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Abstract

Event detection is an important NLP task
that has been only recently tackled in the
context of Polish, mostly due to lack of
language resources. The available anno-
tated corpora are still relatively small and
supervised learning approaches are limited
by the size of training datasets. Event de-
tection tools are very much needed, as they
can be used to annotate more language re-
sources automatically and to improve the
accuracy of other NLP tasks, which rely
on the detection of events, such as question
answering or machine translation. In this
paper we present a deep learning based ap-
proach to this task, which proved to cap-
ture the knowledge contained in the train-
ing data most effectively and outperform
previously proposed methods. We show a
direct comparison to previously published
results, using the same data and experi-
mental setup.

1 Introduction

The task of identifying events in natural language
has a direct impact on the effectiveness of many
other tasks in the area of natural language process-
ing. An obvious example is the task of question
answering, where the knowledge base has the form
of a collection of texts in natural language (Sauri et
al., 2005). The answer to the question When was
the current president elected? requires recogni-
tion of the current system time, determining who
the current president (of Poland, by implicit as-
sumption) is and identifying the event of election.
Other NLP tasks directly influenced by the results
of event detection include summarization (Fila-
tova and Hatzivassiloglou, 2004), (Vanderwende
et al., 2004), (Li et al., 2006) and machine trans-
lation (Horie et al., 2012). In the first case, the
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events identified in the text allow organizing the
content of the summarized document by topics and
ordering them chronologically. In the case of ma-
chine translation, event detection may be used to
create the intermediate knowledge representation
layer that is independent of any natural language,
which is then used to form the final translation.

In the case of the Polish language, there are
only a few published papers on the identifica-
tion of temporal expressions in natural language
text. This is largely due to the current lack of re-
sources, enabling this type of study. For example
the authors of (Jarzgbowski and Przepidrkowski,
2012) use parallel corpora and annotation projec-
tion to Polish to gather the necessary evaluation
material. They use the National Corpus of Pol-
ish (Przepiérkowski et al., 2012), which contains
the basic annotation of simple temporal expres-
sions. Specifically, the manually annotated sub-
corpus of the NCP includes such tags as: date
(calendar dates, such as 24 October, 1945) and
time (hours, minutes and seconds, e.g. five after
twelve).

The recently published subcorpus of the KPWr
corpus (Kocon and Marcinczuk, 2015) has been
specifically annotated with temporal expressions
and events, using an adaptation of the TimeML
specification (Sauri et al., 2006). This collection
of annotated texts along with additional dictio-
naries has been used in (Kocon and Marcinczuk,
2016) to train a CRF-based classifier for the task
of identifying events.

2 Event Detection Task

We define the task of detecting events in text
as a problem of identifying tokens or token se-
quences, which should be annotated as an event
mention according to the TimeML specification,
adapted to Polish by (Marciriczuk et al., 2015). As
in the original TimeML specification, we under-
stand events as situations that happen or occur, an



“event is anything that takes place in time (date,
time and/or duration) and space (has a location),
may involve agents (executor or participants), may
contain or be part of other events and may pro-
duce some outcome (object).” (Marciiczuk et al.,
2015). We aim to classify identified events into
one of the following categories, defined by the
specification:

e action (a dynamic situation which occurs in
time and space),
e.g. run, fly, hit,

e state (a static situation, which does not
change over a period of time),
e.g. stand, sit, remain,

e reporting (a dynamic situation where an
agent informs about an event or narrates an
event),

e.g. explain, tell, inform,

e perception (a physical perception of an event
by an agent),
e.g. see, hear, observe,

e aspectual (indicates a change of a phase of
another event),
e.g. begin, start, interrupt,

e i_action (intensional action, a situation,
where an agent declares his or her will to per-
form an action or give a command),

e.g. try, promise, delay,

e i_state (intensional state, a possible action or
state; an agent refers to some possible event,
which may or may not occur in the future),
e.g. believe, fear, wish.

The goal of the task is thus to create an annota-
tion layer, which associates event category labels
with corresponding tokens. Below is an example
annotation, taken from the training corpus (other
annotation layers not shown here for readability):

(1.) Potym zwyciestwie,.ijon MKS zostat liderem
grupy 2.

(1.) After this victory,.ion, MKS became the
leader of group 2.
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DENSE SOFTMAX
OUTPUT(2)

Figure 1: Branched bi gru-lstm architecture.

3 Deep Learning Approach to Event
Detection

Preprocessing In the first stage of the proposed
method we preprocess the available data and gen-
erate feature vectors for the neural network. We
scan through the text using a fixed-length process-
ing window: for each token in a sentence a se-
quence composed of this token (in the center of
the window) and its WW nearest neighbors within
the sentence is generated. Thus, the sequence has
a length of 2W + 1, where W is called the win-
dow size. The neural network takes as an input
a sequence of feature vectors of individual tokens
and classifies the central token into one of previ-
ously described categories, with an additional not
event class for not relevant tokens.

Features We use two kinds of embeddings for
the real-valued feature vector generation:

1. Simple indexed embeddings, which turn pos-
itive integers (indexes) into dense vectors of
fixed size by means of simple matrix multi-
plication:

— struct — structure of a token (vector
size: 5) - a token string with all digits re-
placed by ’d’, lowercased characters replaced
by ’x’, uppercased characters replaced by
X’ and any other character replaced by -’
("Warszawa-2017" — "Xxxxxxx-dddd"). A
packed structure is a structure with all neigh-
bouring duplicate code characters removed
("Xxxxxxx-dddd" — "Xx-d"),

— position — position of a token in a se-
quence (3).

2. Pretrained Word2vec (Mikolov et al., 2013)
embedding models:
— orth — trained on orthographical word
forms from National Corpus of Polish and
the Polish Wikipedia (vector size: 300),



Anneotation | action | aspectual | i_action | i_state | perception | reporting | state
Number 12861 | 316 717 1205 149 341 1318
Table 1: Annotations in KPWr-540 by category.
. F1
architecture accuracy . . . . .
action | aspectual | i_action | i_state | perception | reporting | state

br bi gru-Istm | 96.291 86.06 | 74.46 55.73 80.39 | 90.82 77.60 74.92
br bi Istm-Istm | 96.282 86.18 | 74.22 57.89 77.62 | 88.28 77.21 74.58
br bi gru-gru 96.229 85.83 | 72.03 56.77 78.92 | 89.97 78.55 73.57
br gru-Istm 96.181 85.75 | 72.68 54.76 77.11 | 88.20 77.30 73.65
br gru-gru 96.174 85.75 | 73.80 55.55 76.89 | 87.33 76.82 71.91
br Istm-1stm 96.162 85.66 | 73.24 54.87 76.94 | 85.93 75.33 73.16
bi gru 96.117 85.44 | 72.97 53.32 79.39 | 88.42 75.28 72.15
bi Istm 96.098 8547 | 71.34 52.55 76.44 | 87.78 76.19 73.72
Istm 95.937 84.87 | 71.88 47.57 75.83 | 74.07 71.91 72.14
gru 95.834 84.47 | 71.20 47.82 75.20 | 73.17 71.28 69.38

Table 2: A comparison of network architectures, ordered by overall accuracy (80—20 data split, average
from 5 tests, KPWr-540, W = 1, dropout = 0.4, {"hypernym-1’, ’lemma’, "orth’, ’class’} embeddings).

— base — trained on lemmatized word

forms (300),

— class — trained on POS classes of words
from National Corpus of Polish and the
Corpus of Polish language of the 1960s

(PL1960)! (30),

— ctag — trained on POS tags of words

(300),

— hypernym-1 — trained on hypernyms of
words taken from plWordNet2 (100),

— synonym — trained on synonyms of
words taken from plWordNet (100).

In the case of word sense ambiguity during

generation of plWordNet-based features (several
matching synonyms or hypernyms), the first base
form common to all synonyms from all matching
synsets is chosen (in alphabetically sorted order).
If there is no common base form, or there is no
match, the base form of the original token is se-
lected.

Word2vec embedding models were trained in
two main steps:

1. Replacement of all tokens in the corpus with
corresponding values of the given feature.

2. Training of the w2v model on this newly cre-

"http://clip.ipipan.waw.pl/PL196x
http://plwordnet.pwr.wroc.pl/wordnet/,
(Maziarz et al., 2016)

ated corpus using the gensim library>.

Word2vec feature vectors are assigned to indi-
vidual tokens by computing given feature value
(lemma, hypernym etc.), which then is directly
mapped to corresponding feature vector. Eg.
ludzie -> cztowiek -> [feature vector].

The input vector of an individual token is a con-
catenation of all component feature vectors. The
size of the input vector of the individual token in a
sequence with all described features included was
1138 elements.

Network architecture Based on preliminary
experiments (described in the Experimental Re-
sults section), we have chosen a network con-
sisting of two distinct subnetworks as the most
promising for further experiments. The network
is split into two branches, Bi-LSTM and Bi-GRU
subnetworks. Each of these subnetworks takes the
same input, but with a different random dropout
applied to it. Bi-LSTM and Bi-GRU can simul-
taneously model word representation with its pre-
ceding and following information. They are com-
posed of two LSTM/GRU neural networks with
a hyperbolic (tanh) and hard sigmoid activation
functions. The forward LSTM/GRU allows to
model the preceding contexts, and a backward
LSTM/GRU to model the following contexts re-
spectively.

‘https://radimrehurek.com/gensim/



dropout | accuracy . . . . Fl . .
action | aspectual | i_action | i_state | perception | reporting | state

0.4 96.29 86.06 | 74.46 55.73 80.39 | 90.82 77.60 74.92
0.5 96.28 86.14 | 74.00 56.84 79.42 | 89.45 76.89 73.84
0.3 96.27 86.00 | 73.40 56.64 80.11 | 89.43 78.07 73.91
0.6 96.24 86.06 | 73.19 56.62 78.72 | 89.51 77.94 73.96
0.2 96.17 85.68 | 71.91 54.53 78.57 | 87.14 77.21 72.97
0.1 96.12 85.36 | 70.97 53.19 78.98 | 86.32 76.19 73.61
0.7 96.08 85.62 | 72.37 54.15 7745 | 88.63 76.75 73.12
0.0 96.03 85.11 | 71.35 50.45 78.59 | 81.79 74.25 71.57
0.8 95.72 84.26 | 71.30 49.85 77.22 | 84.80 73.27 70.56
0.9 95.14 82.38 | 71.85 35.05 75.69 | 28.42 67.38 61.40

Table 3: The influence of the input dropout parameter on network accuracy (80-20 data split, average
from 9 tests, branched bi gru-lstm architecture, KPWr-540, W = 1, {"hypernym-1’, ’lemma’, ’orth’,

"class’ } embeddings).

We flatten and concatenate the bidirectional se-
quence features learned from the subnetworks and
apply random dropout to the result. Then, we use
a dense softmax approach to perform final classi-
fication. The architecture of the network has been
presented on Figure 1.

We train our model with categorical
cross-entropy loss function and Adam op-
timizer (Kingma and Ba, 2014) with small
learning rate decay. For GRU and LSTM
we use glorot (Glorot and Bengio, 2010) and
orthogonal (Saxe et al., 2013) initializers.

4 Experimental Results

Data The KPWr-540 corpus (Kocofi and Mar-
ciinczuk, 2015) has previously been used to train
machine learning methods for the task of event
detection. Here we use the same dataset to al-
low direct comparisons with previously published
approaches. The dataset contains 540 documents,
6 915 sentences (948 sentences without any event
utterance) and 121 747 tokens. In total, there are
17 078 human-made annotations in the corpus.
The breakdown of the annotation types has been
presented in Table 1. The annotations consist pre-
dominantly of a single token, only 4 annotations
have a token span length of 2.

Preliminary experiments To determine the ap-
propriate network architecture for the stated prob-
lem we have conducted a series of preliminary ex-
periments on the available dataset, using a 80—
20 split between train and test data. The most
representative differences between network archi-
tectures, as measured during these experiments,

have been presented in Table 2. The accuracy col-
umn represents overall classification accuracy of
the network (no event class included).

In further experiments we have measured the in-
fluence of the dropout parameter on classification
accuracy (the results are presented in Table 3) and
we have found the optimal set of features (the re-
sults are presented on Figure 2).

Evaluation The final evaluation of the proposed
method accuracy has been performed using a 10-
fold cross-validation on the available data. In these
experiments each fold’s training set was addition-
ally split into 2 parts: train (80%) — used for neu-
ral network training and validation (20%) — used
for early stopping and best model selection. We
have also evaluated two approaches to the train set
splitting: performing a simple split and a balanced
split with preserved ratio of event category sam-
ples. The weights were balanced for each class.

The results of the final comparison of the pro-
posed method to the CRF-based approach pre-
sented in (Kocon and Marcificzuk, 2016) has been
shown in Table 4. The presented deep-learning ap-
proach proved to perform better for each event cat-
egory, as measured by the F1 score.

5 Conclusions and Future Work

In this paper we have applied a deep-learning ap-
proach to the problem of detecting events in text.
As in many other NLP tasks, modern neural net-
works proved to perform very well in this do-
main and outperformed the previously proposed
method, which was based on Conditional Random
Fields.
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Figure 2: The impact of word embeddings configuration on overall classification accuracy (80-20 data
split, average from 5 tests, KPWr-540, W = 1, dropout = 0.4).

Category branched bi gru-Istm Liner2 Liner2
W=1 w/o dictionaries with dictionaries (*)
P R F1 P R F1 P R F1

action 84.90 | 88.33 | 86.57 | 82.51 | 84.90 | 83.69 | 82.49 | 83.87 | 83.18
aspectual | 85.87 | 72.96 | 78.67 | 87.56 | 60.13 | 71.29 | 87.58 | 59.24 | 70.68
i_action 66.89 | 58.58 | 62.12 | 67.48 | 42.54 | 52.18 | 63.56 | 40.92 | 49.79
i_state 84.35 | 82.60 | 83.38 | 84.35 | 78.26 | 81.19 | 85.19 | 77.56 | 81.20
perception | 85.17 | 75.61 | 79.33 | 97.53 | 53.02 | 68.70 | 85.90 | 55.37 | 67.34
reporting | 69.29 | 66.65 | 67.11 | 75.00 | 57.18 | 64.89 | 71.13 | 51.30 | 59.61
state 73.03 | 69.09 | 70.86 | 71.84 | 61.15 | 66.07 | 68.10 | 62.17 | 65.00

Table 4: Comparison of the best performing network architecture against the previously proposed CRF-
based approach. Ten-fold cross-validation on the KPWr-540 corpus. (*) Results taken from (Kocon and

Marcinczuk, 2016).

It is interesting to note that features based on
words (orth, lemma in Figure 2) influenced the
resulting accuracy the most, proving that such
embeddings carry essential information for this
task. On the other hand, features based on part-
of-speech tags (ctag, class) were among the least
informative. A characteristic feature of processing
inflected languages is the importance of lemma-
tization and including lemmas in the feature set.
The large number of inflected word forms in
languages such as Polish (and other Slavic lan-
guages), makes it more difficult for word-form
embeddings to capture information that is properly
generalized. Generating embeddings from lem-

mas helps to solve the problem, as long as the
lemmatization is accurate and does not introduce
additional disambiguation difficulties.

In future work we would like to tackle a more
general task of event recognition in text, including
the identification of textual arguments of events.
This may include such entities as place names
(where the event takes place), time and date spec-
ifications (when it takes place), or person names
(agents or beneficiaries of an event). We would
also like to analyze the relationships occurring be-
tween several events recognized in a text fragment
(e.g. event identity).

hypernym-1,synonym,lemma,orth
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