
Semi-automatic Annotation of Event Structure, Argument Structure,
and Opposition Structure to WordNet by Using Event Structure

Frame

Seohyun Im
Automation and System Research Institute, Seoul National University

Seoul, South Korea
Seohyunim71@gmail.com

Abstract

In this paper, we present semi-automatic anno-
tation of the Event Structure Frames to synsets
of English verbs in WordNet. The Event
Structure Frame is a sub-eventual structure
frame which combines event structure (lexical
aspect) with argument structure represented by
semantic roles and opposition structure which
represents the presupposed and entailed sub-
events of a matrix event. Our annotation work
is done semi-automatically by GESL-based
automatic annotation and manual error-
correction. GESL is an automatic annotation
tool of the Event Structure Frame to verbs in a
sentence. We apply GESL to the example sen-
tence given for each synset of a verb in
WordNet. We expect that our work will make
WordNet much more useful for any NLP and
its applications which require lexical semantic
information of English verbs.

1 Introduction

This paper aims to present our work of linking
the Event Structure Frame (henceforth, ESF) to
WordNet to improve its usability for NLP appli-
cations such as multimodal (and textual) infer-
ence tasks which require the lexical semantic
information of words.

WordNet represents the distinct senses of
verbs very delicately and organizes the semantic
relations such as synonymy and hypernymy of
the verbs. The semantic relation is one of the ma-
jor strengths of WordNet. However, WordNet
lacks the following two factors which consist of
the lexical meaning of verbs. First, the lexical
aspect of verbs, which is represented as event
structure, is essential lexical semantic infor-
mation (Pustejovsky, 1995). Different lexical

aspects have different event structure frames.
Secondly, argument structure with semantic roles
also is a necessary factor to represent the mean-
ing of verbs.

We argue in this paper that the ESF, originally
developed by Im & Pustejovsky (2009, 2010)
and Im (2013), enriches WordNet. Linking ESF
to WordNet makes it possible to provide infor-
mation about sub-eventual structure and argu-
ment structure of English verbs together with
original information about the semantic relation
of verbs WordNet gives.

The ESF of a verb with its specific sense di-
vides its sub-events into pre-state, process, and
post-state. This will be a big help to any kind of
inferencing or reasoning tasks which use the
word meaning of verbs. For instance, the ESF of
the English verb arrive in (1) gives the infor-
mation required to derive the lexically entailed
result state after the arriving event and the pre-
supposed state before it.

(1) The Event Structure Frame of arrive

(arrive.v.01)
se1: pre-state: not_be_at (theme, goal)
se2: process: arriving (theme)
se3: post-state: be_at (theme, goal)

Given the sentence John arrived at school at 9
am today, we get the inferred statements from
the ESF of arrive.v.01 by Word Sense Disambig-
uation (linking arrive to an appropriate WordNet
synset arrive.v.01): ‘John was not at school be-
fore 9 am today’ and ‘John was at school after 9
am today’.

We began the WordNet-ESF linking project
around the end of last year (2018). The tagging
work goes through the two steps: automatic an-
notation of the ESF for each verb sysnset in

WordNet by GESL and manual error correction.
GESL is an automatic annotation tool of the ESF
for verbs in a sentence developed by Im (2013).
Since WordNet synsets have their example sen-
tences, GESL is applied to the sentences for au-
tomatic ESF annotation.

In this paper, we present our main idea regard-
ing the task and small annotated data focused on
English motion verbs. The structure of this paper
is as follows: in the next section, we briefly in-
troduce the theoretical background of the Event
Structure Frame and show the list of pre-defined
ESFs in Im (2013). Section 3 describes our main
task. First, we introduce GESL, the automatic
ESF annotating system to verbs in text. Second,
we explain how to assign ESFs to WordNet
synsets. In section 4, we explain ESF-based verb
classification and the extended list of ESFs for
WordNet-ESF linking. In section 5, we show
small size of data in which we annotated ESFs to
WordNet synsets for a part of motion verbs. Af-
ter that, we mention FrameNet and VerbNet and
explain why we chose linking ESF to WordNet
in the next section. Finally, we summarize our
main idea and future work in section 6.

2 Event Structure Frame

In this section, we explain the theoretical back-
ground of the ESF. The idea is originated from
Im and Pustejovsky (2009, 2010) and fully de-
veloped in Im (2013). The ESF is based on event
structure and argument structure in Generative
Lexicon Theory (Pustejovsky, 1995) and opposi-
tion structure (Pustejovsky, 2000). As shown in
(1), the ESF is a merger of event structure, ar-
gument structure, and opposition structure.

A complex event has its sub-eventual structure
which consists of temporally ordered sub-events.
In (1), se1 precedes se2 and se3. The event struc-
ture of a complex event is composed of pre-state,
process, and post-state. Pre-state is a presup-
posed sub-event. That is, it is a presupposition of
the verb which denotes the main process (event).
For instance, our common sense requires the pre-
supposition that Kennedy was alive before kill-
ing him in order to use the word kill. On the oth-
er hand, post-state is temporally later than the
killing process. The post-state is a lexical entail-
ment of the verb kill. When Osswald killed Ken-
nedy, it normally entails that Kennedy died and
Kennedy is dead.

To sum up, the combination of pre-state, pro-
cess, and post-state is a temporally ordered struc-

ture of lexical presuppositions, main process, and
lexical entailments.

Based on the theoretical viewpoint about ESF,
Im (2013) suggests 23 pre-defined ESF-
dependent verb classes. As shown in Table 1,
verb classification in GESL consists of three
steps of classification.

aspectual semantic event type
state state state
process process process
 motion motion
transition change-of-location leave, arrive, pass,

transfer
 change-of-possession lose, get, give
 change-of-state come-into-existence,

go-out-of-existence,
become,
begin, continue, end
positive-causation,
negative-causation,
cos-leave,
cos-arrive,
cos-transfer,
scalar-change
change-state

Table 1. Verb classification in Im (2013)

The first step is to classify verbs according to the
lexical aspect of verbs - state, process, and
transition, based on Generative Lexicon Theory.
State and process are simple events and transi-

tion is a complex event. Therefore, transition
verbs have sub-eventual structure with more than
one sub-event.

The next step is semantic classification of
verbs. Im (2013) classifies process verbs into
two groups – process and motion. It is because
motion verbs have their own special lexical se-
mantic properties. Their lexical aspect is heavily
dependent on their contextual meaning. For in-
stance, the motion verb run belongs to motion
process but it changes into change-of-location
class when it co-occurs with the prepositional
phrases which denote goal, source, duration, etc.
(e.g. run to the store, run from the store, run for
30 minutes). Transition verbs are classified into
change-of-location, change-of-possession, or
change-of-state verbs semantically.

The last step is to divide each semantic class
into more specific ESF-dependent classes. Each
verb class we finally get has its own ESF. Specif-
ically, the change-of-location verb class has
arrive, leave, pass, and transfer classes. The
change-of-possession verbs are classified into
lose, get, or give. Change-of-state verbs in-

clude aspectual classes (begin, continue, end),
positive-/negative-causation (e.g. cause_to /
prevent_from), become (e.g. turn_red),
come_into_existence (e.g. be_born),
go_out_of_existence (e.g. die), scalar_change
(e.g. increase, broaden, etc.). COS-leave, COS-

arrive, COS-transfer groups are for metaphori-
cal or metonymical expressions of change-of-

location which belong to change-of-state verb
class semantically (e.g. the water came to a boil).

3 GESL-based Semi-Automatic Anno-
tation of Event Structure Frame to
WordNet

Our main task in WordNet-ESF linking is to as-
sign a proper ESF to each synset of a verb in
WordNet. We do the task semi-automatically via
the two steps: automatic annotation of ESF with
GESL and manual error correction. In section 3.1,
we first introduce the automatic event structure
tagging tool, GESL. Second, section 3.2 de-
scribes the procedure of WordNet-ESF linking.

3.1 The Generator of the Event Structure Lex-
icon (GESL)

GESL is the automatic event structure annotation
tool developed by Im (2013) and Im and
Pustejovsky (2009, 2010), which generates an
appropriate event structure for each English
event-denoting verb in text. Figure 1 shows the
input and output of GESL.

Figure 1. The input and output of GESL

As shown in Figure 1, the input of GESL is a
text document. GESL gets English text data and
generates the event structure of each event-
denoting verb together with its lexical semantic
information including its grammatical tense, as-
pect, and dependencies. For example, if GESL
gets the sentence Osswald killed Kennedy No-
vember 22, 1965, the tool gives the ESL of the
event-denoting verb kill as its output (Table 2).

verb KILLED
vid V1
tense past
aspect none
dependency nsubj (killed, Osswald), dobj (killed,

Kennedy), time (killed, November-4)
aspectual
class

Transition

semantic
class

change-of-state

event type go_out_of_existence
event
structure

se1: pre-state: not_be_killed (Kennedy)
se2: pre-state: there_be (Kennedy)
se3: process: killing (Osswald, Kennedy)
se4: post-state: be_killed (Kennedy)
se5: post-state: there_not_be (Kennedy)

sid S1
sentence Osswald killed Kennedy November 22,

1965.
Table 2. The Event Structure Lexicon of kill

Table 2 shows the GESL annotation result of the
event-denoting verb kill in the special context the
sentence generates. GESL classifies the contex-
tual meaning of an English verb into one of the
pre-defined event structure types via the three
steps of classification – aspectual, semantic, and
event type classification. The verb kill in the sen-
tence above belongs to transition class aspectual-
ly and its semantic class is change-of-state
(COS). Finally, the event type of the verb is go-

out-of-existence.
GESL goes through several steps to derive the

event structure of an event-denoting verb. We
show the architecture of GESL in Figure 2.

Figure 2. The architecture of GESL

GESL first determines whether a verb in text de-
notes an event or not. If it denotes an event, it
classifies the verb into one of the pre-defined
event types via the three classification steps and
assigns the proper ESF to the verb. In addition, it
links arguments to the semantic roles in the ESF
by using the information from the given sentence.
The last step is to enrich the event structure by
adding synonyms, hypernyms, and antonyms1.

1 Refer to Im (2013) if you want to know in more detail
about the enriching procedure of the ESL. We can infer
additional information like ‘Kennedy is dead’, ‘Kennedy
died’, ‘Kennedy was alive’, etc. by the enrichment.

[He walkedv1

and ranv2.]s1

[He walkedv3

to school.]S2

GESL ESL
walkedv1 ranv2 walkedv3

.....

3.2 WordNet-ESF Linking

Because WordNet synsets have their correspond-
ing example sentences, we apply GESL to them
in order to annotate the ESF to each synset in
WordNet. After automatic annotation of ESF by
GESL, we correct errors manually (Figure 3).

Figure 3. Annotation of ESF to WordNet synset

We have two reasons that we need manual error
correction. First, many examples in WordNet
synsets are not complete and thus GESL’s per-
formance is worse than its ordinary application
to text documents. Second, quite many WordNet
synsets do not have examples. In those cases,
GESL is not applicable. Therefore, we need
manual annotation of ESFs.

4 Verb Classes and Pre-defined Event
Structure Frames

The ESFs and verb classes in GESL are designed
as simple as possible, because it is an automatic
annotation system. For instance, GESL does not
distinguish between a verb class and its causative
counterparts in terms of their ESFs. Instead, the
issue is solved by the argument linking algorithm
in GESL.

However, the ESFs linked to WordNet need to
be more specific than the ESFs in GESL, since
WordNet-ESF linking aims to make NLP appli-
cations like a textual inference system get the
event structure-related inferences only by Word
Sense Disambiguation with no other special NLP
work.

First, we add its causative counterpart to each
verb class (e.g. arrive – cause_arrive). This
makes it easier to use the ESF of each synset of
English verbs in WordNet without special diffi-
culty in linking arguments to semantic roles in
ESFs. Secondly, we separate semelfactive verb
class from process class, although Im (2013) did
not distinguish the two. The ESFs of the two
verb groups are not different. However, we need
to consider semelfactive verbs independently.
The third change is to divide motion verbs into
more specific groups considering mo-

tion_direction, motion, self_motion,

move_backward, move_down, move_up, pull,
push. self_motion verbs do not result in change-

of-location. Fourth, the change-of-location verb
class originally consists of arrive, leave, transfer
but we added move_toward_speaker,
move_from_speaker, bring, take, and carry. Fifth,
scalar_change verb group is divided into:
scale_up, scale_down, and scale_move 2 . The
sixth change is to add change_direction and
change_posture. Finally, we added pre-

cede/follow, happen, maintain, skip, spread,
info_transfer, performative (speech act verbs).
Appendix A shows the list of verb classes for
WordNet-ESF linking and their ESFs. ESFs and
verb classes are not limited to the list but can be
extended or modified. WordNet has more than
2100 verbs. Our final goal is to assign proper
ESFs to all synsets of the verbs. In the next sec-
tion, we show the examples of annotated ESF.

5 Data: Annotated WordNet Synsets

As of now, we have the ESFs for all synsets of
verbs in WordNet by applying GESL to the ex-
ample sentences in synsets of WordNet. We are
working on manual error correction.

In this section, we present the result of exper-
iment with the motion verbs which occur in the
season 1 episodes of the drama named “Friends”,
which will be used in the Video Turing Test
(VTT) Project we have been working on since
2017. We use the WordNet version 2.1 embed-
ded in NLTK, Natural Language ToolKit devel-
oped at Stanford NLP Lab. The total number of
verbs is 91 and they have 952 synsets. We as-
signed a proper ESF to each synset through au-
tomatic annotation by GESL and manual correc-
tion of the annotated ESF. We note that one verb
can have several different ESFs since different
synsets can have different ESFs. For instance,
the 41 synsets of the verb run has 12 different
types of ESF: motion, cause-motion, state, pro-

cess, follow, leave, spread, change_state, cause-

change_state, continue, become3.

2 The scalar_change verbs need more consideration of the
kinds of scales. We leave it as a future work.
3 motion [run.v.1, 6, 11, 28, 33, 34; play.v.18; ply.v.03],
cause-motion [run.v.26], change_state [run.v.24, 41;
melt.v.01; ladder.v.01], cause-change_state [run.v.31],
continue [prevail.v.03], follow [hunt.v.01], leave
[scat.v.01], pass [run.v.29], process [campaign.v.01; car-
ry.v.15; move.v.13; operate.v.01; function.v.01; guide.v.05;
race.v.02; run.v.13, 15, 16, 19, 21, 23, 25, 30, 32], spread

The target motion verbs are listed in Appendix
B. Because the verbs used in the experiment are
motion verbs, many synsets belong to motion or
change-of-location-related classes. 30.6 % of
the synsets (291 out of total 952 synsets) belong
to motion or change-of-location-related verb
classes. About 40% of the synsets are one of
state, process, and change-of-state classes. It
is a natural result because those groups have
much more verbs than the others.

We additionally assigned the ESFs to the
synsets of total 207 verbs including the 85 verbs
used in the sentences which describe the scenes
of Friends season 1 and their related phrasal
verbs and idioms (Appendix C). The scene de-
scriptions were automatically derived by the ac-
tion recognition algorithm our co-workers devel-
oped in the field of Computer Vision. You can
see the annotated data in GitHub.4

6 Related Work

Since lexical knowledge of words is crucial for
various NLP applications including textual infer-
ence, computational lexical semanticists have
been trying to build lexical resources which an-
notate many kinds of lexical knowledge. Frame-
Net, VerbNet, and WordNet, out of the built re-
sources, are well-known and used in the field of
NLP and its applications.

FrameNet is a lexical database of English that
is both human- and machine-readable with man-
ually annotated sentences, which is based on
Frame Semantics (Fillmore, 1976). The basic
idea is that the meaning of most words can be
understood on the basis of a semantic frame: a
description of a type of event, relation, or entity
and the participant in it. The FrameNet project is
still in progress. However, FrameNet’s frames do
not annotate the sub-eventual structure of verbs
systematically, since it concentrates on semantic
roles rather than event structure (Osswald and
Van Valin, 2012).

Although VerbNet (Kipper, 2005), a hierar-
chical verb lexicon based on Levin’s classes, also
represents sub-eventual structure of verbs, its
event structure annotation is neither complete nor
consistent (Zaenen et al., 2008). More important-
ly, neither of the resources has much knowledge
about semantic relations of verbs.

[run.v.27, 30], state [run.v.05, range.v.01, tend.v.01], be-
come [run.v.14]
4 https://github.com/ish97/VTT/blob/master/

WordNet does not include the knowledge
about the event structure of verbs but it has the
other important factors of lexical semantic
knowledge of verbs – semantic relations like
synonym, antonym, hypernym, hyponym, etc.
Therefore, adding event structure to WordNet
will make the resource much more helpful to any
NLP applications which need lexical knowledge
of verbs. Especially, WordNet-ESF linking
would allow us to derive event structure of a
verb in text only by Word Sense Disambiguation
which maps it to its proper synset, because the
synset would have its ESF. In conclusion,
WordNet-ESF linking is a good attempt of com-
bining crucial lexical knowledge of verbs.

7 Conclusion

In this paper, we briefly described our semi-
automatic annotation task of Event Structure
Frames to WordNet synsets via the following
two steps. GESL, an automatic event structure
annotation tool, assigns a proper ESF to each
WN synset of English verbs in WordNet and we
correct errors manually. Since each WordNet
synset has its own example sentence, GESL,
which annotates event structure to verbs in a full
sentence, can be applied to the target verb in the
sentence so that it annotates an ESF to the verb.
If a synset has no example sentence, GESL can-
not annotate an ESF to the sysnset. It is one of
the reasons that we need manual error correction.

Although WordNet is very useful to develop
NLP application tools which require word mean-
ing, it lacks event structure, argument structure,
semantic role, and opposition structure. We ex-
pect that the enriched WordNet by WordNet-ESF
linking will be a big help to NLP applications
such as textual or multimodal inference tasks.

For WordNet-ESF linking, we extended ESF-
dependent verb classes in GESL in order to rep-
resent the event structural meaning of each syn-
set of verbs more specifically. GESL has 23 verb
classes and each of them has its own event struc-
ture frame. We suggest 44 classes and their caus-
ative counterparts in this paper. The classes are
not fixed. Since we still work on the WordNet-
ESF linking task, verb classes can undergo
change.

Acknowledgments
This work was supported by Institute for Infor-
mation & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2017-0-01780, The

technology development for event recogni-
tion/relational reasoning and learning knowledge
based system for video understanding).

References
Fillmore, Charles J. 1976. Frame Semantics and the

Nature of Language. Annals of the New York Acad-
emy of Sciences: Conference on the Origin and
Development of Language and Speech 280: 20-32.

Im, Seohyun. 2013. The Generator of the Event Struc-
ture Lexicon (GESL): Automatic Annotation of
Event Structure for Textual Inference Tasks. PhD
Dissertation, Brandeis University, MA, USA.

Im, Seohyun and James Pustejovsky. 2010. Annotat-
ing Lexically Entailed Subevents for Textual Infer-
ence Tasks. In the Proceedings of FLAIRS 23,
Daytona Beach, Florida, USA, 2010.

Im, Seohyun and James Pustejovsky. 2009. Annotat-
ing Event Implicatures for Textual Inference Tasks.
In the Proceedings of the 5th International Confer-
ence on Generative Approaches to the Lexicon, Pi-
sa, Italy, 2009.

Kipper, Karin Schuler. 2005. VerbNet: A Broad-
coverage, Comprehensive Verb Lexicon. PhD Dis-
sertation. University of Pennsilvenia.

Miller, George A. 1995. Wordnet: A Lexical Data-
base for English. Communications of the ACM 38,
no. 11.

Osswald, Rainer and Jr. Robert D. Van Valin. 2012.
FrameNet, Fame Structure, and the Syntax-
Semantics Interface (draft).

Pustejovsky, James. 2000. Events and the Semantics
of Opposition, Pustejovsky and Tenny (eds.)
Events as Grammatical Objects. CSLI Publications.

Pustejovsky. James. 1995. The Generative Lexicon.
The MIT Press.

Zaenen, Annie, Cleo Condoravi, and Danny. Bobrow.
2008. The Encoding of Lexical Implications in
VerbNet. Proceedings of LREC 2008. Morocco,
2008.

Appendix A. Verb Classes and Event Struc-
ture Frames
* CAUSATIVE counterparts: causer-argument added

STATE
se1: state: pred-ing_(prep) (theme)
PROCESS [cause_process]
se1: process: pred-ing_(prep) (agent)
SEMELFACTIVE [cause_semelfactive]
se1: process: pred-ing_(prep) (theme)
MOTION [cause_motion]
d-se1: pre-state: be_loc-prep (theme, source)

se1: process: pred-ing (theme)
d-se2: post-state: be_loc-prep (theme, goal)
MOVE_BACK [cause_move_back]
d-se1: pre-state: be_loc-prep (theme, source)
se1: process: pred-ing_back (theme)
d-se2: post-state: be_loc-prep (theme, goal)
d-se3: post-state: be_behind (goal, source)
d-se2 = d-se3
MOVE_UP [cause_move_up]
d-se1: pre-state: be_loc-prep (theme, source)
se1: process: pred-ing_up (theme)
d-se2: post-state: be_loc-prep (theme, goal)
d-se3: post-state: be_higher_than (goal, source)
d-se2 = d-se3
MOVE_DOWN [cause_move_down]
d-se1: pre-state: be_loc-prep (theme, source)
se1: process: pred-ing_downward (theme)
d-se2: post-state: be_loc-prep (theme, goal)
d-se3: post-state: be_lower_than (goal, source)
d-se2 = d-se3
MOVE_TOWARD_SPEAKER

[cause_move_toward_speaker]
d-se1: pre-state: be_loc-prep (theme, source)
se1: process: pred-ing (theme)
d-se2: post-state: be_loc-prep (theme, goal)
d-se3: post-state: be_near (goal, speaker’s location)
d-se2 = d-se3
MOVE_FROM_SPEAKER

[cause_move_from_speaker]
d-se1: pre-state: be_loc-prep (theme, source)
se1: process: pred-ing (theme)
d-se2: post-state: be_loc-prep (theme, goal)
d-se3: post-state: not_be_near (goal, speaker’s loca-

tion)
PULL
d-se1: pre-state: be_loc-prep (theme, source)
se1: process: pred-ing (agent, theme)
d-se2: post-state: be_loc-prep (theme, goal)
PUSH
d-se1: pre-state: be_loc-prep (theme, source)
se1: process: pred-ing (agent, theme)
d-se2: post-state: be_loc-prep (theme, goal)
CARRY
se1: process: pred-ing (agent, theme)
se2: state: having (agent, theme)
se1 = se2
LEAVE [cause_leave]
se1: pre-state: be_loc-prep (theme, source)
se2: process: pred-ing (theme)
se3: post-state: not_be_loc-prep (theme, source)
PASS [cause_pass]
se1: pre-state: be_loc-prep (theme, source)
se2: process: pred-ing (theme)
se3: state: be_loc-prep (theme, path)
se4: post-state: be_loc-prep (theme, goal)
se2 = se3
ARRIVE [cause_arrive]
se1: pre-state: not_be_loc-prep (theme, goal)
se2: process: pred-ing (theme)
se3: post-state: be_loc-prep (theme, goal)

TRANSFER [cause_transfer]
se1: pre-state: be_loc-prep (theme, source)
se2: process: pred-ing (theme)
se3: post-state: be_loc-prep (theme, goal)
SPREAD [cause_spread]
se1: pre-state: not_be_over (theme, ground)
se2: process: pred-ing (agent, theme, ground)
se3: post-state: be_over (theme, ground)
BRING
se1: pre-state: not_be_loc-prep (agent & theme, goal)
se2: process: pred-ing_goal-prep (agent, theme, goal)
se3: post-state: be_loc-prep (agent & theme, goal)
TAKE
se1: pre-state: be_loc-prep (agent & theme, source)
se2: process: pred-ing_source-prep (agent, theme,

source)
se3: post-state: not_be_loc-prep (agent & theme,

source)
LOSE [cause_lose]
se1: pre-state: have (possessor, theme)
se2: process: pred-ing (possessor, theme)
se3: post-state: not_have (possessor, theme)
GET [cause_get]
se1: pre-state: have (recipient, theme)
se2: process: pred-ing (recipient, theme)
se3: post-state: not_have (recipient, theme)
GIVE
se1: pre-state: have (possessor, theme)
se2: process: pred-ing (possessor, recipient, theme)
se3: post-state: have (recipient, theme)
EXCHANGE
se1: pre-state: have (possessor, theme1)
se2: pre-state: have (recipient, theme2)
se3: process: pred-ing (possessor, recipient, theme1,

theme2)
se4: post-state: have (possessor, theme2)
se5: post-state: have (recipient, theme1)
INFO_TRANSFER
se1: pre-state: have (possessor, theme:info)
se2: process: pred-ing (possessor, theme:info)
se3: post-state: have (possessor & recipient,

theme:info)
COME_INTO_EXISTENCE

[cause_come_into_existence]
se1: pre-state: not_be_pred-ed (theme)
se2: pre-state: there_be_not (theme)
se3: process: pred-ing (theme)
se4: post-state: be_pred-ed (theme)
se5: post-state: there_be (theme)
GO_OUT_OF_EXISTENCE

[cause_go_out_of_existence]
se1: pre-state: not_be_pred-ed (theme)
se2: pre-state: there_be (theme)
se3: process: pred-ing (theme)
se4: post-state: be_pred-ed (theme)
se5: post-state: there_be_not (theme)
BECOME [cause_become]
se1: pre-state: not_be_pred-ed (theme, state)
se2: pre-state: not_be (theme, state)
se3: process: pred-ing (theme, state)

se4: post-state: be_pred-ed (theme, state)
se5: post-state: be (theme, state)
BEGIN [cause_begin]
se1: pre-state: not_in_progress (event)
se2: process: pred-ing (event)
se3: post-state: in_progress (event)
CONTINUE [cause_continue]
se1: pre-state: in_progress (event)
se2: process: pred-ing (event)
se3: post-state: in_progress (event)
END [cause_end]
se1: pre-state: in_progress (event)
se2: process: pred-ing (event)
se3: post-state: not_in_progress (event)
POSITIVE_CAUSATION
se1: pred-ing (causer, event)
se2: happen (event)
NEGATIVE_CAUSATION
se1: pred-ing (causer, event)
se2: not_happen (event)
SCALE_UP [cause-scale_up]
d-se1: pre-state: be_loc-prep (theme, source_scale)
se1: process: pred-ing (theme)
d-se2: post-state: be_loc-prep (theme, goal_scale)
d-se3: post-state: be_higher_than (goal, source_scale)
d-se2 = d-se3
SCALE_DOWN [cause-scale_down]
d-se1: pre-state: be_loc-prep (theme, source_scale)
se1: process: pred-ing (theme)
d-se2: post-state: be_loc-prep (theme, goal_scale)
d-se3: post-state: be_lower_than (goal, source_scale)
d-se2 = d-se3
SCALE_MOVE [cause-scale_move]
se1: process: pred-ing (theme, scale)
CHANGE_DIRECTION [cause-change_direction]
se1: pre-state: not_be_pred-ed (theme)
se2: pre-state: be (theme, source_direction)
se3: process: pred-ing (theme)
se4: post-state: be_pred-ed (theme)
se5 = post-state: be (theme, goal_direction)
CHANGE_POSTURE [cause-change_posture]
se1: pre-state: not_be_pred-ed (theme)
se2: pre-state: be (theme, source_posture)
se3: process: pred-ing (theme)
se4: post-state: be_pred-ed (theme)
se5: post-state: be (theme, goal_posture)
CHANGE_STATE [cause_change_state]
se1: pre-state: not_be_pred-ed (theme)
se2: pre-state: be (theme, source_state)
se3: process: pred-ing (theme)
se4: post-state: be_pred-ed (theme)
se5: post-state: be (theme, goal_state)
COS_LEAVE [cause_cos_leave]
same as the ESF of LEAVE
COS_ARRIVE [cause_cos_arrive]
same as the ESF of ARRIVE
COS_TRANSFER [cause_cos_transfer]
same as the ESF of TRANSFER
PERFORMATIVE (speech act)

se1: pre-state: not_be_pred-ed_to_by (theme, ad-
dressee, speaker)
se2: process: pred-ing (speaker, addressee, theme)
se3: post-state: be_pred-ed_to_by (theme, addressee,
speaker)
HAPPEN [cause_happen]
se1: state: there_be (event)
MAINTAIN
se1: pre-state: be (state)
se2: process: pred-ing (agent, state)
se3: state: be (state)
se2 = se3
PRECEDE
se1: state: pred-ing (theme1, theme2)
se2: state: be_before (theme1, theme2)
se1 = se2
FOLLOW
se1: state: pred-ing (theme1, theme2)
se2: state: be_after (theme1, theme2)
se1 = se2

Appendix B. The list of motion verbs in
Friends Season 1 episodes

arrive, back, bail, barge, base, board, bring, brush,
bury, camp, carry, chase, clean, come, conduct, creep,
dance, dip, drag, draw, drift, drive, drop, dump, enter,
erase, fall, fax, fling, float, flush, fly, follow, go, head,
hike, hop, inch, invade, jump, kick, land, lay, lead,
leave, load, move, park, pass, plunge, pop, pour, pull,
push, put, raise, reach, remove, return, ride, roll, run,
rush, send, ship, shove, shuffle, sit, ski, skip, slather,
slide, slip, stand, step, stomp, sweep, swoop, take,
throw, travel, tremble, turn, twist, usher, vacuum,
walk, wave, wind, wipe, wobble

Appendix C. The list of verbs in the scene de-
scription sentences provided by a Computer
Vision Action Recognition algorithm

apply, assemble, attack, bark, beat, box, burn, cele-
brate, cheer, clean, comb, cook, crash, cry, cut, deco-
rate, demonstrate, drink, dunk, eat, explain, explode,
fight, film, fish, fix, floor, fold, give, have, hit, hold,
hug, hunt, install, interact, interview, involve, kiss,
lick, lie, make, mix, paint, perform, pet, ping, place,
play, pose, preform, prepare, punch, race, read, record,
rub, scoop, score, scream, sew, shoot, show, sing,
skate, ski, sleep, slice, smash, smile, solve, speak,
spray, stretch, surf, swim, talk, teach, use, wash,
watch, weave, work, wrestle, write

