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Abstract 

With the growth of the Internet, the ready accessibility and generation of online 

information has created the issue of determining how accurate or truthful that 

information is. The rapid speed of information generation makes the manual filter 

approach impossible; hence, there is a desire for mechanisms to automatically 

recognize and filter unreliable data. This research aimed to create a method for 

distinguishing vendor-sponsored reviews from customer product reviews using 

real-world online forum datasets. However, the lack of labelled sponsored reviews 

makes end-to-end training difficult; many existing approaches rely on 

lexicon-based features that may be easily manipulated by replacing word usages. 

To avoid this word manipulation, we derived a graph-based method for extracting 

latent writing style patterns. Thus, this work proposes a Contextualized Affect 

Representation for Implicit Style Recognition framework, namely CARISR. 

Transfer learning architecture was also adapted to improve the model’s learning 

process with weakly labeled data. The proposed approach demonstrated the ability 

to recognize sponsored reviews through comprehensive experiments using the 

limited available data with 70% accuracy. 

Keywords: Reliability, Transfer Learning, Writing Style, Text Classification, 
Natural Language Processing. 
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1. Introduction 

With the popularization of the Internet and communication devices, information can be sent 

more quickly and widely than ever before. However, technological advances have also made it 

difficult to avoid incorrect information. Sponsored reviews, which have recently become a 

popular marketing strategy in online forums, can provide incorrect information. The intention 

of these articles is to give their consumers a positive impression of the product. Some 

advertisement companies have even begun to use sponsored reviews as a new method of 

promoting their commodities. Such sponsored reviews usually only provide positive 

information about a product. Thus, these reviews may hide the disadvantages of a product and 

potentially mislead consumers into making an unbeneficial purchase. 

As unreliable data may contain incomplete or incorrect information, it is important to 

avoid them. Most of the filtering approaches on online social platforms rely on mutual 

reviewing from users or human-designed rules. However, no matter which approach is used, 

automatic filtering is still limited due to the various methods of writing sponsored reviews and 

how quickly information is generated. Consequently, a system to automatically identify these 

kinds of information has become an important issue in the information reliability research 

field. 

In this work, we focus on recognizing the information reliability of review articles on 

online web platforms. Review articles are widely consumed by readers in order for them to 

purchase the best products. General filtering methods fail to address two main difficulties. 

First, current filters are easily fooled if the method only considers word-based characteristics; 

writers can simply avoid specific words/phrases to pass the filtering check. Second, there is a 

lack of defined and labeled sponsored review article data for testing reliability problems. It is 

difficult enough to manually collect these articles, let alone to create rules for automatically 

gathering them, because these articles are written by experienced writers. 

To address the first issue of keywords bias, this research focused on extracting the latent 

writing style of review articles to avoid specific word biases found in word-level methods. 

The presented research proposes a Contextualized Affect Representation for Implicit Style 

Recognition (CARISR) method to recognize the writing styles of various reviews. The 

proposed CARISR consists of an unsupervised approach for generating stylistic word patterns, 

which condenses patterns into distributed matrix representations, and a learning-based model. 

Sections 4 and 5 describe the details of the stylistic patterns and model, respectively. 

The biggest difference between the general methods and CARISR is that the latter 

defines two specific word groups, stylistic skeleton words (CW) and stylistic content words 

(SW), to capture the writing style information. A set of stylistic word patterns are extracted 

based on the constructive relationship of different stylistic skeleton words and content words 
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in the sentence. By adopting stylistic word patterns, the experiment results show that CARISR 

is more robust compared to the word-based approaches, including neural network methods. In 

other words, the contextualized effect representation model is less susceptible to changes to 

specific words. Consequently, CARISR has a better ability to deal with the first challenge, that 

is, to detect the implicit word usages of advertisement writers. 

For the second difficulty, the lack of labeled data, we defined our recognized targets as 

sponsored reviews (業配文), trial product reviews (產品試用文), and self-purchased product 

reviews (自購心得文). Since it is rare for sponsored reviews to actually be labelled as such, 

we introduced a similar class that is more easily obtained, called official advertisements (廣

告), as the weak label concept for model pre-training. The transfer learning approach can then 

be applied to the target label of sponsored review. 

This work proposes that the purpose of the sponsored review is more similar to official 

advertisements than self-purchased product reviews. This similarity allows for transfer 

learning to be adopted in our work. After preliminary training leveraging a large number of 

advertisements, the model should have the ability to classify the implicit writing style of 

advertisements. Further, we manually collect small amounts of sponsored review for transfer 

learning and fine-tune. The proposed model achieves around 70 percent accuracy and shows 

better robustness than the compared models, which demonstrates that our framework works 

successfully, even with the scarce sponsored review resources. 

To shortly summarize this research, we highlight the following contributions: 

　   To quantify the problem of review articles’ reliability, we defined different levels of 

reviews and collect the corresponding dataset for the training model. 

　  To prevent our model from being defrauded by intentional word selection, our model 

recognizes reliability based on the implicit writing style instead of word-level features. 

　  To capture the implicit writing style, we first applied graph-based pattern extraction to 

the review articles. Then, we designed the embedding strategy of contextual stylistic 

patterns for the convolutional neural network model. 

　  To overcome the insufficient quantity problem, we combined the weak label concept and 

the transfer learning approach to stabilize the learning process and improve the 

performance and robustness of our model. 

2. Related Work 

2.1 Information Reliability 

Information reliability research aims to distinguish whether the given information is reliable 

or not. Most of the information reliability research could be consider as credibility analysis on 
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news. The main difficulty of credibility analysis is how to find the effective features to 

identifying the news is reliable or not. To address the problems, the researchers attempt to 

extract different features, which could be categorized as the propagation-based, 

knowledge-based and content-based approaches. 

For propagation-based approach, social media could be one major domain for news 

sharing, the analysis within social media relies heavily on social context features like author 

profiles, retweets, likes, etc. Social media rumor detection (Derczynski et al., 2017) utilized 

conversation on Twitter to determine the veracity as RumorEval tasks. By modeling the 

sequence posts and behaviors on social media, researchers (Kochkina, Liakata, & Zubiaga, 

2018; Ruchansky, Seo, & Liu, 2017; Volkova, Shaffer, Jang, & Hodas, 2017) proposed 

supervised method to detect the rumors and fake content. These approaches assume that the 

footprint and network of fake news are different from real news. Moreover, it has been shown 

that the spread speed of fake news is faster than real news (Vosoughi, Roy, & Aral, 2018). The 

propagation-based methods rely on social context feature; therefore, it is difficult to capture 

enough information for fake news detection right after the newly emerged news. Also, they 

are limited to social network for social context features. In contrast, this work studied 

reliability only on textual information, therefore, it can recognition the unreliable information 

in real time. 

Knowledge-based method includes the tradition manual fact-checked by expert and 

automatic factchecking (Shi & Weninger, 2016; Shiralkar, Flammini, Menczer, & Ciampaglia, 

2017; Wu, Agarwal, Li, Yang, & Yu, 2014). Several organizations, such as PolitiFact and 

Snopes, investigate the news and related document to report the credibility of the claim. The 

manual fact-checking method is time-consuming and expert oriented, which is difficult to 

handle the huge amount of false claim in online news media. Thus, the automated 

knowledge-based fact-checking system has been developed. The system will extract the 

claims in news content and try to match the claim to relevant data on the external knowledge 

base. In our work, we do not count on the external knowledge bases or web evidences; instead, 

we extract the stylistic features from articles to automatically capture the implicit style of 

unreliable article information. 

Content-based methods aim to capture the keywords or writing style of malicious 

fabrication news from its content. The advantage of content-based methods is that it can 

immediately alarm the reader only from its content no matter the news is newly emerged or 

not. Previous works on content-based methods can be categorized into two groups by their 

method. One focused on the “textual content classification” (Al-Anzi & AbuZeina, 2017; 

Pavlinek & Podgorelec, 2017; Qu et al., 2018; Wang, Luo, Li, & Wang, 2017). It classified 

content by “Content words”, which were meaningful and different depended on the content. 

The other interested in “writing style recognition” (Gomez Adorno, Rios, Posadas Durán, 
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Sidorov, & Sierra, 2018; Rexha, Kröll, Ziak, & Kern, 2018; Stamatatos, 2009) which aimed to 

find out the articles that have the same style but different content. These word-based methods 

concerned more about the “Function words” and the structure of sentence, which were often 

regarded as less important part before. Several research Karimi and Tang (2019); Khan, 

Khondaker, Iqbal, and Afroz (2019); Wang et al. (2018) has shown the promising result by 

taking advantage of machine learning technique. However, Janicka, Pszona, and Wawer (2019) 

address the issue that the failure of cross-domain detection, which can be interpreted as a type 

of overfilling on the training domain. The work conducts the experiment on four types of 

domain including short-text claim, full-text content. generated fake new via Amazon 

Mechanical Turk (AMT), and fake news on Facebook. The experiment shows that the model 

can fit well in the same domain, but the accuracy drops sharply when testing on the other 

domain. 

2.2 Text Representation 

To represent unique characteristics of different text documents, several features extraction 

methods have been proposed. Before the widespread use of the deep learning models, there are 

many methods relied on the hand-crafted, lexicon-based and syntactic approaches. 

The hand-craft approaches are based on predefined dictionaries or linguistic resources 

such as the linguistic inquiry and word count (LIWC) affect lexicon (Pennebaker, Booth, & 

Francis, 2007). One of the advantages of using predefined dictionaries is that they are usually 

of high quality due to the rigorous process of labeling. However, this also presents a 

scalability problem as these features may not be representative of the dynamically evolving 

language used. 

The lexicon-based approaches automatically extract the representative tokens from 

corpus, such as bag of word (BOW) or term frequency-inverse document frequency (TF-IDF). 

BOW learns the distribution of word usages to present the corpus. By integrating the n-grams 

consideration, the token units of BOW could be extended to n words as phrases rather than a 

single word to extract more high-level features. TF-IDF further introduces the statistical 

concept to reduce the importance of common tokens, such as “the” and “or”. One of the 

benefits of the lexicon-based approach is that are robust to misspellings and the out of 

vocabulary (OOV) problems. However, it result in a extreme large size of vocabularies in 

memories and the curse of the dimensionality from the sparsity of vocabularies. 

The syntactic approaches including part of speech (POS) parsing tree and graph-based 

word pattern, which considering the relation among the words. The POS parsing tree converts 

words by the POS tags and models the syntactic structure of sentence. The syntactic POS tree 

benefits the understanding for sentence, however, the POS tagging process relies on 

predefined dictionaries and may encountered OOV and not perform stably for specific 
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terminologies or among different languages. The graph-based word pattern approaches 

(Argueta, Saravia, & Chen, 2015; Saravia, Liu, Huang, Wu, & Chen, 2018) analyze the hidden 

word relation by learning a word relation graph dynamically from the corpus. By adopting the 

graph analysis techniques, words that is important in the connection of graph structure could 

be extracted and used to construct the n-grams word patterns. As the word graph could present 

a longer connection of words than n-gram approaches, the hidden relations among words 

could be better preserved. The word pattern derived from graph structure learns the syntactic 

features of the corpus rather than n-grams key tokens; the syntactic word pattern is thus 

considered as a representation of the writing style. Although the method could learn the 

syntactic writing styles from word relation graph, however, the current approaches only 

focused on the English corpus. This work aims to leverage the benefits of word relation graph 

and propose the modification to extract syntactic writing style features from Mandarin corpus. 

In the deep learning approaches, words are embedded as the vector representations by 

different contextual learning techniques, such as word2vec (Mikolov, Chen, Corrado, & Dean, 

2013) and GloVE (Pennington, Socher, & Manning, 2014). The word vectors preserve the 

semantic reasoning capabilities of the word and are treated as the input feature representations 

to the deep learning models, such as the sequence-modeling recurrent neural network (RNN) 

and the convolution neural network (CNN) which focus on the local pattern extraction. 

By integrating the traditional methods and the modern neural network approaches, this 

study proposes an approach that leverages the graph pattern features and a convolutional 

neural network model to identify the unreliable text information. The proposed model not only 

captures the textual and stylistic feature from articles but also has the adaptability for different 

writing styles. 

3. Contextualized Affect Representation for Implicit Style Recognition 

To prevent keyword bias, we studied various writing styles with a focus on frequent word 

usages and corresponding co-located words for each writing style. In this work, we adapted 

the concept of graph-based pattern extraction approaches to dynamically learn the writing 

style of Mandarin product review datasets. This approach has been applied in related works on 

emotion analysis by extracting the word patterns for each emotion. In the following sections, 

we highlight the adaptation of the graph-based emotion pattern approach to extract stylistic 

word patterns as the writing style. 

The overall framework, which can be separated into stylistic pattern feature extraction 

(titles highlighted in orange) and model architecture (title highlighted in yellow), is shown in 

Figure 1. By constructing the word relation graph, the hidden word relations are preserved to 

enrich the stylistic words patterns in comparison to traditional lexicon-based approaches. A 

weighting mechanism was proposed to learn the significance of each pattern for each style. 
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Articles were first transformed into stylistic patterns by encoding each matched pattern and 

determining the corresponding score vector, which represents the article’s stylistic pattern. In 

this work, the pattern representations were treated as the input of a neural network model for 

document classification based on writing style features. The details of the stylistic pattern 

feature extraction and model architecture are summarized in the following subsections. 

4. Stylistic Pattern Features Extraction 

4.1 Stylistic Graph Construction 

Given a set of corpuses ࡯	 ൌ 	 ሼܿሽ and the sentences ࡿ௖ in corpus ܿ, the sequences of word 

are denoted as ௦ܸ೎ in sentence ݏ௖. The word graph ܩ௖ then represents the graph structure for 

the corpus set C, such that ܩ௖= ( େܸ, ܧେ, େܹ). Vertices ࡯ࢂ is a set of nodes which represent 

all the word tokens ݒ in corpus ࡯, and Ａ
࡯
 is a set of arcs that represents a bi-gram 

relationship between each two adjacent tokens. For example, the tokenized sentence “用 _ 起

來 _ 還有 _ 飾色 _ 效果 _，_ 給 _ 你 _ 無可取代 _ 的 _ 透亮 _ 蘋果光 _ 唷 

_！！” could construct the following bi-gram relations: “用 → 起來”, “起來 → 還有”, “還

有 → 飾色”, ..., “蘋果光 → 唷”, “唷 → ！！”. Note that the under-dash “_” shows how 

the sentence is tokenized and the arrow “→” denotes the link relation in the word graph. 

For the edge weights ܹ, instead of initialized with binary representation, which is align 

with the adjacency matrix, the edge weight ݓ௩೔,௩ೕ are defined as the bi-gram probability 

between two word tokens ݒ୧ and ݒ୨ in order to capture the significance of link relation. The 

bi-gram probability is designed with a denominator of global bi-gram frequency, the 

frequency of all the bi-grams, rather than the degree of word node ݒ௜ or the frequency of out 

nodes ݒ୨ from node ݒ௜. By comparing to all the bi-gram tokens, the word graph could better 

capture and compare the global significance for each node. Consistent to the setting of edge 

weight, the weighted adjacency matrix ࡹ is designed as the matrix representation of the edge 

weights ࢃ and defined in Definition 1. 

By having the weighted mechanism, the word graph ܩ௖ could have a better ability to 

preserve the syntactic structure of words by a graph representation. 

 

Definition 1 (Weighted Adjacency Matrix) Let ࡹ be the weighted adjacency matrix that each 

entry ܯ௜,௝ represents the relation of word pair in the word graph ܩ: 

  ୧,୨ܯ ൌ
୤୰ୣ୯ሺ	௩೔,௩ೕሻ

∑ ௙௥௘௤ሺ௩ೖ,௩೗ሻೡೖ,ೡ೗	∈ೇ,ೖಯ೗
                                                                          (1) 

where the freq() denotes the frequency of two bi-gram words ݒ௜, ݒ௝ or ݒ௞, ݒ௟. 
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Figure 1. The framework of CARISR. 



 

 

                 Discovering the Latent Writing Style from Articles:               23 

A Contextualized Feature Extraction Approach 

4.2 Stylistic Word Extraction 

Writing styles vary from individual to individual. The idea that people utilize different 

distributions of words for different topics has widely been accepted in several topical methods, 

such as latent dirichlet allocation (LDA) (Blei, Ng, & Jordan, 2003). This work also uses this 

concept to extract and decompose the writing style into two elements: the stylistic skeleton 

and the stylistic contents. This work assumes that sentence and corpus are constructed by 

choosing the words of selected style to form skeleton and deciding the contents words to 

complete the sentence structure. 

To extract the stylistic elements, two types of graph analyses—centrality and 

clustering—were applied to the word graph ܩ௖. Each analysis method helps to generate a set 

of words: stylistic skeleton words (CW) (i.e., stylistic stop words) and stylistic content words 

(SW). 

4.2.1 Stylistic Skeleton 

The stylistic skeleton represents the fundamental elements of word usages in a style, where 

such words should be widely used in all the corpuses of a given style. That is, all of the words 

included in the stylistic skeleton of a style should consistently appear in all of the corpuses of 

that style. In the structure of the graphical representation, skeleton words that represent a 

strong connection to other words are considered suitable candidates for stylistic skeleton 

words, as those words act as the fundamental nodes in the word relation graph ࡯ܩ. Inspired by 

Google’s PageRank (Page, Brin, Motwani, & Winograd, 1999), in which nodes with high 

connection word nodes contribute more importance than low connection word nodes, the 

eigenvector centrality was selected to measure the influence of each node in ࡯ܩ. 

 

Definition 2 (Eigenvector Centrality) The eigenvector centrality is calculated as: 

݁௜ ൌ
ଵ

ఒ
∑ ࡯ࢂ∋௜,௝௝ܯ ௝݁                                                                                       (2) 

where	ߣ is a proportionality factor and ݁௜ is the centrality score of word node ݒ௜. Let ߣ be the 

corresponding eigenvalue, the equation could be rewritten into vector form Me = λe, where e is 

the eigenvector of M. 

 

A word is selected as a connecter word if its eigenvector centrality ݁௜	 is higher than the 

empirically defined threshold ߠ௘௜௚ to ensure the quality of the high connectivity word. The 

higher the centrality ݁௜	 of a word ݒ௜, the more important the word is in the graph ࡯ܩ. By the 

centrality measurement, a set of connector words with both high frequency and connectivity to 
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other high-rank nodes are extracted from the word relation graph ࡯ܩ and considered stylistic 

skeleton words ࢃ࡯ , such that ࢃ࡯ ൌ	 ሼܿݓ	|݁௖௪ ൐ ,௘௜௚ሽߠ 	ݓܿ ∈ 	 ܸ࡯ . The examples of the 

stylistic skeleton words in this task (the makeup advertisement dataset) were as follows: “我,” 

“的,” “因為,” “肌膚,” and “特別.” The extracted stylistic skeleton words not only contained 

numerous traditional stopwords but also style-specific words, which are known as stylistic 

stopwords. 

4.2.2 Stylistic Content 

The stylistic contents represent frequently appearing topics within a style, where topics could 

be formed by several separated words (i.e., LDA) or continuous word sequences. Apart from 

the skeleton, a topic could be presented by using the words in different ways; however, to 

represent the similar semantics of the topic, the topic words are generally interchangeable. For 

example, in the makeup advertisement dataset, there are several ways to describe the product’

s effect on skin care, such as “能 _ 有效 _ 保養 _ 肌膚,”“保護 _ 嫩白 _ 肌膚,” or “擁

有 _ 水嫩 _ 臉頰.” In the above example, some word tokens can be changed while keeping 

the meaning the same, such as “保養” to “保護” or “嫩白” to “水嫩” and so on. 

To capture the stylistic content cues, this work focuses on interchangeable word usages. 

By converting the style corpus in the word relation graph, the cross connections between these 

interchangeable word nodes are discovered. Such stylistic content word nodes tend to cluster 

with other nodes that share this or similar concepts. The clustering behavior in the graph can 

be measured by a graph analysis factor, namely the clustering coefficient, which determines 

how a node interconnects with its neighbor nodes. This work therefore applied the clustering 

coefficient to dynamically extract the stylistic contents, as shown below. 

 

Definition 3 (Clustering Coefficient) The clustering coefficient is defined by clustering 

coefficient as: 

  ݈ܿ௜ ൌ
∑ ெ೔,ೕൈೕಯ೔,ೖಯೕ,ೖಯ೔, 	ெ೔,ೖൈெೕ,ೖ	

∑ ெ೔,ೕൈೕಯ೔,ೖಯೕ,ೖಯ೔, 	ெ೔,ೖ
ൈ 	 ଵ

|	࡯ࢂ	|
                                                          (3) 

where ݈ܿ௜ denotes the average clustering coefficient of node ݒ௜. 

 

Similarly, the word nodes ݒ௜  were also filtered by a predefined threshold ߠ௧௥௜  for 

clustering coefficient ݈ܿ௜ to ensure the clustering quality. During the computing process of 

clustering coefficient ݈ܿ௜ for each node ݒ௜, we discovered that there were many nodes with 

high coefficients. However, many of them belonged to local mini-clusters in which the degree 

of node was too small, resulting in too many specific words for stylistic contents. A 
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post-filtering step was then applied to remove the local mini-cluster and small cluster words 

based on the number of triangles ݅ݎݐ௜  of the word nodes ݒ௜ , where less node triangles 

indicated a smaller cluster. With the post-filtering step, a set of qualified stylistic content 

words SW were retrieved, such that SW = {sw |	݈ܿ௦௪> ߠ௖௟, ݅ݎݐ௦௪ > ߠ௧௥௜}, sw ∈ ࡯ࢂ, where 

 ௧௥௜ denotes the empirical threshold for the number of triangles for the word node. Someߠ

examples of stylistic content words in this task were “森林系,” “世界級,” “黏稠度,” and “可

愛感.” 

4.3 Stylistic Pattern Construction 

With the extracted stylistic skeleton and stylistic content words, this step aimed to construct 

the stylistic word pattern template. The stylistic word pattern is designed to capture hidden 

word usages in a writing style. For a word pattern, the length l of the pattern can be dynamic; 

that is, there may exist a longer stylistic word pattern (i.e., slogans) or a shorter one (i.e., topic 

tokens). In this work, a short length was adapted, as a longer word pattern may be difficult to 

match in a real-world case. 

To construct the word pattern templates ࡼ	 ൌ 	 ሼ݌ሽ, the permutation of stylistic skeleton 

and content words, CW and SW, were adopted in our work using the rules below: 

   The stylistic skeleton words are required to exist in the pattern at any position as such 

words have the top connectivity in the corpus. 

  A word pattern could contain more than one skeleton words. 

For example, in pattern length ݈	 ൌ 	3, each pattern feature is composed of an arbitrary 

permutation, such as “cw sw cw” or “cw sw sw,” from the set of CW and SW. The word 

patterns are then used to search the corpus set ࡯ to retrieve the pattern frequency. The word 

patterns that belongs to last 20% infrequent patterns are dropped, as they are not general 

enough. 

Instead of utilizing the word pattern by exact matching (bag-of-word matching) as 

n-gram does, this work adopts a flexible representation to increase the versatility of the pattern 

template due to the issue of easily overfitting for n-grams and pattern size consumption. 

Compared to the stylistic skeleton words, the stylistic content words are relatively easier to 

update or replace (i.e., develop new terms) as these are determined by the clustering 

coefficient, which captures interchangeable words. With respect to the stylistic content 

characteristics, various words that may be beyond the knowledge coverage of the training 

dataset could be used to describe a topic. Therefore, flexible representation was designed and 

performed by replacing the SW in the word pattern with a placeholder <*>, which means any 

token could be considered in the stylistic patterns during the matching process (i.e., “我 <*> 

肌膚”, “特別 <*> 的”). 



 

 

26                                                       Yen-Hao Huang et al. 

The flexibility of the pattern (the wildcard representation <*>) enables our model to 

possess robust generalization ability, which increases pattern coverage for dealing with 

out-of-vocabulary words and slang or coded words used in specific domains when extracting 

features during testing. The complete steps for stylistic word extraction and stylistic pattern 

construction are formally summarized in Algorithm 1. 

 

Algorithm 1 Stylistic Pattern Features Extraction Algorithm 

Calculate eigenvector centrality (e) and clustering coefficient (cl) for topic graph. 

Set ߠ௘௜௚, ߠ௖௟, ߠ௧௥௜ thresholds of centrality, clustering coefficient and number of triangles. 

CW← a set of stylistic skeleton words 

TW← a set of stylistic content words 

for all node v in V do  

  ௩= number of triangles for v݅ݎݐ				

if ݁௩> ߠ௘௜௚  then 

CW← v end if if ݈ܿ௩> ߠ௖௟  and ݅ݎݐ௩> ߠ௧௥௜  then 

SW← v 

end if 

end for 

Construct patterns P with the permutation of stylistic skeleton words and content words. 

for all pattern p in P do 

p = Replace the sw with wildcard (<*>) from p 

end for 

 

4.4 Representation of Stylistic Pattern 

With the stylistic word pattern, it is critical that how to transform a set of patterns to features 

for the classification. One of the traditional ways is to present the word pattern as a set of 

bag-of-patterns with the frequency or normalized frequency (probability of occurrence) as the 

numerical features. However, such bag-of-pattern representations limited in the current 

state-of-the-art deep neural network (DNN) models, which applied several word embedding 

techniques to present the hidden information for a word. Such embedding features are very 

flexible which could be utilized not only in traditional classifiers (i.e. support vector machine 

(SVM) or random forest), but also the DNN models. 
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Inspired from it, this work aims to proposed a flexible numerical vector representation 

for the extracted word patterns in a pre-training manner which could perform as the initialized 

parameters for the classification models. The numerical representation is designed to leverage 

the uniqueness of each word pattern for each label, which is the style in this work. The 

uniqueness of the pattern for different labels is calculated by a weighting schema, namely 

identical stylistic degree. Formally, given a set of corpuses  ࡯	 ൌ 	 ሼܿሽ and a set of possible 

style ࡿ	 ൌ 	 ሼݏሽ, where each corpus c belongs to a style s, the identical stylistic degree is 

defined by three components, which are pattern frequency, inverse style frequency. 

 

Definition 4 (Pattern Frequency) The pattern frequency pf is defined as: 

  ݌ ௣݂,௦ ൌ ݃݋݈ ୤୰ୣ୯ሺ௣,௦ሻାଵ

ଵା∑ ୤୰ୣ୯ሺ೛೔∈࢙ࡼ
௣೔,௦ሻ

                                                                        (4) 

where freqሺ݌, ݌	 ሻ represents the frequency of the pattern p in the style s, andݏ ௣݂,௦ is the 

logarithmic scaled frequency of p in all the articles of the style s. 

 

Pattern frequency is designed to capture the frequently appeared word pattern under the 

assumption that the more a pattern exists in the corpus of a style, the more important the 

pattern is. As the frequency is dramatically different from pattern to pattern, the scale of the 

freqሺ݌,  ሻ score may encounter biased due to the large frequency gap. A logarithm function isݏ

thus applied to avoid the identical stylistic degree dominated by pattern frequency. 

 

Definition 5 (Inverse Style Frequency) The inverse style frequency ݂݅ݏ is computed as: 

  ݏ݅ ௣݂ ൌ ݃݋݈
ଵା∑ ୤୰ୣ୯ሺೞ೔	∈	ࡿ

௣,௦೔ሻ	

୤୰ୣ୯ሺ௣,௦ሻାଵ
                                                                          (5) 

where ݅ݏ ௣݂	 is the measurement of the rareness of the pattern p in all articles. 

 

The inverse style frequency aims to decrease the importance for the commonly appeared 

pattern among many styles. The traditional inverse document frequency in TF-IDF is designed 

to examine whether the pattern exist in how many styles. However, the pattern frequency in a 

style is able to be treated as the intensity of the pattern existence. This work then refines the 

inverse style frequency by introducing the pattern frequency as indicator to calculate the cross 

styles uniqueness. 

Finally, the uniqueness of each stylistic pattern could be presented by the identical 

stylistic degree as below. 
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Definition 6 (Identical Stylistic Degree) The identical stylistic degree sd is calculated as: 

    ௣,௦݀ݏ ൌ ݌ ௣݂,௦ ൈ ݏ݅ ௣݂                                                                                    (6) 

where ݀ݏ௣,௦ is the identical stylistic degree that represents the importance of the pattern ݌ to 

the style s. 

 

With the identical stylistic degree ݀ݏ௣,௦, it is able to quantify the uniqueness of each 

stylistic word pattern ݌ for a style ݏ. The stylistic pattern ݌ is then able to present in a 

vectorized form ܺ௣ = | ݀ݏ௣,௦ |, ܺ௣∈ ܴ|ࡿ|, namely stylistic pattern embeddings, where each 

component represents the identical stylistic degree ݀ݏ௣,௦ of pattern ݌ for a style ݏ. The 

flexibility of the proposed identical stylistic degree also allows the weighting schema to be 

extended when the number of styles |	ࡿ | is increased. 

5. Model Training 

In this section, we describe the classification model and the transfer learning procedure. 

5.1 Model Architecture 

Due to the well performance of Convolutional Neural Network architecture on several text 

classification tasks in the past, CARISR was based on Multi-layer ConvNet (Kim, 2014) 

architecture, as shown in the bottom of Figure 1. Consider a set of corpuses 

	ܥ ൌ 	 ሼܿଵ, ܿଶ, …	, ܿ௡, …	ܿேሽ	, where ݊	 ∈ ሾ	1, ܰሿ. Each article ܿ௡ was transformed into pattern 

degree matrix ܺ௡		 based on the stylistic pattern embedding described in previous section. 

      ܺ௡ ൌ ܺ௡	where	ሺܿ௡ሻ,ܾ݃݊݅݀݀݁݉ܧ݊ݎ݁ݐݐܽܲ	 ∈ 	ܴ௅ൈ|࡯|                            (7) 

where L denotes the parameter as the threshold for the maximum number of patterns for an 

article, and |࡯| denotes the number of categories, respectively. If the number pattern for an 

article is less than L, it will be filled with zero as pattern scores. For the sake of brevity, we 

used ܺ  to present single instance ܺ௡ . Each entry ௜ܺ,௝	 in the pattern degree matrix ܺ 

represented identical stylistic degree for pattern ݅ in category ݆, where ݅	 ∈ 	 ሾ1, ,ሿ|࡯| ݆	 ∈

	ሾ1,  .ሿܮ

X is following fed into three paths which are composed by 1-D convolutional layer with 

different filter size of 1, 3, and 8. The output is passed through a ReLU activation function 

(Nair & Hinton, 2010) that produces a feature map. A 1-D max pooling layer of size 3 is then 

applied to each feature map. 

    ܽ௜ 	ൌ ,ሺܺݒ݊݋ሺܷܿܮܴ݁	 	݁ݖ݅ݏ_ݎ݁ݐ݈݂݅ ൌ 	݅ሻሻ                                                (8) 

    ܽపෝ ൌ  ሺܽ௜ሻ݈݃݊݅݋݋ܲݔܽܯ	                                                                       (9) 
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the above two steps are simplified as following equation: 

      	ܽపෝ 	ൌ ,ሺܺ݇ܿ݋݈ܾ_ݒ݊݋ܿ ݅ሻ                                                                          (10) 

where ݅ denotes filter size. Stacked with three ܿ݇ܿ݋݈ܾ_ݒ݊݋, the results were concatenated 

together and passed through two fully connected layers of dimensions 256 and 16 in order. 

      ܽ	 ൌ ܽଵෞ⊕ ܽଷෞ⊕ ܽෞ଼                                                                              (11) 

      ݀ଵ 	ൌ ሺܷܮܴ݁ ௔ܹܽ ൅ ܾ௔ሻ                                                                      (12) 

      Classification:	ݏ	 ൌ ሺݔܽ݉ݐ݂݋ݏ ௗܹ݀ଵ ൅ ܾௗሻ                                      (13) 

where ⊕ denotes the concatenate operation, ܽపෝ  is the output of stacked block which kernel 

size is ݅. We used softmax to get the probability of each category and used cross entropy as 

loss function. In order to prevent overfitting to training data, Dropout was applied to 

convolution layers and fully connected layers. The corresponding dropout rate is 0.5 and 0.7. 

The L2 regularization is also applied in the loss function, and the coefficient is 0.05. We chose 

a batch size of 64 and trained for 12 epochs using Adam optimizer (Kingma & Ba, 2014). We 

used Keras (Chollet et al., 2015) to implement the CARISR architecture. 

5.2 Transfer Learning 

Due to the difficulty of collecting labelled sponsored reviews and self-purchased product 

reviews, a limited dataset was available to train the classifier to distinguish sponsored reviews 

from self-purchased product reviews. Inspired by the idea of transfer learning, we predicted 

that the flexibility of the proposed stylistic patterns could enable the proposed model to be 

transferable. This research thus proposes a two-stage training process to recognize sponsored 

reviews. 

In the first stage, a large amount of advertisement and product review data were collected 

as weak label data to pre-train the CARISR model. In terms of writing styles, advertisements 

are designed to highlight the features of sale products, while sponsored reviews are written in 

a manner similar to trial reviews. However, sponsored reviews are considered a special kind of 

advertisement, as they aim to both introduce the product and spotlight it. More specifically, 

both advertisements and sponsored reviews have the same objective, which is to advertise the 

product in a positive manner. In other words, the model could learn the diverse writing styles 

of advertisements in the early stages (learning from advertisement) through the weak label 

pre-trained procedure. 

In the second stage, the transfer learning concept was applied to fine-tune the pre-trained 

model with what little sponsored review data were available. Having the prior knowledge of 

the advertisement writing style, the model could more easily learn to distinguish sponsored 

reviews. To fine-tune it, the parameters of CNN blocks were fixed, and the first fully 
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connected layer in CARISR was taken as the feature vector of articles. The feature vector was 

fed into another fully connected layer to examine the transformation from feature vector to 

classification result. This approach allows CARISR to distinguish sponsored reviews from 

true product reviews. 

In this two-stage transfer learning process, the model’s feature representation improved 

thanks to pre-training with a large amount of weak label data. It learned to distinguish the 

writing style of sponsored reviews and product reviews through fine-tuning with the small 

amount of true label data available. Based on the training process, we predict that even with 

the lack of true labeled data, the model could still perform well and avoid overfitting. 

6. Experiments 

6.1 Data 

To distinguish the sponsored and product review, this research utilized the transfer learning 

concept which leveraged user reviews and advertisement articles as pre-training corpus and 

fine-tune the model with sponsored and self-purchased product reviews. For the entire training 

process, two datasets are collected and introduced below. 

The first dataset was collected from UrCosme, a famous makeup product review website 

in Taiwan, with three classes Self-purchased product review, Trial product review, and 

Advertisement, where the three classes are tagged and verified by UrCosme. It has total 

194,099 makeup reviews from 17,006 users from 2015 to 2018 June and includes 22,094 

products and 4,594 articles from 498 brands. 

The second dataset was from PIXNET, an online social blog in Taiwan, makeup 

product-related articles are collected with three classes Self-purchased product review, Trial 

product review, and the target Sponsored review. Since there are no article tags provided from 

PIXNET, several rules are defined for identifying the three classes. Firstly, the Sponsored 

review are the articles which contain the URL links with specific blogger’s identification 

tokens. To trace the web reference from which bloggers to the product web page, this kind of 

URLs are widely been used to record the number of clicks and make profits to the bloggers. 

The text content from articles with specific URLs are collected with the Sponsored review 

label. Second, based on matching the keywords, “邀稿” and “試用”, to label the Trial product 

review and other normal product reviews are labeled as Self-purchased product review. After 

categorizing the articles, we manually pick 125 articles from each category as the PIXNET 

dataset and cross valid the dataset with 5 experts. To prevent our model learned from the 

specific contents, all the clues (including URLs and keywords, tokens that have used to create 

labels) are removed in advance. 

Due to the lack of the sponsored review, the UrCosme dataset is considered as the weak 
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label dataset for the main task, the classification of sponsored and product review. The 

PIXNET dataset is treated as the ground truth dataset as it is labeled by manual efforts. The 

detail data distribution of two datasets are shown in Table 1 and Table 2. The experiment 6.3 

takes the training part of the UrCosme dataset for model pre-training but evaluates on the 

testing part of PIXNET dataset. In experiment 6.4, the completed PIXNET dataset is involved 

for evaluating the pre-training model from UrCosme dataset. For experiment 6.5, the PIXNET 

dataset is down sampled following the ratio 4:1 for fine-tuning and evaluating. 

Table 1. The data distribution of UrCosme dataset. 

 Total Training Testing 

Advertisement 9,681 9,681 2,423 

Trial product review 87,508 10,000 2,423 

Self-purchased product review 106,591 10,000 2,423 

Table 2. The data distribution of manual labeled PIXNET dataset. 

 Total 

Sponsored review 125 

Trial product review 125 

Self-purchased product review 125 

6.2 Baseline Methods 

To represent a text corpus, the term frequency-inverse document frequency (TF-IDF) has been 

widely used in several text classification tasks. It could automatically learn the important 

n-grams from the corpus and present the corpus based on the extracted important n-grams. 

Represented by the TF-IDF features, all the articles were transformed into TF-IDF feature 

vector with 2500 dimensions for the extraction of the important n-grams. 

In deep neural network (DNN) approaches, a text corpus is frequently represented by a 

sequence of the word vectors, namely word embeddings. The word embeddings could be 

either provided by a pre-trained word vectors or derived by the DNN models during the 

training procedure. In this work, a pretrained 400 dimensions word vector from YZU NLP 

Lab1, trained from traditional Mandarin Wikipedia, were applied as initialized representation 

to present the words. The word embeddings were set as trainable to be fine-tuned in the 

learning procedure. 

For the classification model, both traditional model and DNN model were applied in our 

                                                       
1 http://nlp.innobic.yzu.edu.tw/demo/word-embedding.html 
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work, which were the Logistic Regression (LR) model and the Long Short-term Memory 

(LSTM) model. The LR model learned a specific weight for each dimension of the features, 

which could provide a more interpretable explanation for analysis. For DNN models, the 

text-CNN and LSTM were applied in the experiments. The text-CNN (Kim, 2014) considers 

local word features by n-gram windows. By adopting multiple convolutional layer, model 

could summarize the local word features and representation the corpus. This work set the filter 

size of convolution layer as 3, stacked 3 convolution layers and following with 512,128 dense 

layers for feature summary. The LSTM model takes the input word sequence in a word by 

word manner and models the words relation step by step. In this work, the bi-directional 

LSTM with attention mechanism was applied which achieved several state-of-the-art 

performance for many NLP tasks. The LSTM model was connected with a 128-dimension 

fully connected layer for feature summary. For two DNN models, the categorical predictions 

were done by the Softmax activation function for feature summaries. 

6.3 Weak Label Classification Training 

In the first training stage, all of the models were trained to distinguish the three different 

classes with the UrCosme dataset as weak label pre-training for the main task, which was the 

classification of sponsored and product reviews. After the model pre-training, the testing data 

from UrCosme was applied to evaluate the pre-training performance, the results of which are 

shown in Table 3. Overall, the proposed CARISR did not have the best performance in the 

first stage of the training process compared to the TF-IDF baseline method and LSTM-based 

models. However, after analyzing the weight of the model, we observed that the baseline 

method result was easily influenced by specific keywords. An example from a real article is 

discussed below: 

 

感謝 UrCosme 與 SK-II，讓我參與「超肌因鑽光淨白精華」新品活動！ 

超肌因鑽光淨白精華 0.7ml x 28 包使用方式 

•於清潔肌膚後，先使用 SK-II 青春露調理肌質，有效提升細滑度、緊緻度、

抗皺度、白皙度、光澤度等五大美肌度。 

• 接著 ...... 乳白色精華無特別香氣，它使肌膚好吸收無黏膩，說實在的，當

每晚保養擦上精華後，我都覺得肌膚看起來變得平滑、有光澤、膚質超好的，

總覺得它有美肌般的效果！連續使用幾天，肌膚的黯沉、泛黃有改善，轉為明

亮、光澤度大大提升，真心滿意，會想買正貨！ 

Thanks for UrCosme and SK-II for inviting me to join this campaign! 

How to use SK-II Facial Treatment Essence 0.7ml * 28  
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After cleaning the face, apply SK-II Facial Treatment Essence can keep your face 

moisturized, brighten and firming. 

then… ...it makes my skin without stinging, literally, once applied the essence, it 

spreads easily and gets absorb quickly into the skin, besides, my skin felt moisturized 

without any greasy feeling. Continuing using for 2 weeks, my skin feels more 

brighten and firmer. I am really satisfied with this product and will order again once 

I run out! 

 

The example articled was a trial product review, which it was correctly classified as by the 

baseline models but was incorrectly classified as an advertisement by the CARISR model. 

Although this article was misclassified as an advertisement, the writing style of the article 

showed more similarity to an advertisement than a real review by human judgement. By 

analyzing the weight of each term in the LR model, the result showed that the model relied on 

some specific terms, such as activity (活動), satisfy (滿意), and invite (邀請). In this example, 

the model would be easily misled by malicious writers due to these specific terms. 

Based on this example, although the accuracy of the CARISR model result was lower, it 

gave greater consideration to the relation between word structures in the article as a whole. 

The following experiment shows that the CARISR model was better able to resist the 

influence of specific terms. 

Table 3. The classification result of four methods on UrCosme dataset. 

Method Avg.F1-Score Ad.F1-Score 

TF-IDF 0.79 0.97 

text-CNN 0.79 0.98 

bi-LSTM-attention 0.82 0.98 

CARISR 0.70 0.97 

6.4 Sponsored Review Testing 

The pre-trained models were evaluated with the testing data from the weak labeled UrCosme 

dataset discussed in the previous section. The pre-trained models were evaluated with the 

human-labeled dataset; that is, the reviews from PIXNET were used as testing data with the 

advertisement label in UrCosme replaced by sponsored review label. As shown in Figure 2, 

although the baseline models had better performance using the pre-trained settings, they 

performed worse than CARISR using the PIXNET dataset. More importantly, in the 

classification of sponsored reviews, baseline methods could not successfully differentiate 

sponsored reviews. This indicates that the baseline models had a good ability to learn but were 
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hampered by the overfitting issue when using the training dataset. The main reason for this 

was that the baseline methods relied heavily on specific terms as clues, which resulted in the 

models not being general enough to apply to different testing data, even data from the same 

domain dataset (in this task, both were sponsored makeup reviews). Instead, CARISR 

leveraged the stylistic patterns to keep the features of sentence structure and writing style 

rather than only specific keywords or n-grams. Therefore, even if the testing dataset was 

slightly changed, the model was still able to determine the advertisement writing style. 

In real-world sponsored reviews, malicious writers usually pretend that the advertisement 

is a self-purchased product review. Many words used in commercial reviews usually appear in 

self-purchased product reviews; therefore, it is easy for them to avoid detection if the model 

relies heavily on specific terms or baseline methods. The proposed model, CARISR, was 

better able to avoid this problem, making it more suitable to real-world situations. 

 
Figure 2. Comparison of TF-IDF, text-CNN, bi-LSTM-attention, and CARISR 
when applied to the PIXNET dataset. AVG is the average F1-score for all three 
categories, and Sponsored is the F1-score for sponsored reviews. 

6.5 Transfer Learning with Sponsored Reviews 

According to the classification results presented in the previous section, CARISR 

demonstrated the ability to recognize the latent writing styles of sponsored articles. Transfer 

learning was applied to fine-tune the DNN models to boost its performance based on a small 

number of manually collected sponsored reviews on PIXNET. One-fifth of the PIXNET 

dataset (25 samples for each class) was kept for the final testing, and the rest of the data were 

utilized for fine-tuning (100 samples for each class). Note that the TF-IDF model was 

excluded from this section, as it is not able to perform standard transfer learning based on the 
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TF-IDF and LR algorithms. The experimental result, labelled Transfer-3, is shown in Figure 3. 

All three of the tested models manifested better performance after adjusting the 

parameters using transfer learning. For three-label classification, the text-CNN, 

bi-LSTM-attention and CARISR had F1-scores of 0.21, 0.47 and 0.51, respectively. 

Furthermore, our analysis found that a large percentage of collected sponsored reviews were 

very similar to advertisements. This may be the reason why the CARISR-Trans3 did not 

perform as well as expected. 

Therefore, we conducted another experiment that only used sponsored reviews and 

self-purchased product reviews, as checked by humans, to build a binary classification model. 

As shown in Figure 3, with the application of two-category transfer learning (Transfer-2), the 

CARISR F1-score was improved to 0.70 and outperformed the bi-LSTM-attention by 0.07 

points. 

 
Figure 3. Comparison between original method and transfer learning. Transfer-3 
indicates the result of the models after fine-tuning using three categories: 
sponsored, trial product, and self-purchased product review. Transfer-2 shows the 
results of the models after fine-tuning with only sponsored and self-purchased 
product reviews. 

7. Conclusion 

This research mainly focused on quantifying the reliability problem that results from 

sponsored articles on popular Mandarin forums or websites. To address the problem with 

limited labeled data, we first proposed a framework, CARISR, that combines weak label and 

transfer learning methods. CARISR can learned implicit writing styles from weak label data, 

and it can be further improved by transfer learning with minimal amounts of manually labelled 

data. Thanks to its graph-based feature, CARISR is not only more robust, but it also has better 
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generalization compared to the traditional token-based features. Experimental results showed 

that our model can correctly recognize around 70% of sponsored articles from the 

human-labeled dataset. 

Our work provides a new perspective on and further improvement to reliability tasks. In 

the future, we plan to merge graph-based and semantic features to capture more underlying 

meaning in context. Meanwhile, the enrichment of stylistic word patterns could also improve 

model comprehension. 
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