previous approaches with +2.77 BLEU
averaged over the four test languages. Note that the MNMT
model refers to a training setting with all except for the test
language (cold start). We also note that our DirAdapt outper-
formed the RapAdapt and SDE with a larger margin in all the
test languages.

The authors in [6] argue that the better performance of
Many↔Many over the RapAdapt and SDE is due to avoiding
model over-fitting by including more languages on both the
encoder and decoder sides. However, our adaptation strate-
gies show better performance in all test cases, with a +1.37
(DirAdapt) and +2.78 (DynAdapt) average BLEU. In fact,
the additional improvement from DirAdapt comes from cu-
rating the segmentation for the test language and partially
transferring the MNMT model parameters.

By contrasting the performance of previous works
against the DynAdapt, we learn that our method is superior
to all, in average BLEU score. Specifically, when compared
to the latest Data-Augment [9], the DynAdapt shows better
performance in two of the test languages (gl, sk), and slight



Strategy az[tr] be[ru] gl[pt] sk[cs] AVG.

Neubig & Hu 2018
Baseline 2.70 2.80 16.20 24.00 11.43

MNMT→Bi (RapAdapt) 10.70 17.40 28.40 28.00 21.20
Wang et al., 2018 MNMT→Bi (SDE) 11.82 18.71 30.30 28.77 22.40

∆ (SDE-Baseline) 9.12 15.91 14.10 4.77 10.98

Aharoni et al., 2019 Many↔Many 12.78 21.73 30.65 29.54 23.67

Xia et al., 2019 Data-Augment 15.74 24.51 33.16 32.07 26.37

Ours

Baseline 3.61 4.42 16.32 26.44 12.70

MNMT→Bi (DirAdapt) 14.43 22.06 33.53 30.13 25.04
MNMT→Bi (DynAdapt) 15.33 23.80 34.18 32.48 26.45

∆ (DynAdapt-Baseline) 11.72 19.38 17.86 6.04 13.75

Table 2: BLEU scores for the four LRL→en comparing against previous approaches; RapAdapt [7], SDE [8], Many↔Many [6],
and Data-Augment [9]. Bi is an adaptation with the LRL + [closest-HRL] according to Select-one strategy.

degradation for az and be. Our observation for the lower
performance is that the data augmentation results in much
larger synthetic data, while our adaptation utilized only the
original LRL data for each of the test languages and the clos-
est related language pair (amounting to a max of 200k seg-
ments) as in [7]. Overall, our approach showed the possi-
bility of achieving better performance when initializing from
pre-trained MNMT parameters.

4.2. Zero-shot Translation

Comparing the approaches in [7] that used RNNs for
evaluating the ZST settings against our results, we observe
a large difference (see Table 3) that again attests the supe-
riority of the Transformer model. The better performance is
particularly true for the MNMT models that are trained using
all the available data but the test language. Previous works
have also shown similar findings for the Transformer model
when it comes to zero-shot translation [17, 6]. Thus, it is im-
portant to emphasize that the multilingual model is the best
suit for further investigation by applying the data-selection
procedures with the two adaptation options.

Strategy az be gl sk

Neubig & Hu
Select-one 3.80 2.50 8.60 5.40
MNMT 3.70 3.50 15.50 7.30

Ours
Select-one 3.25 2.07 13.59 9.30
MNMT 11.06 10.97 27.28 20.57

Table 3: Results for LRL→en ZST using model trained with
a single pair Select-one, and all but the test LRL (MNMT).

4.3. Data Selection for Zero-shot translation

Table 4 shows results for ZST using various data-selection
strategies. In the gl→en direction, adding more data from

related languages improves performance but the improve-
ment slows down as more languages are added. Even with-
out any test language data, performance increases from 13.59
BLEU for training only with pt (Select-one) to 24 BLEU for
pt+es (Select-fam), while with it (pt+es+it) increases further
by 1.34 BLEU. The MNMT model scores higher, but only
by 1.77 BLEU when compared to best Select-fam strategy.
Here, it is important to emphasize that: i) the MNMT model
is trained using over 5M segments except for the test (gl-
en) pair, meaning that the performance of Select-fam shows
the possibility to improve a ZST by having more related lan-
guages but less data, ii) while the amount of data is the same
for Select-one, Select-rand, and Select-pplx, the latter shows
better performance, indicating the importance of the data se-
lection criteria using perplexity.

Opposite results are obtained in the en→gl direction. As
expected, our second evaluation of ZST into an unseen lan-
guage on the decoder side does not perform well and per-
formance decreases as more languages are added (i.e. from
pt+es to pt+es+it). However, selecting related-language data
using Select-pplx, we observe a better performance among
the data-selection criteria at 5.38 BLEU.

Overall, ZST performance when translating from an un-
seen source language (gl) into a seen target language (en)
is better than the baseline (see Table 4), with more than
10.0 BLEU points. This gain highlights the importance of
closely related languages for improving the performance on
the LRL. However, the opposite direction, where we infer
into unseen target language (gl), is a more challenging task
that requires further investigation and the availability of at
least monolingual data for the LRL.

4.4. Data Selection for Adaptation

Table 5 shows results for adapting a MNMT model with
data selected using our proposed perplexity-based method,
both in the direct and the dynamic adaptation scenario. As a



Strategy gl→en en→gl

Our non ZST Baseline 16.32 11.83

Select-one 13.59 8.05

Ours ZST

Select-rand 14.69 4.09
Select-pplx 15.55 5.38

pt+es 24.17 4.61
pt+es+it 25.51 4.17

MNMT 27.28 8.78

Table 4: BLEU for ZST using models trained with different
data-selection criteria. Pt+es and pt+es+it are the two vari-
eties of the Select-fam method.

MNMT Adaptation gl→en en→gl

Strategy Dir/Dyn- Adapt Dir/Dyn- Adapt

→ gl 32.18 / -2.5 26.39 / -3.21

→Select-one + gl 33.53 / +0.65 26.45 / +0.28
→Select-rand + gl 32.61 / +0.75 25.94 / +0.06

→Select-pplx + gl ↑34.15 / ↑+1.41 ↑27.35 / ↑+0.59

→pt+es+it + gl 33.38 / +2.14 26.40 / +1.14

Table 5: BLEU using models adapted from the MNMT in
different data conditions. ↑ indicates statistically significance
using bootstrap re-sampling (p < 0.05) [27].

general rule, adaptation with selecting data from several lan-
guages improves over adapting only with the target language.
One possible reason for this improvement is avoiding overfit-
ting to the little data of the target language, as shown in [7].
However, perplexity-based data selection (Select-pplx) out-
performs selecting only one related language (Select-one) for
both translation directions. Moreover, we show that the im-
provement does not come only from mixing several related
languages, since Select-rand hurts performance for both di-
rections. Our method improves even over adapting with all
data from the most related languages (pt+es+it), allowing for
a faster adaptation.

The results show that perplexity can be a reliable mea-
sure for selecting smaller amounts of related-language data
both in translation and adaptation from a MNMT model in
order to obtain larger improvements, with reduced training
time (see Figure 2). For data selection strategies (either with
perplexity or random), better performance is achieved with
faster convergence. This confirms that the data-selection and
the adaptation strategy is the fastest way to build a usable
and better performing system for an unseen language from a
pre-trained model.

Comparing the results of DirAdapt and DynAdapt,
DynAdapt shows consistent improvements when adapta-
tion is performed with data from at least two languages
(LRL+another language). This can be attributed to the fact
that the DirAdapt has a complete overlap (100%) both for
the source and target side vocabularies with the pre-trained
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Figure 2: BLEU vs. training steps for gl→en direction.

initial model (i.e., the initial model vocabulary is used with-
out any modification), as well as the transfer of all parame-
ters when adapting. On the contrary, the DynAdapt improve-
ment comes from a careful segmentation of the test language
before adaptation, resulting in a new vocabulary and conse-
quently enforcing a partial transfer of parameters from the
initial model. In addition to the importance of data-selection,
the additional gain using DynAdapt indicates that a univer-
sal multilingual model can be made stronger if tailored to the
characteristics of the test languages when adapting.

When conducting a qualitative evaluation of the segmen-
tation, for extremely low-resource test languages (such as
gl↔en with 10k and az↔en with 5k bitext), we observed a
frequent segmentation that favours sub-words closer to char-
acter level for most of rare words included in the vocabulary.
This is consistent with previous work supporting character
level segmentation for improving NMT of LRL [13, 14].
Furthermore, with a reduced vocabulary size, DynAdapt
can compress the model with smaller embedding and pre-
softmax linear transformation dimensions compared to the
pre-trained model, and with sharing all the updated weight
matrix as in [28].

5. Related Work
Multilingual NMT approaches share a common feature by
aggregating data from various language pairs. In compari-
son with earlier approaches [29, 30, 31], training a single at-
tentional encoder-decoder (universal) model using multiple
pairs showed to be an efficient multilingual setting [3, 32].
While the performance of a universal model for HRL is com-
parable with a strong single language pair baseline, LRL
pairs gain the highest improvement from the cross-lingual
transfer. Thus, transfer learning for LRL can be defined in
two main forms; i) “vertically”, aggregating data from sev-
eral language pairs to train a single model [3], ii) “horizon-
tally”, pre-training a model with the available pairs and fine-
tuning it using the test (LRL) language data [33, 34, 12], or
iii)with a combination of the two approaches.



Recently, new approaches have been introduced to effi-
ciently adapt a pre-trained model to a LRL. One such case
is proposed by [7], where they suggest to train a universal
model (i.e., a model trained using up to 58 LRL-en pairs),
with or without the test language direction. At time of adap-
tation, first, they adapt using only the LRL-en pair. Alterna-
tively, a closely related language pair is added to the LRL-en
as a regularizer when adapting. Both of the adaptation strate-
gies show a larger performance gain over baseline models
trained from scratch, however, their findings show the latter
as an optimal adaptation setting.

Aimed at improving the source side language represen-
tation and parameter sharing, [8] introduced a multilingual
lexicon encoding through character embedding, called Soft
Decoupled Encoding. Their approach shows better perfor-
mance than the adaptation strategies in [7], using a similar
evaluation pairs. In a different work, a many-to-many multi-
lingual model training is explored using all the available pairs
both in LRL↔en directions [6]. By avoiding the adaptation
stage, the approach showed to perform better when compared
to the results in [7, 8] that utilize a many-to-one setting.

More recently, a data augmentation strategy is proposed
to further improve the LRL pairs [9]. The approach leverages
a target side monolingual and closely related HRL-English
parallel data. Back translation is used to generate a pseudo-
HRL from the monolingual data, while the HRL side of the
parallel data is converted to pseudo-LRL using word substi-
tution from a bilingual dictionary, similar to the approach
in [35]. The synthetic data is used to construct a pseudo-
HRL-en and a pseudo-LRL-en pair. Then, the synthetic data
together with the available small LRL-en test language is
used to improve over the baseline models. Using the same
test languages, the data augmentation approach, which cre-
ates additional parallel data for the adaptation stage, outper-
formed the approaches reported in previous works [7, 8, 6].

This work shares a common ground on the effectiveness
of pre-training a universal model and adaptating it to ulti-
mately improve LRL pairs, however, it differs on the follow-
ing aspects: i) it only considers a scenario where all of the
pre-trained models have never seen the test language pair, ii)
it learns a language model on the LRL to select data from re-
lated languages, iii) it investigates the less explored direction
of en-LRL translation, iv) it explores zero-shot translation
without adapting the pre-trained model, and v) it extends the
dynamic adaptation strategy [12], that customizes any pre-
trained model to the LRL pair.

In general, aggregating related HRL pair data with the
LRL for an adaptation stage showed to perform better in all
the test cases. Unlike in [7], who utilize only the immedi-
ately related language, we chose segments from different re-
lated languages based on the perplexity measure. Moreover,
our approach does not rely on additional monolingual data
or augmentation as in [9], instead, efficiently utilizes multi-
ple related languages by identifying the relevant examples to
the test language pair.

6. Conclusion
In this work, we focused on enhancing NMT performance for
LRLs with data selection, and direct and dynamic adaptation
of pre-trained models. To this aim, we used perplexity to se-
lect the most relevant data to the test language. We show that
perplexity-based data selection improves translation, leading
to an improvement of up to 10.0 BLEU points for LRL→en
and 17.0 BLEU points for en→LRL when adapting from a
multilingual model, with reduced training time. Our adapta-
tion strategy with selected data is useful even in the extreme
case of zero-shot translation for an unseen language (+13.0
BLEU). In future works, we plan to integrate our approach
with data augmentation and semi-supervised model training
strategies.
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