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Abstract

We present an approach for cross-lingual
transfer of dependency parser so that the parser
trained on a single source language can more
effectively cater to diverse target languages.
In this work, we show that the cross-lingual
performance of the parsers can be enhanced
by over-generating the source language tree-
bank. For this, the source language tree-
bank is augmented with its perturbed version
in which controlled perturbation is introduced
in the parse trees by stochastically reordering
the positions of the dependents with respect
to their heads while keeping the structure of
the parse trees unchanged. This enables the
parser to capture diverse syntactic patterns in
addition to those that are found in the source
language. The resulting parser is found to
more effectively parse target languages with
different syntactic structures. With English
as the source language, our system shows an
average improvement of 6.7% and 7.7% in
terms of UAS and LAS over 29 target lan-
guages compared to the baseline single source
parser trained using unperturbed source lan-
guage treebank. This also results in significant
improvement over the transfer parser proposed
by Ahmad et al. (2019) that involves an “order-
free” parser algorithm.

1 Introduction

Cross-lingual dependency parsing involves train-
ing a dependency parser using a treebank in one
language (source language) and applying it to
parse sentences in another language (target lan-
guage). This can be used to develop parsers for
languages for which no treebank is available.

The syntactic similarity between the source and
the target languages typically plays an impor-
tant role in the success of a cross-lingual transfer
parser (Zeman and Resnik, 2008; Naseem et al.,
2012; Sggaard, 2011). A major challenge in trans-
fer parsing is to bridge the difference in the syntax

of the source and the target languages. For exam-
ple, the object usually occurs after the correspond-
ing verb in English while the verb normally occurs
at the final position in a clause in Japanese.

In order to achieve better performance of the
transfer parsers, researchers have worked on the
selection of syntactically similar source languages
for a given target language (Sggaard, 2011; Ra-
sooli and Collins, 2017; Wang and Eisner, 2016).
Attempts have also been made towards improv-
ing the performance of the transferred parsers
for a given source-target language pair by reduc-
ing the syntactic gaps between them. This is
done by transforming the source language parse
trees (Aufrant et al., 2016; Rasooli and Collins,
2019; Wang and Eisner, 2016, 2018; Das and
Sarkar, 2019) using knowledge of the typologi-
cal properties of the target language. However,
these approaches are target language specific and
may not give satisfactory results for multiple lan-
guages.

Recent work by Ahmad et al. (2019) proposed
an “order-free” parser model that comprises of a
transformer-based encoder and a graph-based de-
coder. They show that the self-attention mecha-
nism of the transformer with direction indepen-
dent position encoding used in their model gives
rise to improved performance for transfer between
distant pair of languages compared to a standard
parser model that uses an RNN based encoder and
stack pointer-based decoder.

In this paper, we propose a different approach
for enhancing the performance of a target lan-
guage independent transfer parser based on a sin-
gle source language by augmenting the treebank of
the source language without using any target lan-
guage information. For this, we add sentences ob-
tained by rearranging the original sentences in the
treebank while keeping the parse tree of the sen-
tence fixed. This can be construed as generating
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a more general treebank which may contain sen-
tences not conforming syntactically to the source
language.

Specifically, we introduce controlled perturba-
tion in the relative ordering of the head-dependent
pairs in the source language parse trees. We
stochastically alter the order of some of the head-
dependent pairs in the source language sentences
while keeping the head-dependent relations in the
parse trees intact. This perturbation reduces the
dependency of the parser on the word order in the
training sentences and makes it more robust to-
wards the variation in syntax.

We show that a stack-pointer network-based
parser model (Ma et al., 2018) trained using
this treebank results in improvement of the per-
formance of the transfer parser over a baseline
parsers trained on an unperturbed treebank. This
parser also significantly outperforms the “order-
free” parser model proposed by Ahmad et al.
(2019) model by 3.8% UAS and 4.2% LAS. We
also show that our target language independent ap-
proach gives a competitive performance with that
of a target language specific transformation ap-
proach (Das and Sarkar, 2019).

2 Related Work

Initial work on model transfer involved training
delexicalized models (Zeman and Resnik, 2008;
McDonald et al., 2013) using only language inde-
pendent non-lexical features such as PoS tags in
the source language treebanks.

Several approaches for model transfer that in-
corporate lexical features in the transfer models
have been reported in the literature. These include
use of cross-lingual word clustering (Téackstrom
et al., 2012), dictionary-based mapping of dis-
tributed word embeddings and projection-based
bi-lingual word representations (Xiao and Guo,
2014; Guo et al., 2015; Schuster et al., 2019; Ah-
mad et al., 2019).

Se¢gaard (2011) proposed an approach for se-
lecting training instances from source language
by ranking them in terms of similarity with the
target language sentences in terms of PoS tag
perplexity. Naseem et al. (2012); Téckstrom
et al. (2013); Zhang and Barzilay (2015) pre-
sented a multilingual algorithm for dependency
parsing that selectively learns the aspects (some
features listed in World Atlas of Language Struc-
tures (WALS) (Haspelmath, 2005)) of the source
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languages relevant to the target language and ties
the model parameters accordingly.

Another approach for improving the perfor-
mance of cross-lingual transfer parsers is by
transforming the source language parse trees to
match the syntax of the target language. Aufrant
et al. (2016) improves performance of the trans-
fer parsers by transforming the source language
parse trees based on the knowledge of the tar-
get language syntax derived from WALS. Das and
Sarkar (2019) also proposed a similar source lan-
guage treebank transformation method in which
knowledge of the syntax of a target language is
derived from small number annotated target lan-
guage parse trees. Wang and Eisner (2016) gener-
ated synthetic treebanks by altering the word order
of the source language treebanks using knowledge
of the distribution of the noun and verb dependents
of other real-world languages from their respec-
tive treebanks. Wang and Eisner (2018) proposed
an approach for learning an optimized permutation
parameter using the given source language tree-
bank and a gold PoS tag annotated corpus in the
target language. This parameter set is then ap-
plied to permute the source language parse trees
to approximately match the syntax of the target
language. These methods are however target lan-
guage specific and may not perform well for other
languages.

Bhat et al. (2017) have shown that training a
parser model using scrambled parse trees of sen-
tences of one domain improves performance of the
parser over a parser model trained using the origi-
nal treebank on test sentences of another domain.
They scrambled the parse trees of sentences from
newswire data and tested on conversational data.
The scrambled treebank consisted either of all pos-
sible permutations of a subset of the parse trees in
the original treebank, or, a fixed number of permu-
tations of all the parse trees, where the permuted
parse trees with the lowest perplexity assigned by
a language model are selected.

Ahmad et al. (2019) proposed a parser algo-
rithm that improves the quality of transfer parser
independent of the target language. They have
compared the performance of combinations of dif-
ferent encoder-decoder architectures. They con-
sider a bidirectional LSTM based encoder (order-
sensitive) and a transformer-based encoder (order-
free), and, two types of decoders, stack-pointer
based (order-sensitive) and a biaffine graph-based



(order-free) and have shown that overall best
cross-lingual performance of a parser across sev-
eral target languages can be achieved using the
combination of transformer-based encoder and
graph-based decoder model. This system is ex-
pected to be agnostic to the word order of the
source sentence and thus work effectively for a va-
riety of target languages.

Multi-source transfer (McDonald et al., 2011;
Rosa and Zabokrtsky, 2015) parsing approaches
combine treebanks of multiple source languages
to train cross-lingual transfer parsing models.

3 Perturbation of Source Language
Parse Trees

3.1 Parse Tree Structure based Perturbation

We now discuss the details of our stochastic per-
turbation algorithm. We call this perturbation
scheme as PTSPert. In order to introduce vari-
ation in word order in the source language parse
trees, we apply perturbation on each parse tree in
the treebank which randomly changes the relative
ordering of some head-dependent word pairs in the
sentence. For each node in the parse tree, we clas-
sify each of its dependents as either pre-dependent
or post-dependent based on whether it appears be-
fore or after its head word in the sentence. Dur-
ing perturbation, we convert a pre-dependent to
post-dependent and vice versa with some proba-
bility. The probability of altering the relative po-
sition of a dependent with respect to its head word
in a sentence is referred to as perturbation proba-
bility (P).

The PTSPert algorithm takes the original source
language parse tree T as input and returns the per-
turbed sentence as output.

For each node n in the parse tree T, we
maintain four lists: pre-modifiers list (initpre,),
post-modifiers list (initposty,), final pre-modifiers
list (finalpre,) and final post-modifiers list
(finalpost,). The pre-modifiers list and post-
modifiers list contain the pre-modifiers and post-
modifiers of the node in the same sequence as they
appear in the original sentence. The final pre-
modifiers list and final post-modifiers list are ini-
tially empty.

The steps of the PTSPert algorithm are as fol-
lows;

1. Traverse the words in the sentence from left
to right. For each word in the sentence; let w
be the node in T corresponding to the word.

(a) Traverse initpre,, from left to right. For
each dependent in the list;
i. With probability P, append the de-
pendent to finalpost,,
ii. With probability 1 — P, append the
dependent to finalpre,,.
(b) Traverse initpost,, from left to right.
For each dependent in the list;
i. With probability P, append the de-
pendent to finalpre,,
ii. With probability 1 — P, append the
dependent to finalpost,,.

The in-order traversal of the perturbed tree T
based on the finalpres and finalposts of the nodes
return the sentence with the new word-order.

Example In Figure 2 we present the perturbed
version of the sentence “Now you write your own
story”. The words whose positions have changed
after perturbation are shown in red and blue. The
final sentence after perturbation is “Now you your
story own write”.

(ob])
[amod)

Now you write your own story

(a) English sentence before perturbation

roo
obl
nsub nsubj |
f nmod poss

Now you your own story write

(b) Perturbation at “write”

obl
nsubj

Now you your story own write

(c) Perturbation at “story”

Figure 1: Perturbation on an English sentence.

After perturbation, the subtree with the word
“story” as the head becomes a pre-dependent of
the word “write”. (Figure 1b) and the adjective
“own” of “story” is converted to a post modifier.
(Figure 1c)



3.2 Alternative Perturbation Models

Perturbation or introduction of noise in data is not
new in natural language processing. It has been
used to train a system to reconstruct the original
sentence from its corrupted version (Dai and Le,
2015; Hill et al., 2016).

Artetxe et al. (2018) used a perturbation ap-
proach in unsupervised machine translation to
learn the internal structure of a language and to
reduce the dependence on the word order of the
sentences to address the differences in the source
and target languages. This was done by training
an encoder-decoder system to recover the original
sentence from its corrupted version given as input.

In this perturbation method, given a sentence of
length N, N/k random swaps are made between
the contiguous words, where k is a integer param-
eter. Artetxe et al. (2018) used £ = 2. We call this
perturbation approach SwapPert.

Some target language specific perturbation ap-
proaches extensively used in dependency parsing
are discussed in Section 2.

4 Data and Parser Model

Data We carried out our experiments using tree-
banks of 29 languages from the UD v2.2 tree-
banks. We used the language-independent UD
UPOS tags and dependency relations. We have
used the acronyms of the language names in the
rest of the paper. The full names of the languages
are listed in Appendix A.1.

Word Embeddings We have wused 300-
dimensional fasttext (Bojanowski et al., 2017)
pre-trained word embeddings for each language.
The cross-lingual word embeddings were ob-
tained by projecting the monolingual embeddings
for all the languages into the space of the English
language (Smith et al., 2017).

4.1 Parser

We have experimented with parser models with
two types of encoder-decoder based parser mod-
els. The models are as follows;

e RS: Stack-pointer-based parser model (Ma
et al., 2018) with BiLSTM RNN (Schuster
and Paliwal, 1997; Hochreiter and Schmidhu-
ber, 1997) based encoder and stack-pointer-
based decoder model (Ma et al., 2018).

e TG: Transformer (Vaswani et al., 2017)
based encoder with relative position repre-
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sentation (Shaw et al., 2018) and biaffine
graph based decoder (Dozat and Manning,
2017). This encoder-decoder combination is
due to Ahmad et al. (2019).

For our experiments, we have used the imple-
mentations of the parsers and the corresponding
hyperparameter settings by Ahmad et al. (2019).!

5 Experiments and Results

We carried out the experiments corresponding to
the different perturbation approaches under the
following settings.

SwapPert Given a sentence of length N, for
N/k perturbations, we have carried out separate
experiments with k& = 2 and k£ = 10. The stack-
pointer-based parser model (Ma et al., 2018) (RS)
was trained for this perturbation.

PTSPertRS This refers to the stack-pointer-
based parser model (Ma et al., 2018) (RS) parser
model trained using a source language treebank
augmented with its versions perturbed by PTSPert.
We experimented with different perturbation prob-
ability values (P € {0.1,0.2,0.3,0.4,0.5}).

STATtrans This refers to the stack-pointer-
based parser model (Ma et al., 2018)(RS) parser
model trained using source language treebank
transformed using statistical knowledge of target
language syntax derived from samples of 20 tar-
get language parse trees (Das and Sarkar, 2019).
For each target language, we randomly sampled
20 parse trees from combined training and devel-
opment sets. We trained separate models specific
to each target language.

5.1 Baselines

RSUnpert This refers to the stack-pointer-based
parser model (Ma et al., 2018)(RS) trained on un-
perturbed source language treebank.

TGUnpert This is the parser model comprising
of a transformer-based encoder and a graph-based
decoder (Ahmad et al., 2019) (TG) trained on un-
perturbed source language treebank.

All our experiments were repeated 5 times and
we report the average result in this paper.

'The implementation was obtained from https://
github.com/uclanlp/CrossLingualDepParser


https://github.com/uclanlp/CrossLingualDepParser
https://github.com/uclanlp/CrossLingualDepParser

PTSPertRS
TL | RSUnpert | TGUnpert (P=0.2) STATtrans
en 91.2/89.3 | 90.3/88.4 | 91.2/89.3 89.9/87.6
no 81.8/73.6 | 80.3/72.2 | 81.1/73.5 79.7/72.4
sV 82.3/74.3 | 80.9/73.1 | 82.2/74.3 82.1/74.7
fr 76.1/70.7 | 78.6/73.4 | 80.7/76.1 79.9/75.0
pt 74.6/65.8 | 77.0/68.1 | 79.1/69.8 78.9/69.4
da 77.6/68.5 | 77.1/68.4 | 78.1/69.3 76.9/68.2
es 73.4/65.1 | 74.9/66.9 | 77.4/69.1 78.1/70.3
it 80.4/75.4 | 80.6/75.4 | 83.9/79.4 84.6/79.4
hr 61.1/51.5 | 62.4/52.5 | 63.5/53.1 66.7/56.8
ca 72.1/63.1 | 73.9/65.3 | 76.0/66.9 76.2/66.5
pl 72.5/60.1 | 75.4/62.8 | 79.4/66.7 80.9/69.2
uk 60.0/52.0 | 59.8/51.6 | 62.6/53.3 63.3/55.3
sl 68.0/56.4 | 68.6/56.6 | 68.8/56.9 69.5/57.4
bg 79.6/68.0 | 80.1/68.7 | 79.6/68.6 80.5/69.4
ru 61.2/52.2 | 61.4/51.9 | 62.8/53.1 64.4/55.3
de 69.2/59.3 | 72.0/62.1 | 77.1/68.5 78.6/69.7
he 56.4/45.0 | 55.9/46.9 | 56.6/48.2 58.2/50.6
cs 62.6/52.9 | 63.3/54.0 | 64.8/54.3 63.3/54.1
10 61.9/50.6 | 66.3/55.1 | 67.8/56.3 69.9/59.3
sk 66.6/57.5 | 67.5/58.9 | 69.4/59.2 69.6/60.3
id 46.6/41.2 | 49.5/43.6 | 55.0/47.8 57.8/50.2
fi 66.4/49.0 | 66.6/48.6 | 66.0/48.6 66.5/49.2
et 64.6/44.1 | 66.0/45.9 | 64.1/44.9 67.1/47.6
zh* | 41.3/24.2 | 40.3/24.0 | 41.9/24.1 44.8/28.4
ar 33.7/25.8 | 38.2/28.2 | 43.3/33.6 44.2/35.3
la 44.7/32.1 | 48.0/35.2 | 51.3/37.1 54.4/39.8
ko 33.6/14.4 | 34.2/16.7 | 33.9/16.4 39.3/21.5
hi 26.6/18.4 | 35.0/26.5 | 45.0/35.9 69.9/55.9
ja 15.0/9.3 27.2/19.4 | 38.8/30.7 60.8/46.8
Avg | 62.1/52.0 | 63.8/53.8 | 66.3/56.1 68.8/58.5

Table 1: UAS%/LAS% corresponding to different per-
turbation methods on the target languages. **’ indicates
the results corresponding to the delexicalized models.
The underlined entries indicate the cases where STAT-
trans performs better than PTSPertRS

5.2 Results with English as Source Language

Evaluation Metric We report the results of our
experiments in terms of unlabeled attachment
score (UAS) and labelled attachment score (LAS)
excluding punctuation and symbols.

In Table 1 we report the performance of the
RSUnpert, TGUnpert and PTSPertRS (P = 0.2)
and STATtrans on 29 target languages with En-
glish as the source language. The target languages
are ordered according to their typological similar-
ity with the English language based on the metric
given by Ahmad et al. (2019). For the Chinese (zh)
and Japanese (ja) languages, we report the results
of the delexicalized transfer parsers for a fair com-
parison with the baseline. The best performance
for PTSPertRS was achieved at P=0.2.

We observe that perturbation results in an over-
all improvement in the performance of the cross-
lingual transfer parsers. Our proposed approach
(PTSPertRS) performs better than the RSUnpert
baseline parser in case of 24 out of 29 target lan-
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guages. It improves cross-lingual performance of
the transferred parser by 6.69% and 7.74% in
terms UAS and LAS respectively. PTSPertRS also
performs better than TGUnpert in case of 25 out of
29 target languages and improves average scores
by 3.8%UAS and 4.2%LAS.

We also observe that although the PTSPertRS
is a target language independent approach it gives
better performance than S7ATtrans in case of 7
languages out of 29 target language. Furthermore,
the parser model with transformer-based-encoder
and graph-based-decoder (TG) trained using the
treebank perturbed by PTSPert also performs bet-
ter than TGUnpert and RSUnpert. However, it per-
forms slightly worse than PTSPertRS.

In Table 2 we summarize the performance of
the different approaches discussed in this paper in
terms of UAS% and LAS% averaged over all 29
target languages with English as the source lan-
guage. We observe that for different values of
perturbation probability, PTSPertRS outperforms
RSUnpert, TGUnpert and SwapPert. We also ob-
serve that SwapPert performs slightly better than
RSUnpert for £ = 10.

Consider the following German sentence (DE) and
its English gloss (EN).

DE: “Ich kann diese Tauch schule jeden
empfehlen”

EN: I recommend this driving school to everyone.
This is parsed by a transfer parser trained on
English. The words and relations indicated in red
show the errors by RSUnpert parser. The error
is possibly because the verb empfehlen occurs
at the end and after the object (Tauchschule),
whereas the verbs occur before the objects in
most English sentences. It is observed that the
PTSPert parser correctly parses the sentence. This
may have been made possible by perturbation
of the source treebank resulting in instances of
verb-final occurrences in the augmented treebank.

5.2.1 Dependency Relation-wise Analysis

In Table 3 we compare the labelled accuracies of
PTSPertRS (P = 0.2) with RSUnpert and TGUn-
pert corresponding to 18 most frequent depen-
dency relations averaged across all the 29 target
languages. We observe that PTSPertRS performs
better than RSUnpert and TGUnpert in terms of
the case, nmod, nsubj, amod, obl, advmod, acl,
obj, aux, mark and cc relations.

However, PTSPertRS performs worse than ei-
ther RSUnpert or TGUnpert in terms of the advcl,



RSUnpert | TGUnpert PTSPert SwapPert STATtrans
0.1 02 | 03 04 1 05 | N/2 | N/10
UAS 62.1 63.8 65.8 | 66.2 | 66.1 | 66.1 | 648 | 59.7 | 63.6 68.7
LAS 52.0 53.8 55.7 | 56.1 | 55.6 | 55.6 | 54.4 | 493 | 53.7 58.4

Table 2: Comparison of average performance of different transfer approaches.

Ich kann diese Tauchschule jeden empfehlen

(a) Parser output of PTSPertRS model

nsubj
1C0P;
[ (der)

Ich kann diese Tauchschule Jeden empfehlen

(b) Parser output of RSUnpert model

Figure 2: Parses of a German sentence.

det, cop, nummod, compound, xcomp and flat re-
lations. We note that the group of words related
by compound, fixed and flat relations are usually
arranged sequentially in a sentence and the de-
pendents with appos relation always follow their
respective heads. Thus perturbation with respect
to these relations negatively affects the perfor-
mance of the parsers. Furthermore, TGUnpert per-
forms better than the PTSPertRS model in terms
of the det, nummod, cop, iobj and appos relations.
We observed that the dependents with cop, num-
mod and det relations appears before their head
words in English. In case of the languages in
which the copulas, determiners and numeric modi-
fiers predominantly appears after their head words,
the PTSPertRS shows an overall improvement of
17.25%, 4.14% and 50.0% respectively over the
TGUnpert model. However, it loses out in terms
of average accuracy in case of the other languages
by 4.32%, 1.06% and 4.28% respectively. Since
these relations appear before their respective heads
in majority of the languages which includes En-
glish, the overall accuracy is less in terms of these
relations.

For a dependency relation, we call probability
of the dependents occurring before their heads in
a language as the precedence probability of that
relation in that language. The precedence proba-
bility of a relation in a language is measured by the
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Figure 3: The blue and the red lines indicate the gain
in LAS by PTSPertRS and TGUnpert over RSUnpert
respectively. The black line indicates the precedence
probabilities of the dependency relations in the lan-
guage. The languages are sorted on the precedence
probabilities from low to high. RS: RSUnpert, TG:
TGUnpert, PTS: PTSPertRS

ratio of the number of times the dependents with
that relation appear before their heads and the total
number of times the relation occurs in the data.

In our experiments, the precedence probabilities



RSU- | TGU- PTSPert-

Dep Rel npert | npert | RS (P=0.2)
case 69.2 72.0 75.6
nmod 26.2 27.2 29.0
nsubj 52.5 51.2 56.6
amod 74.1 78.7 794
obl 40.8 38.8 47.3
advmod 63.2 60.7 63.7
obj 46.0 46.1 48.8
aux 59.5 72.4 78.9
mark 62.3 61.7 63.5
cc 71.3 71.1 71.9
acl 23.6 21.5 24.8
advcl 32.5 29.5 32.2
det 79.3 86.2 82.5
cop 57.4 61.6 60.1
nummod 65.3 68.1 67.7
compound | 36.5 34.7 33.2
xcomp 34.9 39.5 34.9
flat 34.9 35.6 35.1

Table 3: Dependency-wise average accuracies of

RSUnpert, TGUnpert and PTSPertRS (P=0.2).

of the relations in the source and target languages
are estimated from the corresponding training and
test sets respectively. Note that we have used these
estimates for analysis of the results only.

In Figure 3 we compare the gain in LAS of
PTSPertRS over RSUnpert parser corresponding
to 4 different dependency relations over all the
target languages. The dependency relations are
chosen such that two are short distance relations
(intra-phrase): case and auxiliary and two are rela-
tively long-distance relations (inter-phrase): nsubj
and obl.

For all the four dependency relations, we ob-
serve that the gains in performance of PTSPertRS
over TGUnpert increases with the increase in the
difference of precedence probability of the rela-
tions in the languages from that of English.

We also observe significant improvement in
the performance of the PTSPertRS parsers over
TGUnpert in case of the nsubj and obl for most of
the language. Only in case of fi and ko languages,
both RSUnpert and TGUnpert perform better than
PTSPertRS in terms of the nsubj relation.

Itis also observed that PTSPertRS performs sig-
nificantly better than RSUnpert and TGUnpert in
terms of the aux and case relations for the lan-
guages in which the precedence probabilities of
the relations are different from that of English.

5.2.2 PTSPertRS with Variable Perturbation
Probability Values

The results on PTSPertRS discussed above corre-
spond to a single perturbation probability value
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applied on all the dependency relations. How-
ever, we observed that the best accuracies corre-
sponding to different dependency relations were
achieved at different P values. Thus we hypoth-
esize that perturbing the dependents of different
dependency relations by different amounts might
be more helpful. We try to get an estimate of the
perturbation probabilities corresponding different
dependency relations from the performance of the
PTSPertRS models trained using augmented tree-
banks perturbed with different perturbation prob-
ability values on the test set of a small number of
languages. For this, we selected a random subset
of 9 languages from the 29 languages. The 9 ref-
erence languages are es, sl, he, id, sv, de, et, ar and
hi.

The steps for obtaining the probability value
corresponding to a dependency relation are as fol-
lows;

e Corresponding to each P value in
{0.0,0.1,0.2,0.3,0,4,0.5}, we find the
average accuracy for the dependency relation
over the 9 languages.

e We take the P value for the dependency re-
lation for which the highest average accuracy
is observed.

In Table 4 we present the perturbation prob-
ability values used for the different dependency

relations. We apply these perturbation prob-
Dep Rels Pert Prob
appos, parataxis, goeswith,flat,
discourse, list, iobj,expl 0.0
det, cop, acl, advcl,
mark, cc, compound 0.1
aux, ccomp, amod, obl,
nummod, advmod, acl 0.2
nsubj, nmod, discourse, vocative 0.3
obj 0.4
case, csubj 0.5

Table 4: Perturbation probability values corresponding
to the different dependency relations.

ability values corresponding to the different de-
pendency relations to perturb the source language
parse trees.

In Table 5 we present the performances of
TGUnpert, RSUnpert, PTSPertRS with fixed P
values and the PTSPertRS with variable P val-
ues averaged over all the 9 reference languages,
29 target languages and the 20 held-out languages
respectively. On the set of the held-out 20 target



PTS-

PTS- | Pert

No. of RSU- | TGU- | Pert | (Var
languages npert | npert | (0.2) p)

9 reference | UAS | 57.9 60.1 63.3 | 64.7
languages LAS | 47.7 50.0 532 | 55.1

20 held-out | UAS | 64.0 65.5 67.6 | 68.6

languages LAS | 539 55.5 574 | 58.6

29 target UAS | 62.1 62.7 66.3 | 674
languages LAS | 52.0 52.5 56.1 | 57.5

Table 5: Average %UAS/%LAS over different sets of
target languages for RSUnpert, TGUnpert, PTSPertRS
(P=0.2) and PTSPertRS with variable P.

languages, we observe an improvement of 1.6%
UAS and 2.16% LAS over the best single pertur-
bation probability value of (P = 0.2) on the 20
languages. On the set of all the 29 languages also,
this perturbation approach results in an overall im-
provement of 1.66% UAS and 2.49% LAS over
the best single perturbation value (P = 0.2).

5.3 Results with Hindi as Source Language

We report here a summary of the results for Hindi
as the source language. The variable perturbation
probability values were derived from the following
languages: es, si, he, id, sv, de, et, ar and en.

In Table 6 we present the results corresponding
to the different transfer approaches averaged over
29 target languages. We observe that PTSPertRS
with different values of P outperform RSUnpert
and TGUnpert. The best PTSPertRS result is
achieved at P=0.3. PTSPertRS with variable P
values also performs better than fixed P values.
We observe that PTSPert with P=0.3 and variable
P performs better than RSUnpert and TGUnpert
for 27 out of 29 languages except ko and ja. We
observe that ko and ja are syntactically quite close
to Hindi and hence a parser model trained on un-
perturbed treebanks perform better than their per-
turbed versions.

In Table 7 we compare the performance of
RSUnpert, TGUnpert, PTSPertRS with the P =
0.3 and PTSPertRS with variable P value aver-
aged over all the 9 reference languages, 29 target
languages and the 20 held-out languages respec-
tively. We observe that PTSPertRS with variable
P values gives the best results.

In Table 8 we report the average performance of
RSUnpert, TGUnpert, PTSPertRS with the P =
0.3 and PTSPertRS with variable P values on
Tamil (ta), Telugu (te), Urdu (ur) and Marathi (mr)
languages for which treebanks are available in UD
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We observe that on an average over the four
Indian languages, the best UAS and LAS scores
are achieved for RSUnpert and TGUnpert respec-
tively. Since the distribution of the dependents
with respect to their heads for different depen-
dency relations in the Indian languages are similar
to that of Hindi, the best results are obtained for
the parsers trained using unperturbed source tree-
bank. This observation is in coherence with the re-
sults in English and Hindi where RSUnpert trained
on unperturbed treebanks yield better results than
PTSPert for the languages syntactically similar to
the corresponding sources languages i.e. no and sv
for English and ko and ja for Hindi.

5.4 Performance over Other Source
Languages

We show that our perturbation approach enhances
the performance of the “order-free” model pro-
posed by Ahmad et al. (2019) for most of the 29
source languages. For this, we trained the parser
model with transformer-based encoder and graph-
based decoder using both unperturbed source lan-
guage treebanks and PTSPert treebanks perturbed
using P=0.1. The performance of the model
trained using unperturbed treebank is taken as
baseline. Following Ahmad et al. (2019), we
trained the models using the first 4000 parse trees
of each of the source language treebanks.
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Figure 4: The red curve indicates average improve-
ment over baseline for a language as source. The blue
curve and the right y-axis indicates the average distance
of a language from the rest.

In Figure 4, for each language as a source, we
show the average improvement over all the tar-
get languages in cross-lingual performance of the
parser trained using perturbed treebank. The lan-
guages are sorted according to their average syn-
tactic distance from the other languages.

We observe that perturbation improves the av-
erage performance of the transfer parsers for the



RSUnpert | TGUnpert PTSPertRS
0.1 02 ] 03] 04 ] 05 ] VarP
UAS 36.2 40.6 499 | 523 | 529 | 52.7 | 52.7 | 54.0
LAS 26.1 30.2 37.7 | 39.6 | 399 | 394 | 39.7 | 41.2

Table 6: Average UAS%/LAS% of different transfer parser approaches with Hindi as the source language.

PTS-

PTS- | Pert

No. of RSU- | TGU- | Pert | (Var.
langs npert | npert | (0.3) P)

9 reference | UAS | 31.8 36.7 50.8 | 52.4

languages LAS | 224 27.1 377 | 39.6

20 held-out | UAS | 38.2 423 53.8 | 54.7

languages LAS | 2738 31.6 40.8 | 42.0

29 target UAS | 36.2 40.5 529 | 54.0

languages LAS | 26.1 30.2 39.9 | 41.2

Table 7: Average %UAS/%LAS over different sets of
target languages for different parsing approaches with
Hindi as source language.

PTS-
PTS- | Pert
RSU- | TGU- | Pert | (Var
npert | npert | (0.3) P)
UAS | 759 74.9 739 | 744
LAS | 55.6 55.9 548 | 555

Table 8:  Average %UAS/%LAS over ta, te, mr
AND ur for different parsing approaches with Hindi
as source language.

source languages except pt, sk and ca. The Pear-
son correlation coefficient of the average improve-
ments with the languages as source with respect
to the average distance from other languages is
0.82 indicating that the improvement due to per-
turbation is strongly correlated with the average
distance from the target languages.

6 Conclusion

In this paper propose an approach for introduc-
ing perturbation in the source language treebank
to improve single source target language indepen-
dent cross-lingual transfer parsing. We show that
this approach indeed helps to improve the per-
formance of the transferred parsers over models
trained using only source language treebanks.
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A Appendices

A.1 Language Name Abbreviations

en - English, no - Norwegian, sv - Swedish, fr -
French, pt - Portuguese, da - Danish, es - Spanish,
it - Italian, hr - Croatian, ca - Catalan, pl - Polish,
uk - Ukranian, sl - Slovenian, bg - Bulgarian, ru
- Russian, de - German, he - Hebrew, cs - Czech,
ro - Romanian, sk - Slovak, id - Indonesian, fi -
Finnish, et - Estonian, zh - Chinese, ar - Arabic, la
- Latin, ko - Korean, hi - Hindi, ja - Japanese.
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