
A collaborative system for building and maintaining wordnets

Tomasz Naskręt
G4.19 Research Group, Department of Computational Intelligence
Wrocław University of Science and Technology, Wrocław, Poland

tomasz.naskret@pwr.edu.pl

Abstract

A collaborative system for wordnet con-
struction and maintenance is presented. Its
key modules include WordnetLoom editor,
Wordnet Tracker and JavaScript Graph.
They offer a number of functionalities that
allow solving problems on every stage of
building, editing and aligning wordnets by
teams of lexicographers working in par-
allel. The experience collected in recent
years has allowed us to refine applications
and add new modules to provide the best
user experience in a reliable and easily
maintainable way.

1 Introduction

Wordnet is not yet another electronic dictionary.
It is a complex lexico-semantic network. Its con-
struction, especially when done manually by a
team of lexicographers, and its further editing
and/or aligning with other resources requires very
advanced and flexible tools. Such tools should of-
fer the possibility of simultaneous work of many
team members on the same lexicon (a wordnet for
a particular language), simultaneous work of dif-
ferent teams on different lexicons, and the sub-
sequent manual or semi-automated linking of the
constructed resources.

Dictionary compiling tools are mostly designed
as complex XML editors such as, for instance,
Lexonomy (Měchura, 2017). This approach may
not be beneficial in working with graph-like struc-
tures. Therefore, several dedicated tools have been
designed and are currently used by different word-
net teams e.g DEBVisDic (Horák et al., 2006),
sloWTool (Fišer and Novak, 2011). Visualisa-
tion of wordnet graphs in most tools follows a
radial pattern: a synset in focus is presented in
the middle and all links, irrespectively of their

types are placed radially around the central ele-
ment, e.g. sloWTool or WordTies (Pedersen et al.,
2012). GernEdiT (Henrich and Hinrichs, 2010)
offers visualisation of the wordnet structure in the
range selected by the user, but it is hierarchical and
focused mainly on hypernymy. Moreover, the vi-
sual presentation does not allow for direct editing
of the structures. WordnetLoom stands out of the
remaining tools, because it offers a graph-based
visualisation of wordnet data and provides entirely
different workflow based on the direct interaction
with graph nodes. In this paper, we will present
the most recent development of WordnetLoom and
progress in relation to earlier releases. We have
improved the graphic design for better user expe-
rience and implemented the lexical unit graph vi-
sualisation.

Both dictionary making and wordnet building
are usually carried out by teams of lexicographers
and/or developers. Collaborative work, especially
in distributed teams working from , requires con-
trol tools to provide quality assurance and devel-
opment progress. In-built auditing/change back-
log feature is often absent in these systems and
data versioning is handled by external VCS1 soft-
ware or done manually. The newest version of
WordnetLoom is interconnected with the Wordnet
Tracker module which provides additional feed-
back channel for lexicographers to enrich their
workflow. Every activity of each lexicographer is
registered and can be monitored by a senior lexi-
cographer. This paper will showcase how auditing
and monitoring can be handled.

We will also present a new web-related mod-
ule, namely JavaScript Graph. JavaScript Graph
module is an answer to user needs and provides
the possibility of embedding graph visualization
to existing websites or applications.

1VCS - Version Control System e.g. Git, Subversion



In this work, we will present the key modules
that are part of a collaborative system for word-
net construction and maintenance including Word-
netLoom editor, Wordnet Tracker and JavaScript
Graph.

2 WordnetLoom Demo

Up to version 1.68, WordnetLoom was a stan-
dalone java fat client application directly connect-
ing to its database with all logic contained on the
client side. Such approach ensures that scaling
of the application could only be possible by scal-
ing the database server, in this case MySQL2. In
order to meet the growing numbers of users and
challenges in providing dedicated endpoints not
only for the client editor application, but also for
other external applications, web pages or mobile
applications, all business logic was extracted to a
separate application built on top of JEE83 frame-
work. The application is responsible for data val-
idation, data auditing, user activity monitoring,
user management and data processing. It provides
a communication channel via REST API (Field-
ing, 2000) in the form of Siren4-like hypermedia
specification. Scaling of the application itself is
done by docker-compose5 replicas, while database
scaling can be achieved by replication configu-
rations where at least two databases are avail-
able. Master database configuration is optimized
for writing and slave databases have configuration
optimized for high performance reading. Further
scaling can be ensured by introducing new slave
database nodes for each distinct consumer such as
a mobile application or a web page.

The main consumer of the API is a thick client
in the form of WordnetLoom Editor java appli-
cation (main application workspace presented at
Fig. 1a) which has been slimmed down and does
not contain essential business logic which reduces
it to the role of a simple REST client. It enables
advanced search functionalities and basic CRUD6

operations on typical core objects being part of
the semantic structure such as synset, sense (see
sense editing properties Fig. 1b), sense relation,
synset relation, and relation type. From the ed-

2https://www.mysql.com/
3Java Enterprise Edition 8 specification

https://javaee.github.io/javaee-spec/
4https://github.com/kevinswiber/siren
5https://docs.docker.com/compose/overview/
6CRUD are four basic functions of persistent storage

(such as create, read, update and delete)

itor level, the user with administrator privileges
can modify and add elements to dictionary enti-
ties such as: part of speech, domain, register (see
editing dictionaries Fig. 1c) and adding or edit-
ing types of semantic relations (see editing rela-
tion types Fig. 1d). The main advantage of the
application is the possibility of working with vi-
sualization in the form of a graph, which provides
quick and easy navigation and simplifies the cre-
ative process. Due to the fact that the Editor has
recently undergone a major architectural transfor-
mation, it has allowed for even simpler modifica-
tions and easier addition of new components, such
as in the case of implementing the extended se-
mantic description panel for Dictionary of Polish
Borrowings in Yiddish7 (see Fig. 1e). Also within
this project we have created a graph visualization
of lexical units which has become the part of a core
application.

3 Wordnet Tracker Demo

An important aspect of the process of building
and maintaining wordnet is the ability to moni-
tor changes made by team members. It is made
possible by the Wordnet Tracker module which
provides tracking of user activity (see Wordnet
Tracker dashboard Fig. 2) in terms of the num-
ber of lexical units, synsets and semantic relations
entered (see Fig. 3 for synset relation changes).
Through this application, the lexicographer has
also access to the full history of changes that have
been made within a given lexical unit (see Fig. 4
for current changes of lexical units). All changes
in the synset structure are presented in Fig. 5
where the left side column displays the current
synset state, while the right side column shows all
changes in the synset elements. The user as well as
the coordinator have access to current changes in
real time for constant monitoring. This function-
ality turned out to be particularly valuable when
working with new, inexperienced lexicographers.
The application administrator has the possibility to
create diagnostic queries within lexicons or even
within the entire dataset, as well as to create statis-
tic queries. In both cases the generated query re-
sults are available for download in the form of
files. Wordnet Tracker also provides basic user
management panel where the privileged user can
add new users, reset passwords or restrict user ac-
cess to chosen lexicons.

7https://polonjid.wn.uw.edu.pl/?lang=en



4 JavaScript Graph Module Demo

Presenting work results in the form of a graph vi-
sualization outside WordNet Loom editor environ-
ment is possible now by a created javascript mod-
ule. The module tries to faithfully preserve the
navigation functions as in the WordNet editor, but
at the same time gives the possibility to adjust the
color scheme and nodes style to the host appli-
cation/page design. The presentation data model
is fetched from the WordnetLoom server via the
REST endpoint and the D3.js8 library with custom
modifications handles graph visualization and user
interaction. The module is constructed in such a
way so as to allow easy embedding in other ap-
plications, such as a mobile application or a web-
site. A very good example can be the main page
of plWordNet9 where the module is used in the
form of a pop-up window or as a full scale cen-
tral element of the website presented at the online
Dictionary of Polish Borrowings in Yiddish10(see
Fig. 6). Simple library import and basic configura-
tion will allow to present wordnet lexicon as graph
visualization on every platform where JavaScript
is supported.

5 Conclusions and Further Works

This concludes our brief description of each
module. We have seen that the combination of
presented tools offers solutions to common tasks
and problems encountered while building word-
nets particularly by distributed teams. We will
continue to be open-source software licensed un-
der GNU LGPL 3.0. The source code is hosted in
GitHub repository(https://github.com/CLARIN-
PL/wordnetloom).

We will continue to actively develop presented
tools over the next years focused on adding new
functionalities based on the needs of users. We
will also direct our development towards a reli-
able, fully-flagged web-based system and we will
strive to continue to simplify system deployment
by an extensive use of docker11 containers.

Acknowledgment

The work co-financed as part of the investment in
the CLARIN-PL research infrastructure funded by

8D3.js is a JavaScript library for manipulating documents
based on data

9http://plwordnet.pwr.edu.pl/wordnet/
10http://polonjid-dictionary.clarin-pl.eu
11https://www.docker.com/

the Polish Ministry of Science and Higher Educa-
tion and the project funded by the National Sci-
ence Centre, Poland under the grant agreement No
UMO-2015/18/M/HS2/00100.

References

Roy Thomas Fielding. Architectural Styles and
the Design of Network-based Software Archi-
tectures. PhD thesis, 2000. AAI9980887.

Darja Fišer and Jernej Novak. Visu-
alizing sloWNet. In Proceedings of
eLex, pages 76–82, 2011. URL http:
//elex2011.trojina.si/Vsebine/
proceedings/eLex2011-9.pdf.

Verena Henrich and Erhard Hinrichs. GernEdiT –
the GermaNet editing tool. In Nicoletta Calzo-
lari (Conference Chair), Khalid Choukri, Bente
Maegaard, Joseph Mariani, Jan Odijk, Ste-
lios Piperidis, Mike Rosner, and Daniel Tapias,
editors, Proceedings of the Seventh Interna-
tional Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta, May
2010. European Language Resources Associa-
tion (ELRA). ISBN 2-9517408-6-7.

Aleš Horák, Karel Pala, Adam Rambousek, and
Martin Povolný. DEBVisDic — first version of
new client-server wordnet browsing and editing
tool. In Proceedings of the Third International
WordNet Conference — GWC 2006, pages 325–
328. Masaryk University, 2006.

M. B Měchura. Introducing Lexonomy: an
open-source dictionary writing and publishing
system. In Electronic Lexicography in the
21st Century: Lexicography from Scratch. Pro-
ceedings of the eLex 2017 conference, 19-
21 September 2017, Leiden, The Netherlands.,
2017. URL https://www.lexonomy.
eu/docs/elex2017.pdf.

B.S. Pedersen, L. Borin, M. Forsberg, K. Lindén,
H. Orav, and E. Rögnvalssson. Linking and val-
idating nordic and baltic wordnets – a multilin-
gual action in META-NORD. In Proceedings of
6th International Global Wordnet Conference,
pages 254–260., Matsue, Japan., 2012.

http://elex2011.trojina.si/Vsebine/proceedings/eLex2011-9.pdf
http://elex2011.trojina.si/Vsebine/proceedings/eLex2011-9.pdf
http://elex2011.trojina.si/Vsebine/proceedings/eLex2011-9.pdf
https://www.lexonomy.eu/docs/elex2017.pdf
https://www.lexonomy.eu/docs/elex2017.pdf


Figure 1: Key windows in WordnetLoom

(a) Application main workspace.

(b) Sense properties window.

(c) Dictionaries window.

(d) Relation types window.

(e) Extended semantic description for Polish Borrowings in
Yiddish dictionary.



Figure 2: Tracker dashboard.

Figure 3: Synset relations changes history view.

Figure 4: Senses changes view.



Figure 5: Selected synset history view.

Figure 6: Example of embedded java script visualization module.


	Introduction
	WordnetLoom Demo
	Wordnet Tracker Demo
	JavaScript Graph Module Demo
	Conclusions and Further Works

