
KIT’s Submission to the IWSLT 2019 Shared Task on Text Translation

Felix Schneider, Alex Waibel

Karlsruhe Institute of Technology
felix.schneider@kit.edu, waibel@kit.edu

Abstract
In this paper, we describe KIT’s submission for the IWSLT
2019 shared task on text translation. Our system is based
on the transformer model [1] using our in-house implemen-
tation. We augment the available training data using back-
translation and employ fine-tuning for the final model. For
our best results, we used a 12-layer transformer-big config-
uration, achieving state-of-the-art results on the WMT2018
test set. We also experiment with student-teacher models to
improve performance of smaller models.

1. Introduction
The performance of state-of-the-art NMT systems can often
be difficult to reproduce. It is highly dependent not only on
the amount and kind of training data as well as on a num-
ber of subtle hyperparameter choices and implementation de-
tails.

The Karlsruhe Institute of Technology perticipated in the
IWSLT 2019 shared task on English to Czech text translation.
In this paper we describe our data preprocessing, the model
architectures we have chosen, as well as attempt to give an
exhaustive list of the implementation and training tricks that
we used to achieve our final performance.

We describe the data preprocessing in section 2, back-
translation in section 3, training speedups in section 4.1 and
finetuning in section 4.2.

2. Data Preprocessing
The allowed training data for the task was the special MUST-
C release containing TED talks as well as all WMT 2019
data. We made use of all allowed data, which is broken down
in table 1. The allowed parallel data from WMT consists of
Commoncrawl, CzEng (which makes up the vast majority of
the parallel training data), Europarl, news commentrary and
paracrawl.

WMT also provides a large amount of monolingual data
for Czech. We used backtranslation (section 3) to synthesize
this data into parallel corpora, more than doubling the total
amount of available training data.

We performed very little data preprocessing: We first re-
move noise, by fixing typical encoding errors (such as re-
placing u+0080, the e character in cp1252, but a control
character in utf-8, with u+20ac, the unicode representation

Dataset sentence
pairs (K)

words (K)
EN CS

Commoncrawl 162 3 348 2 927
CzEng 57 065 618 423 543 184
Europarl 641 15 623 12 994
MUST-C 128 2 413 2 000
News-Commentary 240 5 166 4 610
Paracrawl 2 982 48 918 44 100
Newscrawl CS 2007-18 72 155 — 1 019 492
Total Parallel 61 218 693 891 609 815
Total 133 373 — 1 692 308

Table 1: Data Overview

of the e character), and removing html tags which may be
left in the data.

Then we filtered the data, with the same method used
in [2]: Filter any sentence pair where the Czech side does
not contain any accented characters. We also filtered any
sentence pair where source and target are the same or where
one side is empty. This filtering removes about 8% of the
training data.

Then we trained and applied a shared SentencePiece
model [3] with a vocabulary size of 32 000. Notably, we did
not perform regular tokenization. Finally, we filtered out any
sentence pairs where either side is longer than 150 tokens,
bringing the total amount of training data to 53 million par-
allel sentences, 888 million English and 902 million Czech
tokens.

3. Backtranslation

We trained a backtranslation model (i. e. Czech to English)
with the transformer-big configuration [1]. While it would be
possible to iteratively train better backtranslation models, the
long time it takes to train each model and to apply it to the
large amount of training data meant that we could not take
this approach, using only our initial backtranslation model.
Our model reached a BLEU score of 31.6 on the WMT 2018
test set. Including the backtranslation data, the total amount
of training data is 123 million parallel sentences, 2.5 billion
English and 2.6 billion Czech tokens.



Model BLEU Parameters training
steps

training
timeWMT18 MUST-C IWSLT19

Transformer Big (TF6) 22.94 28.68 26.82 209M 384k 4d23h
TF6 + avg 23.10 28.64 27.08 209M — —
TF6 + bt + avg 25.56 27,81 26.86 209M 546k 5d3h
TF8 + bt + avg 26.06 27.88 — 267M 550k 9d10h
TF12 + bt + avg 26.37 28.34 27.49 385M 467k 11d7h
TF12 + bt + fine 24.55 29.10 27.96 385M 50 —
TF12 + bt + fine + avg 25.56 29.51 28.62 385M — —
Transformer Base (tf6) + bt + avg 24.26 25.86 25.16 60M 476k 5d
tf6 + teacher + bt + avg 24.99 26.11 25.73 60M 470k 5d
TF6 + teacher + bt + avg 25.96 27.37 26.85 209M 386k 5d
CUNI WMT 2018 [2] 26.01 788k 8d
LIG 22.72
CUNI 29.03
Sharp 26.67
CMU 16.93
UEDIN 28.07

Table 2: Main training results

4. Main Training
We trained a number of different configurations of trans-
former models, evaluating on the WMT 2018 test set, as well
as on the MUST-C tst-COMMON set. Except for the num-
ber of layers, all models are similar to the transformer-big
configuration: Layer size is 1024, the feed forward hidden
dimension is 4096. We did however have better results with
a dropout of only 0.1 (rather than 0.3) and only 8 attention
heads (rather than 16), differing from [1].

We evaluated models with 6, 8 and 12 layers (each in
encoder and decoder), yielding progressively better results,
at the cost of evaluation speed and memory usage.

4.1. Training Procedure

We grouped training examples into minibatches of 6000,
5000 or 4000 tokens each for 6, 8 and 12 layers, respectively.
In each case, this is the maximum that fits into GPU mem-
ory. In order to have more consistent training, we simulated
a batch size of 30 000 tokens by accumulating gradients for
several steps before updating.

We used Adafactor [4] to train all models, using the pa-
rameters from the original paper. We did however increase
the number of warmup steps in the learning rate scheduler to
10 000. We saved checkpoints every 2000 training steps.

Each training was run on a single GPU, either an
NVIDIA GeForce RTX 2080 with 11GB or an NVIDIA
Titan V with 12GB of VRAM. Both of these support two
important optimizations, which greatly accelerate training:
Mixed-precision training and tensor cores. Using NVIDIA
Apex1, the majority of calculations are performed in half pre-
cision, saving a significant amount of memory as well as run-

1https://github.com/NVIDIA/apex

ning about twice as fast. This allowed us to even run the 12
layer model without gradient checkpointing [5].

Another significant (about 20%) speed increase is gained
by utilizing the GPU’s tensor cores to speed up vector oper-
ations. This required padding tensors in the model to factors
of 8.

With all optimizations, during training the model pro-
cesses approximately 23 000, 19 000 or 12 000 tokens per
second for 6, 8 and 12 layers, respectively. For the final eval-
uations, we average the 10 most recent checkpoints for each
model.

We use our own implementation of the transformer
model to train2.

4.2. Finetuning

For the final submission, we also finetuned our best model
(TF12) by training only on MUST-C. We found that fine-
tuning requires very careful tuning of hyperparameters and
close supervision to yield any benefits. For finetuning, we
decreased the learning rate to 0.2, the warmup steps to 100
and got the best results after only 70 training steps.

4.3. Student-Teacher

Because we achieved our best results on a very large model,
we decided to experiment whether the performance of the
very large model could be transferred to a smaller model us-
ing sequence-level knowledge distillation [6]. We therefore
translated the entire training data with our best performing
model before finetuning, the 12 layer transformer-big con-
figuration and trained several smaller models with this output
as labels.

2https://github.com/felix-schneider/xnmtorch

https://github.com/NVIDIA/apex
https://github.com/felix-schneider/xnmtorch


It should be noted that for the backtranslation data, after
applying the teacher model to it, both sides of the parallel
data are now synthetic. It may be an interesting future exper-
iment to compare whether this data still gives any benefit.

5. Results
We evaluate our model on the newstest2018 test set, the
MUST-C tst-COMMON dev set as well as the IWSLT2019
test set. We use sacreBLEU [7] to score our results.
For wmt18, we apply postprocessing as in [2], fixing
quotation marks. However, as we observed that the quo-
tation marks are not normalized in the MUST-C test set,
we do not apply this postprocessing for the other two
test sets. The sacreBLEU fingerprint for the reported
BLEU score is BLEU+case.mixed+lang.en-cs+
numrefs.1+smooth.exp+test.wmt18+tok.13a+
version.1.3.5.

The in-domain data, i. e. the MUST-C corpus of TED
talks makes up only a small part of the training data. This
imbalance is increased further by adding the backtranslation
data. Because of this, we observed that at first our best per-
forming in-domain model was the very first model trained
without any backtranslation data. However, due to their
greater representational capacity, the larger models are once
again able to generalize to this small portion of the training
data and, after finetuning, were able to outperform the sim-
pler model.

Our best performing model on the in-domain data is the
finetuned 12-layer model, so this is our primary submission,
all other models are contrastive.

5.1. Student-Teacher

For our student-teacher experiments, neither of the models
reached the performance of the teacher, the best being a 6-
layer transformer-big, which came to within 0.4 BLEU of the
teacher model. However, both models outperformed models
of the same size which were trained on the original data, by
0.7 BLEU (transformer base) or 0.4 BLEU (transformer big).
We therefore conclude that in order to achieve the best possi-
ble performance with a given number of parameters, student-
teacher networks are a viable option regardless of the size of
the training data.

6. Conclusions
In this evaluation we trained and compared a number of dif-
ferent transformer configurations for the English to Czech
text translation task. Using our largest model, we achieve
state-of-the-art performance on the wmt18 test set (evalua-
tion on IWSLT 2019 is still not available).

7. Acknowledgments
The work leading to these results has received funding
from the European Union under grant agreement No. 825460

and the Federal Ministry of Education and Research (Ger-
many)/DLR Projektträger Bereich Gesundheit under grant
agreement No. 01EF1803B.

8. References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in neural infor-
mation processing systems, 2017, pp. 5998–6008.

[2] M. Popel, “Cuni transformer neural mt system for
wmt18,” in Proceedings of the Third Conference on Ma-
chine Translation: Shared Task Papers, 2018, pp. 482–
487.

[3] T. Kudo and J. Richardson, “Sentencepiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing,” arXiv preprint
arXiv:1808.06226, 2018.

[4] N. Shazeer and M. Stern, “Adafactor: Adaptive learn-
ing rates with sublinear memory cost,” arXiv preprint
arXiv:1804.04235, 2018.

[5] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training
deep nets with sublinear memory cost,” arXiv preprint
arXiv:1604.06174, 2016.

[6] Y. Kim and A. M. Rush, “Sequence-level knowledge dis-
tillation,” arXiv preprint arXiv:1606.07947, 2016.

[7] M. Post, “A call for clarity in reporting BLEU
scores,” in Proceedings of the Third Conference on
Machine Translation: Research Papers. Belgium,
Brussels: Association for Computational Linguistics,
Oct. 2018, pp. 186–191. [Online]. Available: https:
//www.aclweb.org/anthology/W18-6319

https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319

	 Introduction
	 Data Preprocessing
	 Backtranslation
	 Main Training
	 Training Procedure
	 Finetuning
	 Student-Teacher

	 Results
	 Student-Teacher

	 Conclusions
	 Acknowledgments
	 References

