
D M Sharma, P Bhattacharyya and R Sangal. Proc. of the 16th Intl. Conference on Natural Language Processing, pages 124–129
Hyderabad, India, December 2019. ©2019 NLP Association of India (NLPAI)

124

Abstract

India is one of unique countries in the

world that has the legacy of diversity of

languages. English influence most of these

languages. This causes a large presence of

code-mixed text in social media. Enormous

presence of this code-mixed text provides

an important research area for Natural

Language Processing (NLP). This paper

proposes a novel Attention based deep

learning technique for Sentiment

Classification on Code-Mixed Text

(ACCMT) of Hindi-English. The proposed

architecture uses fusion of character and

word features. Non-availability of suitable

word embedding to represent these Code-

Mixed texts is another important hurdle for

this league of NLP tasks. This paper also

proposes a novel technique for preparing

word embedding of Code-Mixed text. This

embedding is prepared with two separately

trained word embeddings on romanized

Hindi and English respectively. This

embedding is further used in the proposed

deep learning based architecture for robust

classification. The Proposed technique

achieves 71.97% accuracy, which exceeds

the baseline accuracy.

1 Introduction

Languages used in India belong to several

language families. Historical presence of British

on Indian soil has led to a very high influence of

English language on many of these Indian

languages. People belonging in a multi-lingual

society of India, gives rise of a large amount of text

in various social media (Patra, 2018). Inclusion of

English is very common in these texts. Essentially,

an utterance in which a user makes use of grammar,

1https://en.wikipedia.org/wiki/List_of_languages_by_number

_of_native_speakers_in_India

lexicon or other linguistic units of more than one

language is said to have undergone code-mixing

(Chanda, 2016). Hindi is the widely spoken

language of India and used in various media. The

number of native Hindi speakers is about 25% of

the total Indian population; however, including

dialects of Hindi termed as Hindi languages, the

total is around 44% of Indians, mostly accounted

from the states falling under the Hindi belt1. This

community contributes a large amount of text on

social media. The form of Hindi language used in

Social Media is mixed with English and are

available in roman scripts. According to the study

(Dey, 2014) most common reason for this kind of

code mixing in a single text is ‘Ease of Use’. The

code-mixed Hindi and English language poses

various types of challenges (Barman, 2014), which

makes the text classification task on code-mixed

text, an exciting problem in NLP Community.

Despite a wide research on classification of code

mixed texts, there remains open opportunities with

two major aspects; first technique of preparing

word embedding on Code-Mixed texts and second

utilization of character and word features together

to improve the accuracy. This research targets these

two open points for exploration.

2 Related Work

Various research works have tried to tackle these

challenges. Recent work of Prabhu (2016) utilizes

character level LSTMs to learn sub word level

information of social media text. Then this

information is used to classify the sentences using

an annotated corpus. The work is very interesting

and achieves good accuracy. However the work

does not intend to capture the information related

to word level semantics. This provides a further

scope of research to study the impact of word

Robust Deep Learning Based Sentiment Classification of Code-Mixed Text

Siddhartha Mukherjee, Vinuthkumar Prasan, Anish Nediyanchath, Manan Shah, Nikhil Kumar

Samsung R&D Institute India, Bangalore

{siddhartha.m, vinuth, anish.n, mp.shah, nik.kumar} @samsung.com

https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers_in_India
https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers_in_India

125

embedding based approach on classification of

code-mixed text. Sharma (2015) used an approach

of lexicon lookup for text normalization and

sentiment analysis on Code-Mixed text. Pravalika

(2017) used lexicon lookup approach for domain

specific sentiment analysis. These lexicon lookup

based approaches lack capability to handle

misspelled words and wide variety of these code

mixed texts. Recent work (Lal, 2019) have used

BiLSTM based dual encoder networks to represent

the character based input and additional feature

network to achieve good accuracy on code-mixed

texts. Recent work (Yenigalla, 2018) has explored

the opportunity of using both character and word

embedding based feature to handle unknown

words for text classification on monolingual

English only text corpora. However, this approach

is not common for Code-Mixed text, primarily

because of the non-availability of word embedding

for the Code-Mixed texts.

3 Dataset

We have considered Hi-En Code-Mixed dataset2,

shared by Prabhu (2016) as a baseline for this

research.

3.1 Description

The dataset was collected from public Facebook

pages of famous Indian personalities i.e. Salman

Khan and Narendra Modi. The data is present in

Roman script. The dataset contains 3879

comments. Each data is annotated with a 3-level of

polarity scale i.e. Positive, Neutral and Negative.

The dataset contains 15% negative, 50% neutral

and 35% positive. Table 1 shows some example of

code-mixed texts dataset.

Example Approx. meaning

in English

Polarity

Sir yeh tho sirf aap

hi kar sakte hai.

Great sir

Sir only you can do

it. Great Sir
Positive

Kuch nahi karoge

tum india ke liye

You won’t do

anything for India
Negative

Humari sabhayata

humari pehchaan ...

Our civilization is

our identity
Neutral

Table 1: Example from Hi-En Code-Mixed dataset.

2 https://github.com/DrImpossible/Sub-word-LSTM

3.2 Challenges

Transliteration of phonetic languages, like Hindi,

into roman script creates several variations of the

same word. For example, “बहुत” in Hindi which

means “more” in English can be transliterated as

“bahut”, “bohoot” or “bohut” etc.

The Romanized Code-Mixed text, available on

social media imposes additional challenges of

contraction of phrases. For example, ‘awsm’ is

shortened form of ‘awesome’; ‘a6a’ is contracted

from ‘accha’ etc. Romanized code-mixed text also

contain sentences with non-grammatical constructs

like ‘Bhai jaan bolu naa.. yar’ as well as non-

standard spelling such as ‘youuuu’, ‘jaaaaan’ etc.

The phonetic similarity of various words across

participant languages in the Code-Mixed text

increases the challenge by introducing

disambiguation for meaning of a word. For

example, “man” in English means ‘an adult human

male’ where as in Hindi it means ‘mind’.

Large availability of clean corpora has given a rise

in various kinds of research for Mono-lingual texts

like English. On the other hand, the limited

availability of clean & standard Code-Mixed

corpus restricts wide spectrum of experiments,

which depends on word-embedding based input.

3.3 Character Set

The dataset is cleaned of any special characters for

this research. Final character set is of 36 characters

including 26 English letters and 10 numbers. Final

character set is:

abcdefghijklmnopqrstuvwxyz0123456789

4 Proposed Method

The proposed method consists of two major parts.

First one is preparing a suitable word-embedding

of code-mixed text and later one is a robust deep

learning architecture for classification on code-

mixed text.

4.1 Word-Embedding

There are three main aspects for preparing word

embedding for Hindi-English Code-Mixed Texts.

First is preparation of a corpus of Hindi Romanized

text. Second one is preparing word embedding by

choosing a right algorithm of word embedding.

https://github.com/DrImpossible/Sub-word-LSTM

126

Third, is to ensure that words from both participant

languages which are similar has nearby

representation. To address the first aspect, we use

Indic transliteration3 on large Hindi-English

corpus4 where the Hindi text is present in

Devanagari5 script also contains English content.

In this way, we achieve the Hindi-English Code-

Mixed corpus in Roman Scripts. Figure 1 depicts

the process of generating the desired corpus.

Figure 1: Corpus Preparation for Hi-En

Code-mixed Text in Roman Script.

We hypothesize that the transliterated corpus

represents a new language of Romanized Hindi. As

discussed earlier there are various challenges of

Romanized representation of Code-Mixed text

such as presence multiple homo-phonic

representations of a single word etc., so we have

chosen fastText (Bojanowski, 2017) word

representation as best method to train word

embedding. This addresses the second aspect of

previously discussed task of preparing word

embedding. Once the corpus is generated, we have

trained word embedding with fastText6. This

trained embedding is capable of providing the

vectorized representation of a Romanized Hindi

word. On the other side, an utterance in the Code-

Mixed corpus also contains English words as well.

For example, the 1st utterance in the Table 1

contains two phrases, where 1st phrase contains the

Romanized Hindi words and the 2nd phrase

contains English words. This is the third and final

aspect, discussed as a part of task of word

embedding. Now to represent such an utterance

using word embedding, we need the bi-lingual

word embedding which include Romanized Hindi

and English words as well. To cater to this

requirement, we have used the proposed method

(Smith, 2017) to represent bi-lingual

representation of word from two monolingual

representations. SVD is used to learn a linear

transformation (a matrix), which aligns

monolingual vectors from two languages in a

single vector space7. In this experiment, we

3 https://github.com/sanskrit-coders/indic_transliteration
4 https://www.kaggle.com/pk13055/code-mixed-hindienglish-

dataset
5 https://en.wikipedia.org/wiki/Devanagari

considered two monolingual word embedding(s).

First is the trained word embedding of Romanized

Hindi. Second one is the pre-trained & published8

English word-embedding (Mikolov, 2018), which

is trained on Wikipedia corpus.

4.2 Model Architecture

We prepare Attention based deep learning

architecture for Classification of Code-Mixed

Text (ACCMT) which uses learning from both

character and word based representation. The

proposed architecture consists of two major parts.

The first part learns the sub-word level features

from input character sequences. The other parts

uses prepared word embedding as input and learn

the word level features.

The first part is similar as the baseline

implementation Prabhu (2016), which is inspired

by research work of Kim (2016). This part is

independent of word vocabulary, which helps to

resolve important issues in code mixed text like

non-standard spelling, phrasal contraction etc.

6 https://fasttext.cc/docs/en/python-module.html
7 https://github.com/Babylonpartners/fastText_multilingual
8 https://fasttext.cc/docs/en/pretrained-vectors.html

Transliteration
हिन्दी

(Devanagari) &

English Code-

Mixed Corpus

Hi-En (Roman)

Code-Mixed

Corpus

Character

Embedding

Convolution 1D

Max pool

LSTM

LSTM

LSTM

LSTM

Word

Embedding

Concatenation

128 Dim

Filter Len = 3

Pool Len = 3

300 Dim

300 Dim

300 Dim 128 Dim

128 Dim

Softmax 3 Classes

Prediction

Attention Attention

Dense (relu) 512 Dim

128 Dim

Attention

Dense (relu)

Figure 2: Attention based deep learning

architecture for Classification of Code-Mixed

Text (ACCMT)

https://github.com/sanskrit-coders/indic_transliteration
https://www.kaggle.com/pk13055/code-mixed-hindienglish-dataset
https://www.kaggle.com/pk13055/code-mixed-hindienglish-dataset
https://en.wikipedia.org/wiki/Devanagari
https://fasttext.cc/docs/en/python-module.html
https://github.com/Babylonpartners/fastText_multilingual
https://fasttext.cc/docs/en/pretrained-vectors.html

127

Even though this representation lack word level

semantic interpretability, the assumption is that

character n-gram serve semantic functions e.g.

‘cat+s=cats’.

Formally a Sentence S is made of sequence of

characters [𝑐1, … , 𝑐𝑙]where 𝑙 is sentence length.

𝑄 ∈ ℝ𝑑 × 𝑙
 is the representation of sentence where

𝑑 being the dimension of character embedding. We

perform the convolution of 𝑄 with filter 𝐻 ∈

ℝ𝑑 × 𝑚
 of length m. This operation provides a

feature map 𝑓 ∈ ℝ𝑙−𝑚+1
. Convolution is shown

with ‘∗’ Operator in equation 1.

𝑓 = 𝑄 ∗ 𝐻 (1)

Next max-pool operation of p features from f

brings sub-word representation y.

𝑎𝑡 = 𝜏0 × tanh(𝜏𝑢𝐶𝑡 ̃ + 𝜏𝑓𝐶𝑡−1 ̃)

𝑊ℎ𝑒𝑟𝑒, 𝐶𝑡 ̃ = tanh(𝑊𝑐[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑐)

 𝜏𝑜 = σ(𝑊𝑜[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑜)

𝜏𝑢 = σ(𝑊𝑢[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑢)

 𝜏𝑓 = 𝜎(𝑊𝑓[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑓) (2)

Here 𝑦𝑡 represents the input at current timestamp.

Output from LSTM is 𝑎𝑡at time 𝑡. 𝜏𝑜, 𝜏𝑢, 𝜏𝑓 are

respectively the output, input and forget gates of

LSTM cell. 𝐶𝑡 ̃is the cell state at time 𝑡.

The second part is designed with intention to

capture features for the word level semantic

representation to counter the limitation of previous

part of the architecture. For this purpose LSTM is

used as well, because LSTM has performed very

well (Bhasin, 2019; Tang, 2015) in various

sentiment analysis and other text processing tasks.

Formally a Sentence 𝑆 is made of sequence of

words [𝑝1, … , 𝑝𝑙] where 𝑙 is word length of 𝑆. 𝑄 ∈

ℝ𝑑 × 𝑙
 is the representation of sentence where d

being the dimension of word embedding. Now 𝑝𝑡,

word at time 𝑡 is passed to memory cell of LSTM

and the output follows similar of equation (2).

We have introduced two separate attention layers

over the LSTM output of Character based side and

Word based side respectively. The intention of

applying the attention is to infer the dominating

features from character representation as well as

word representation respectively. We have used

9 https://pypi.org/project/keras-self-attention/

self attention (Vaswani, 2017) for our

implementation9. Formally, the attention can be

depicted as equation (3).

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 𝑑𝑘⁄) (3)

The 𝑄, 𝐾 & 𝑉 is same and that is the output of the

previous layer. The final output after attention of

sub-word level representation through character

embedding part and learnt features from the word

embedding part are concatenated as late fusion to

feature represent of the input sentence. The joint

feature is passed through another attention layer.

This layer is intend to figure out the dominating

learnt feature among word and character based

learnt features. Following this layer, we add two

consecutive fully connected layers with ReLU

non-linearity. The final output of the last dense

layer is passed through a Softmax layer to predict

the sentiment.

Formally late fusion of learnt character features 𝑓𝑐

& word features 𝑓𝑤 is 𝑓s = (𝑓𝑐 , 𝑓𝑤) to represent

jointly learnt features of sentence S. Then s is input

to dense layers with 𝑔 as ReLU non-linearity.

Output 𝑎1 is passed through second dense layer to

get output a2.

 𝑎1 = 𝑔(𝑊1 × 𝑓𝑠 + 𝑏1)

𝑎2 = 𝑔(𝑊2 × 𝑎1 + 𝑏2) (4)

Further, final layer is formalized as equation 5.

𝜎 = 𝑒𝑎2 ∑ 𝑒𝑎2
𝑖⁄ (5)

5 Experimental Setup

This research used Keras on python for all required

implementations. The baseline dataset is divided

into 3 splits i.e. training, validation and testing.

Initially the dataset is randomly divided into 80-20

train-test split. Further train is randomly divided

into 90-10 train-validation unlike the baseline

implementation which splits 80-20 as train-

validation. The results are reported over the test

split here.

We have experimented with various possible

values of hyper parameters and the best set of

hyper parameters is shown in the Fig 2. As

discussed earlier first part of the architecture is

meant for character based input. Here a single

https://pypi.org/project/keras-self-attention/

128

sentence is considered to be of sequence of 200

characters. Characters beyond 200 are ignored for

sentence having more than 200 characters. A

sentence with less than 200 characters is zero

padded. Point need to mention is that we have

considered space also as valid character input. For

the second part of the network we have use word

embedding of different dimensions for example

100, 200 and 300. However it achieved best

accuracy with 300 dimensional word-embedding.

While training the fastText Word-Embedding,

‘minn’ & ‘maxn’ parameters were set to 2 and 10

respectively. For word based input, a sentence of

length 40 words is considered. A sentence with

lesser than 40 words is zero embedding padded

whereas words beyond 40 are ignored if sentence

is having more than 40 words. Also we empirically

found that having two stacked LSTM layers

similar to Prabhu (2016) gave optimal

performance.

We have used default Keras implementations of

Categorical Cross Entropy for loss functions in

different experiments. Available implementation of

Focal Loss10 is used during few experiments. The

intention of apply focal loss (Lin, 2017) is to check

the robustness of the proposed ACCMT

architecture with respect to different loss function.

Of late Focal Loss has migrated from Object

Detection to various other tasks, for example

speech emotion recognition Tripathi (2019) etc.

We wanted to experiment and capture the impact

of Focal Loss on Classification of Code-Mixed

text. Default Keras implementation for adam

optimizer is used for experiments. On the other

hand learning rate of 0.0008 and a decay of

0.000012 is set for RMS Prop in various set of

experiments. Dropout at Character-LSTM part is

set to 0.2 and Word-LSTM is set to 0.4, where as

the dropout of dense layers are set to 0.4. We have

used the available implementation of attention

layer in our code for model architecture.

The model is trained over 50 epochs and batch size

of 64 with 10-fold cross-validation. During each

fold, the best model is picked based on validation

accuracy. The experiments are conducted in the

Anaconda environment on a machine with Intel

Core i5 processor and NVIDIA processor for GPU

acceleration, 16 GB of RAM and a 1 TB of HDD

with Windows 10 Operating System. The 50

10 https://github.com/mkocabas/focal-loss-keras

epochs of training of ACCMT takes 25 minutes in

average.

6 Results and Analysis

We have conducted all experiments in the

computing environment mentioned in above

section. In the same environment, the

implementation of Prabhu (2016) attained

maximum accuracy of 66.29% across 5 different

executions. Whereas the best performance of

ACCMT is 71.97% exceeds the baseline

performance by 5.68% in the same computing

environment. To understand the impact of attention

on the classification of code-mixed text, we have

also experimented without attention. We have

removed three attention layers from the ACCMT

and created a deep learning architecture which uses

only fusion of character and word features. This

architecture showed a maximum of 69.845%

accuracy on the same dataset. This implies that

attention has improved accuracy with 2.125%. We

also compared against Yenigalla (2018) which

gave an accuracy of 64.3%. Table 2 showed the

accuracy and F1 score of all experiments.

Experiments
Results

Accuracy F1

Yenigalla (2018) 64.3% 62.2

ACCMT

(adamax + Focal Loss)
70.10% 68.1

ACCMT

(RMS prop + categorical

cross entropy)

69.75% 67.5

ACCMT (adamax +

categorical cross entropy)
71.97% 70.93

ACCMT (RMS Prop +

Focal Loss)
70.32% 68.71

Table 2: Results of ACCMT on Hi-En Code Mixed

dataset with different loss-function and initializers.

7 Conclusion

This paper shows the architecture of attention

based deep learning architecture (ACCMT) which

does fusion of character and word feature to

develop a robust classifier for code-mixed text. The

proposed ACCMT architecture performs well on

the Hi-En code-mixed dataset and outperforms the

baseline accuracy. A major contribution of this

paper is the technique of training word embedding

for code-mixed text. This technique is used for

https://github.com/mkocabas/focal-loss-keras

129

generating word embedding for Hindi-English

code mixed corpus, which is required in this

research work. This proposed technique is very

easy to implement for other code-mixed languages

as well and will be helpful for generating word

embedding for low resource code-mixed languages

majorly Indian languages e.g. Bengali, Tamil and

Malayalam etc. This also opens up opportunities of

research on other code-mixed languages. This

work also shows the impact of attention for the

classification of code-mixed text. Lal (2019)

showed that introduction of feature network has

improved the accuracy significantly. The

integration of such feature network in ACCMT is

considered for future course of improvement for

the on-going research.

References

Patra, B.G., Das, D. and Das, A., 2018. Sentiment

Analysis of Code-Mixed Indian Languages: An

Overview of SAIL_Code-Mixed Shared Task@

ICON-2017. arXiv preprint arXiv:1803.06745.

Chanda, Arunavha, Dipankar Das, and Chandan

Mazumdar. Unraveling the English-Bengali code-

mixing phenomenon. In Proceedings of the Second

Workshop on Computational Approaches to Code

Switching, pp. 80-89. 2016.

Dey, A. and Fung, P., 2014, May. A Hindi-English

Code-Switching Corpus. In LREC (pp. 2410-2413)

Barman, U., Das, A., Wagner, J. and Foster, J., 2014.

Code mixing: A challenge for language

identification in the language of social media. In

Proceedings of the first workshop on computational

approaches to code switching (pp. 13-23).

Prabhu, A., Joshi, A., Shrivastava, M. and Varma, V.,

2016. Towards sub-word level compositions for

sentiment analysis of hindi-english code mixed text.

arXiv preprint arXiv:1611.00472.

Yenigalla, P., Kar, S., Singh, C., Nagar, A., & Mathur,

G. (2018, June). Addressing unseen word problem

in text classification. In International Conference on

Applications of Natural Language to Information

Systems (pp. 339-351). Springer, Cham.

Lal, Y.K., Kumar, V., Dhar, M., Shrivastava, M. and

Koehn, P., 2019, July. De-Mixing Sentiment from

Code-Mixed Text. In Proceedings of the 57th

Conference of the Association for Computational

Linguistics: Student Research Workshop (pp. 371-

377).

Bhasin, A., Natarajan, B., Mathur, G., Jeon, J.H. and

Kim, J.S., 2019, June. Unified Parallel Intent and

Slot Prediction with Cross Fusion and Slot

Masking. In International Conference on

Applications of Natural Language to Information

Systems (pp. 277-285). Springer, Cham.

Sharma, S., Srinivas, P. Y. K. L., & Balabantaray, R. C.

(2015, August). Text normalization of code mix and

sentiment analysis. In 2015 International

Conference on Advances in Computing,

Communications and Informatics (ICACCI) (pp.

1468-1473). IEEE.

Pravalika, A., Oza, V., Meghana, N.P. and Kamath,

S.S., 2017, July. Domain-specific sentiment

analysis approaches for code-mixed social network

data. In 2017 8th International Conference on

Computing, Communication and Networking

Technologies (ICCCNT) (pp. 1-6). IEEE.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T.

(2017). Enriching word vectors with subword

information. Transactions of the Association for

Computational Linguistics, 5, 135-146.

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2016,

March). Character-aware neural language models

In Thirtieth AAAI Conference on Artificial

Intelligence.

Tang, D., Qin, B., & Liu, T. (2015, September).

Document modeling with gated recurrent neural

network for sentiment classification. In Proceedings

of the 2015 conference on empirical methods in

natural language processing (pp. 1422-1432).

Smith, S.L., Turban, D.H., Hamblin, S. and Hammerla,

N.Y., 2017. Offline bilingual word vectors,

orthogonal transformations and the inverted

softmax. arXiv preprint arXiv:1702.03859.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C.

and Joulin, A., 2018, May. Advances in Pre-

Training Distributed Word Representations. In

Proceedings of the Eleventh International

Conference on Language Resources and Evaluation

(LREC-2018).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin,

I., 2017. Attention is all you need. In Advances in

neural information processing systems (pp. 5998-

6008).

Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollár, P.,

2017. Focal loss for dense object detection. In

Proceedings of the IEEE international conference

on computer vision (pp. 2980-2988).

Tripathi, S., Kumar, A., Ramesh, A., Singh, C. and

Yenigalla, P., 2019. Focal Loss based Residual

Convolutional Neural Network for Speech Emotion

Recognition. arXiv preprint arXiv:1906.05682.

