
The LIG system for the English-Czech Text Translation Task of IWSLT 2019

Loïc Vial Benjamin Lecouteux Didier Schwab
Hang Le Laurent Besacier

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{loic.vial, benjamin.lecouteux, didier.schwab,

thi-phuong-hang.le, laurent.besacier}@univ-grenoble-alpes.fr

Abstract

In this paper, we present our submission for the English to
Czech Text Translation Task of IWSLT 2019. Our system
aims to study how pre-trained language models, used as input
embeddings, can improve a specialized machine translation
system trained on few data.

Therefore, we implemented a Transformer-based encoder-
decoder neural system which is able to use the output of a
pre-trained language model as input embeddings, and we com-
pared its performance under three configurations: 1) without
any pre-trained language model (constrained), 2) using a lan-
guage model trained on the monolingual parts of the allowed
English-Czech data (constrained), and 3) using a language
model trained on a large quantity of external monolingual
data (unconstrained). We used BERT as external pre-trained
language model (configuration 3), and BERT architecture for
training our own language model (configuration 2).

Regarding the training data, we trained our MT system
on a small quantity of parallel text: one set only consists of
the provided MuST-C corpus, and the other set consists of
the MuST-C corpus and the News Commentary corpus from
WMT.

We observed that using the external pre-trained BERT
improves the scores of our system by +0.8 to +1.5 of BLEU
on our development set, and +0.97 to +1.94 of BLEU on the
test set. However, using our own language model trained only
on the allowed parallel data seems to improve the machine
translation performances only when the system is trained on
the smallest dataset.

1. Introduction
The recent advances in pre-trained Language Models [1, 2,
3, 4, 5] have shown that they could greatly improve many
NLP tasks such as Natural Language Understanding, Ques-
tion Answering, Natural Language Inference, Word Sense
Disambiguation, etc.

With our submission, we would like to explore what these
models can bring to a typical Transformer-based encoder-
decoder Neural Machine Translation system. Unlike the
works of [6] and [3] where the authors fine-tune the weights
of the language models on the translation task, we propose to

use the language models as input embeddings for our neural
system.

We expect that the language model, because it is trained
on a great quantity of monolingual data, will bring some
additional information to a MT system trained on relatively
few parallel data.

Therefore, we conducted experiments that compare our
system with and without the information from a BERT pre-
trained model [2]. In addition, we created our own BERT LM
by training it on the allowed training data only, in order to see
if the language model is still useful in a constrained setting.

For the training data, we used only the provided MuST-C
[7] and News Commentary [8] from WMT, for a total of less
than 400k parallel sentences.

2. System Description
2.1. Architecture

Our system relies mostly on the Transformer architecture [9].
More precisely, it consists of the following layers, as pictured
in Figure 1:

• The input embeddings layer, which takes words in their
vector form from either 1) a classical look-up table
trained jointly with the model or 2) a pre-trained lan-
guage model which remains fixed during the training.

• A linear layer, only if the embeddings come from a pre-
trained language model, in order to resize their vectors
to the desired size.

• Multiple Transformer encoder layers.

• The output embeddings layer (trained look-up table).

• Multiple Transformer decoder layers.

• A linear layer which resizes the decoder output to the
output vocabulary size, followed by a softmax.

We implemented our system using PyTorch1. For the
Transformer encoder and decoder layers, we used the imple-
mentation from OpenNMT2. The parameters used are the

1https://pytorch.org/
2https://github.com/OpenNMT/OpenNMT-py

https://pytorch.org/
https://github.com/OpenNMT/OpenNMT-py


same as the “base” model of [9]: 6 layers, 8 attention heads
and a hidden feed-forward size of 2048, except for the dropout
rate that we set to 0.3 to improve the robustness of our model.

It is to be noted that, as in [9], we share the weight ma-
trix between the output embeddings and the last linear layer.
However, we do not share the vocabulary nor the matrices
between the input and the output languages.

Also, for the input embeddings, if they come from a look-
up table, we add sinusoidal positional encoding to the vectors
as in [9]. We do not need it when using a language model
because the positions are already encoded.

Finally, for the size of the embeddings, which is the same
as the input and output of the Transformer layers, we tried
two different parameters: 512 and 1024.

Input embeddings

Transformer encoder layers

Linear layer (resize)

X Y Z

Transformer decoder layers

Linear layer + softmax

A B C

<BOS>

Output embeddings

A B

Figure 1: Architecture of our neural MT system.

2.2. Training and development corpora

Due to time constraints, we limited our training to only two
English-Czech corpora that we considered of good quality
and relevant for the task: the provided MuST-C [7] and the
News Commentary corpus provided by WMT [8]. MuST-C
is a speech translation corpus of TED talks, similar to the test
data of the task, and we added the News Commentary corpus,
which consists of political and economic commentaries, be-
cause it was the second smallest corpus provided by WMT,
after Common Crawl, and we estimated that its quality was
better than Common Crawl.

The training data of MuST-C contains 128 179 sentences,
and the News Commentary corpus contains 246 513 sentences.
We conducted two sets of experiments: one using only the
MuST-C, and the other using both corpora, hence cumulating
374 692 training sentences.

For the development set used in both settings, we used

the development and test corpora from MuST-C, which corre-
sponds to 3 928 sentences.

2.3. Preprocessing

We preprocessed every corpus using the standard scripts from
the Moses repository.3 In particular, we normalized punctu-
ation characters, removed non-printing characters, and tok-
enized the data. Finally, we removed sentences with more than
80 words and those with a source-target word ratio greater
than 1.5.

Corpus Original
sentence count

Cleaned
sentence count

MuST-C 128 179 112 993
MuST-C + News 374 692 344 973
Dev 3 928 3 507

Table 1: Corpora statistics before and after cleaning.

Table 1 summarize the corpus lengths before and after the
preprocessing phase.

2.4. Vocabulary

2.4.1. English side

There are tree cases for the input English vocabulary:
1. For the case where we used BERT external pre-trained

language model, we use the same vocabulary as their
model named “bert-base-cased” which consists of 30 000
subwords.

2. For the case where we trained our own BERT con-
strained model, we used a BPE vocabulary of size
30 000 trained on all allowed corpora for the task, which
consists of MuST-C and 6 other corpora from WMT4.

3. For the case where we do not use any language model,
we trained a BPE vocabulary of size 30 000, but only
on MuST-C and News Commentary.

2.4.2. Czech side

For the output Czech vocabulary, we used the same in every
configuration: we learned a BPE vocabulary of size 14 000
on the Czech side of the MuST-C and the News Commentary
corpora. For BPE learning, we used the tool subword-nmt5.

2.5. Language model pre-training

In order to both be able to explore how much a pre-trained
language model can improve a NMT system, and submit a
system constrained in terms of training data, we trained our
own language model restricted to the allowed data.

3https://github.com/moses-smt/mosesdecoder
4http://www.statmt.org/wmt19/translation-task.

html
5https://github.com/rsennrich/subword-nmt

https://github.com/moses-smt/mosesdecoder
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
https://github.com/rsennrich/subword-nmt


We used the English side of the corpora listed in Table 2
for the pre-training data, and we extracted 0.5% of the sen-
tences for the validation and test sets (approximately 314 000
sentences). Comparing to the BERT external pre-trained
model “bert-base-cased” provided by the authors, which is
trained on a corpus set that contains more than 3 billions
words, we have 708 622 867 words in total which amounts to
approximately 20%.

Corpus Sentence count Word count
MuST-C 128 179 2 413 793
News Commentary 246 513 5 168 469
Common Crawl 161 838 3 348 584
Wiki Titles 362 015 897 564
Europarl 654 323 15 628 367
ParaCrawl 2 981 949 48 918 150
CzEng 58 315 645 632 195 134
Total 62 850 462 708 622 867

Table 2: Corpora statistics for the pre-training of the language
model BERTconstr.

We used the XLM6 tool with the Masked Language Model
(MLM) objective, and with the following parameters: 6 layers,
8 attention heads and an embeddings size of 512, for a total
of 34.78M parameters. In constrast, the original BERT model
“bert-base-cased” has 12 layers, 12 attention heads and an
embeddings size of 768, for a total of 110M parameters. We
chose to reduce these parameters because we had less training
data.

For the optimizer, we used Adam, with a learning rate
equals to 0.0001, warmup steps=30K, β1=0.9, β2=0.999,
weight decay=0.01 and ε=000001.

We trained for 1016 epochs. The validation/test MLM ac-
curacy was 53.82%/53.97% and the validation/test perplexity
was 11.07/10.90.

3. Experiments
3.1. Training process

We trained 9 different systems by making the following pa-
rameters vary:

1. The training data: either MuST-C or MuST-C + News
Commentary.

2. The input language model, either None, BERTextern
(external pretrained model “bert-base-cased”) or
BERTconstr (constrained on allowed data only).

3. The embeddings size, either 512 or 1024 (only 512
when the training data is only MuST-C).

We applied label smoothing with a parameter of 0.1 to the
cross entropy criterion (as in [9]). We trained on batches of
sentences of size 100, on a single NVIDIA GTX 1080 Ti. We

6https://github.com/facebookresearch/XLM

evaluated the quality of our system in terms of BLEU [10]
on the development corpus at the end of every epoch, and we
kept the best on a total of 250 epochs.

Finally, for the optimizer, we used Adam [11] with a fixed
learning rate of 0.0001.

3.2. Results

We evaluated every best system on the development corpus
at the end of the training, with beam search applied with a
beam size of 12. The results on this development set and on
the task’s test set are in Table 3.

As we can see, in every case, using the BERTextern lan-
guage model consistently improves the BLEU score com-
paring to using no language model, or using our BERTconstr
language model, by an absolute value ranging from 0.8 to 1.5
on the development set, and from 0.97 to 1.94 on the test set.

Using our BERTconstr language model however, decreases
the score comparing to using no language model, but only on
the MuST-C + News dataset. When training on the MuST-C
alone, using our language model adds 0.1 to the BLEU score
on the development set, and 0.89 on the test set. We think that
this bad performance, compared to BERTextern, may be ex-
plained by one or several factors such as: not having enough
training data, a suboptimal choice of hyperparameters or be-
cause we stopped the training of the LM too early.

Concerning the training data, having more is generally
better, but knowing that the MuST-C only consists of 112 993
sentences, the final score obtained by the systems trained
solely on this corpus is still considerable. We can also notice
that using the MuST-C alone is where both language models
are the more useful,

Finally, using an embeddings size of 1024 instead of 512
on the second dataset is useful and it gives us our best scores,
but the difference is not really high (+0.2 on the dev set and
+0.16 on the test set, when using Bertextern).

3.3. Submission

For our submission, we provided the output of our 9 sys-
tems on the test set, with the same beam size of 12, but we
added an extra detokenization step at the end using the script
detokenizer.perl provided by Moses.

Due to a lack of time, we stopped the training of some
systems on less than 250 epochs. In the case where we use
MuSTC + News as training data and with the BERTconstr
language model, we stopped the training at epoch 68 with the
embeddings size of 512, and epoch 55 with the embeddings
size of 1024. The BLEU score on the development corpus
obtained by these models, after the training complete, are
respectively 22.4 (instead of 20.4) and 22.7 (instead of 21.7).

We submitted our best constrained system as our primary
submission (the one obtaining 23.1 BLEU on the dev set) and
all the others as constrastive.

https://github.com/facebookresearch/XLM


Training data Input LM
Embed-
dings
size

BLEU
(Dev)

BLEU
(Test) TER BEER Charac-

TER
BLEU

(ci)
TER
(ci)

MuST-C None 512 20.4 19.13 61.55 51.64 52.23 19.77 60.54
MuST-C BERTconstr 512 20.5 20.02 60.64 51.78 51.26 20.68 59.53
MuST-C BERTextern 512 21.9 21.07 59.19 52.74 49.97 21.78 58.15
MuST-C + News None 512 22.8 22.26 58.68 53.84 48.29 22.93 57.63
MuST-C + News BERTconstr 512 20.4 20.09 60.90 51.91 50.66 20.77 59.79
MuST-C + News BERTextern 512 23.7 23.53 57.55 54.36 47.30 24.27 56.41
MuST-C + News None 1024 23.1 22.72 58.51 53.94 48.27 23.47 57.41
MuST-C + News BERTconstr 1024 21.6 21.35 59.68 52.83 49.60 22.05 58.52
MuST-C + News BERTextern 1024 23.9 23.69 57.14 54.58 47.06 24.41 56.02

Table 3: Results of our systems on the development and the test set after 250 epochs (except in two cases, see subsection 3.3).
Beam size is 12. Data are tokenized and cased.

4. Conclusion
In our submission for the English-Czech Text Translation
Task, we submitted a neural MT system based on the Trans-
former architecture, and we studied the impact of a pre-trained
language model used as input embeddings.

We experimented on two training sets: one which consists
of a specialized speech translation corpus only, and the other
which includes also a news commentary corpus. We compared
the performance of an external BERT model provided by the
original authors (in unconstrained settings) and a constrained
BERT model that we trained ourselves on the allowed data
only.

Our results showed that our model really benefits from
the external BERT model trained on more than 3 billions
words, really improving the quality of the translation in every
case, but our constrained BERT model trained on less than 1
billion words does not always give a useful information to the
MT system. However, we believe that this could be due to a
suboptimal choice of hyperparameters (different embeddings
size, optimizer, etc.) or because we stopped the training too
early.

5. References
[1] M. Peters, M. Neumann, M. Iyyer, M. Gardner,

C. Clark, K. Lee, and L. Zettlemoyer, “Deep
contextualized word representations,” in Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational
Linguistics, June 2018, pp. 2227–2237. [Online].
Available: https://www.aclweb.org/anthology/N18-1202

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of deep bidirectional transformers
for language understanding,” in Proceedings of the

2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computa-
tional Linguistics, June 2019, pp. 4171–4186. [Online].
Available: https://www.aclweb.org/anthology/N19-1423

[3] G. Lample and A. Conneau, “Cross-lingual language
model pretraining,” arXiv preprint arXiv:1901.07291,
2019.

[4] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdi-
nov, and Q. V. Le, “Xlnet: Generalized autoregressive
pretraining for language understanding,” arXiv preprint
arXiv:1906.08237, 2019.

[5] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“Roberta: A robustly optimized bert pretraining ap-
proach,” arXiv preprint arXiv:1907.11692, 2019.

[6] P. Ramachandran, P. Liu, and Q. Le, “Unsupervised
pretraining for sequence to sequence learning,” in
Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing. Copenhagen,
Denmark: Association for Computational Linguis-
tics, Sept. 2017, pp. 383–391. [Online]. Available:
https://www.aclweb.org/anthology/D17-1039

[7] M. A. Di Gangi, R. Cattoni, L. Bentivogli, M. Negri, and
M. Turchi, “MuST-C: a Multilingual Speech Translation
Corpus,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 2 (Short Papers)”, year = 2019, Minneapolis,
MN, USA, 2019.

[8] L. Barrault, O. Bojar, M. R. Costa-jussà, C. Federmann,
M. Fishel, Y. Graham, B. Haddow, M. Huck,

https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/D17-1039


P. Koehn, S. Malmasi, C. Monz, M. Müller,
S. Pal, M. Post, and M. Zampieri, “Findings
of the 2019 conference on machine translation
(wmt19),” in Proceedings of the Fourth Conference on
Machine Translation (Volume 2: Shared Task Papers,
Day 1). Florence, Italy: Association for Computational
Linguistics, 2019, pp. 1–61. [Online]. Available:
http://www.aclweb.org/anthology/W19-5301

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in Neural Infor-
mation Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds. Curran Associates, Inc., 2017, pp.
5998–6008. [Online]. Available: http://papers.nips.cc/
paper/7181-attention-is-all-you-need.pdf

[10] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
a method for automatic evaluation of machine transla-
tion,” in Proceedings of the 40th annual meeting on
association for computational linguistics. Association
for Computational Linguistics, 2002, pp. 311–318.

[11] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in Proceedings of the 3rd
International Conference for Learning Representations,
2015. [Online]. Available: http://arxiv.org/abs/1412.
6980

http://www.aclweb.org/anthology/W19-5301
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	 Introduction
	 System Description
	 Architecture
	 Training and development corpora
	 Preprocessing
	 Vocabulary
	 English side
	 Czech side

	 Language model pre-training

	 Experiments
	 Training process
	 Results
	 Submission

	 Conclusion
	 References

