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Abstract
Creating word embeddings that reflect se-
mantic relationships encoded in lexical
knowledge resources is an open challenge.
One approach is to use a random walk over
a knowledge graph to generate a pseudo-
corpus and use this corpus to train embed-
dings. However, the effect of the shape
of the knowledge graph on the generated
pseudo-corpora, and on the resulting word
embeddings, has not been studied. To ex-
plore this, we use English WordNet, con-
strained to the taxonomic (tree-like) por-
tion of the graph, as a case study. We in-
vestigate the properties of the generated
pseudo-corpora, and their impact on the
resulting embeddings. We find that the
distributions in the psuedo-corpora exhibit
properties found in natural corpora, such
as Zipf’s and Heaps’ law, and also ob-
serve that the proportion of rare words in a
pseudo-corpus affects the performance of
its embeddings on word similarity.

1 Introduction

A word embedding model maps the words in a
vocabulary to dense low-dimensional vectors, by
inferring the relative position of each word in a
shared multidimensional semantic space from its
context of use in a corpus (Mikolov et al., 2013a;
Mikolov et al., 2013b). This approach is founded
on the distributional hypothesis (Harris, 1954),
which states that words which occur in the same
contexts tend to have similar meanings. Such word
embeddings are created by training a neural net-
work language model on natural language corpora.

While such embeddings have been shown to
perform well on semantic relatedness benchmarks
(Baroni et al., 2014; Camacho-Collados and Pile-
hvar, 2018), training on a natural corpus only mod-
els one type of semantic relation between words:

thematic (i.e. syntagmatic). On the flip side, taxo-
nomic (i.e. paradigmatic) relations are not explic-
itly contained in natural language corpora, and as
such are not included in those embeddings (Kac-
major and Kelleher, 2019). In fact, research sug-
gests that the best measures of taxonomic similar-
ity and thematic relatedness are different in dis-
tributional space (Asr et al., 2018). Furthermore,
there are many other kinds of relationships be-
tween words and concepts that can be found in
knowledge engineered resources, such as knowl-
edge bases, ontologies, taxonomies and other se-
mantic networks.

Modelling these relations is an important task in
building AI with comprehensive natural language
understanding abilities, and there have been many
efforts to bring knowledge graphs into an embed-
ding space (see Section 2 for details). One such
approach is the WordNet random walk algorithm
(Goikoetxea et al., 2015): by randomly walk-
ing the WordNet knowledge graph and choosing
words from each synset that has been traversed, a
pseudo-corpus is generated and used for training
word embeddings. The reasoning is that the distri-
butional hypothesis should also apply in this sce-
nario, in the sense that co-occurrence within local
contexts in the pseudo-corpus will reflect the con-
nections between words connected in the WordNet
graph.

Naturally, the shape of the underlying knowl-
edge graph (in terms of node connectivity: i.e.
tree, fully-connected, radial etc.) affects the prop-
erties of a pseudo-corpus generated via a random
walk over the graph. Developing a better under-
standing of the relationship between the shape of
a knowledge graph, the properties of the resulting
pseudo-corpora, and the properties of the result-
ing embeddings, has the potential to inform how
the walk over a given knowledge graph should be
tailored to improve embedding performance.

In this paper we provide an analysis of some



of the properties of pseudo-corpora generated us-
ing the random walk method, and examine the
impact of these properties on embedding perfor-
mance. We base this analysis on the WordNet tax-
onomy, because (a) WordNet is one of the most-
popular taxonomies in use, and (b) in general, the
WordNet taxonomy has a well-understood shape
(tree-like) which informs the analysis of our re-
sults. We find that the pseudo-corpora synthe-
sized from the WordNet taxonomy are not as arti-
ficial as one might expect - they exhibit properties
and regularities also found in natural corpora, fol-
lowing natural language laws such as Heaps’ law
and Zipf’s law. Consequently, we hypothesise that
word embeddings trained on such corpora might
face the same limitations as those trained on natu-
ral corpora would. We explore this notion on the
case study of rare (i.e. infrequent) words, which
are a known problem for word embeddings (Kho-
dak et al., 2018; Pilehvar and Collier, 2017; Pile-
hvar et al., 2018).

2 Related work

Research on building embeddings from knowl-
edge resources such as WordNet (Fellbaum,
1998), can be broadly categorised into three ap-
proaches: i) enrichment, ii) specialisation, and iii)
direct learning from knowledge resources.

Both enrichment and specialisation modify pre-
computed, corpus-based word embeddings with
information from a knowledge resource to either
augment them (enrichment) or to fit them onto
the specific semantic relation described by that
knowledge resource (specialisation). Retrofitting
(Faruqui et al., 2015) is an example of enrichment:
it modifies corpus-based embeddings by reducing
the distance between words that are directly linked
in resources like WordNet, MeSH (Yu et al., 2016)
and ConceptNet (Speer and Havasi, 2012). In our
own recent related work, we have explored the im-
pact of corpus size on vector enrichment (Maldon-
ado et al., 2019).

On the other hand, examples of the specialisa-
tion approach are PARAGRAM (Wieting et al.,
2015), Attract-Repel (Mrkšić et al., 2016), Hyper-
vec (Nguyen et al., 2017) and the work of Nguyen
et al. (2016) and Mrkšić et al. (2017) on syn-
onyms and antonyms. Vulić et al. (2018) and Ponti
et al. (2018) introduce global specialisation mod-
els where vectors for words that are missing in the
knowledge resource are also updated.

More related to our work are the approaches
to learn directly from knowledge resources. Ex-
amples include building non-distributional sparse
word vectors from lexical resources (Faruqui and
Dyer, 2015), building Poincaré embeddings that
represent the structure of the WordNet taxonomy
(Nickel and Kiela, 2017) and building embeddings
that encode all semantic relationships expressed in
a biomedical ontology within a single vector space
(Cohen and Widdows, 2017). The latter two meth-
ods encode the semantic structure of a knowledge
resource in a deterministic manner, while Agirre et
al. (2010) follow a stochastic approach based on
Personalised PageRank: they compute the proba-
bility of reaching a synset from a target word, fol-
lowing a random-walk on a given WordNet rela-
tion. Instead of computing random-walk proba-
bilities, Goikoetxea et al. (2015) use an off-the-
shelf implementation of the word2vec Skip-Gram
algorithm to train embeddings on WordNet ran-
dom walk pseudo-corpora, changing neither the
embedding algorithm nor the objective function1.
The resulting embeddings encode WordNet tax-
onomic information rather than natural word co-
occurence. An advantage of the embeddings pro-
duced by this method is that they can be used as is
or can be combined with real-corpus embeddings
in order to accomplish enrichment or specialisa-
tion (Goikoetxea et al., 2016).

Previous work has analysed semantic proper-
ties of word embeddings generated by random
walk. Goikoetxea et al. (2016), for example,
found WordNet random-walk embeddings to out-
perform corpus-based word embeddings on the
strict semantic similarity (taxonomic similarity)
SimLex-999 benchmark (Hill et al., 2015), con-
firming that they encode taxonomic information
better than real-corpus word embeddings. Addi-
tionally, other researchers have explored differ-
ent varieties of the random walk algorithm. Most
notably, Simov et al. (2017a) drastically enrich
the graph structure by using all available relation-
ships between WordNet synsets, while inferring
and adding others from outside resources (Simov
et al., 2015; Simov et al., 2017b). However, to the
best of our knowledge, there has been no work on
analysing the properties of the corpora generated
by random-walk processes. In particular, there has
been no work on comparing their statistical prop-
erties with those of natural corpora.

1http://ixa2.si.ehu.eus/ukb/



3 Pseudo-corpora

3.1 Random walk pseudo corpus generation
Our pseudo-corpus generation process is inspired
by the work of Goikoetxea et al. (2015). They
performed random walks over the full WordNet
knowledge base as an undirected graph of inter-
linked synsets. Their method first chooses a synset
at random from the set of all synsets, and then
performs a random walk starting from it. They
also use a predefined dampening parameter (α) to
determine when to stop the walk, so that at each
step the walk might move on to a neighbouring
synset with probability (α), or might terminate
with the probability (1 − α). It is usually set to
0.85. Each time the random walk reaches a synset,
a lemma belonging to the synset is emitted, using
the probabilities in the inverse dictionary. Once
the random walk terminates, the sequence of emit-
ted words forms a pseudo-sentence of the pseudo-
corpus. The process repeats until a given number
of sentences have been generated.

Our pseudo-corpus generation algorithm is sim-
ilar, however, there are a number of important dif-
ferences. First, Goikoetxea et al. make use of
all available connections in the graph, whereas we
only traverse the hypernym/hyponym relationship
and ignore non-taxonomic relationship types such
as gloss, meronym and antonym relations. This
effectively allows us to exclusively traverse Word-
Net’s taxonomic graph, which lets us embed only
taxonomic relations. More importantly, this de-
cision is motivated by the fact that we wish to
use WordNet’s taxonomic graph as a case study
of how the underlying structure of a knowledge
graph affects the properties of a generated pseudo-
corpus. Constraining the random walk to just the
taxonomy reduces the graph to a tree shape, which
provides an intuitive and transparent understand-
ing of its structure. This restriction to the taxo-
nomic components of the graph has two important
implications: (i) it permits us to consider the graph
as directed (hypernym/hyponym→up/down), and
(ii) it makes the graph quite sparse. The other two
significant differences between our algorithm and
Goikoetxea et al. are derived from these two im-
plications and are implemented as two new hyper-
parameters on the algorithm: a directionality and
a minimum sentence length parameter.

The directionality parameter constrains the per-
missible directions that the walk can proceed
along as it traverses the tree structure (e.g., only

up, only down, both). This hyperparameter per-
mits us to explore the relationship between varia-
tions in the random walk algorithm and the num-
ber of rare words in the generated corpus (see Sub-
section 3.2). The minimum sentence length pa-
rameter enables us to filter the sentences generated
by the random walk algorithm by rejecting any
sentence that is shorter than a prespecified length
n. The decision to exploit only the taxonomic rela-
tions makes the graph quite sparse: a lot of nodes
end up disconnected, as some synsets are not part
of the WordNet taxonomy, but are connected to it
only via non-taxonomic relations. Given that we
allow our algorithm to start the random walk any-
where in WordNet, it often begins, and ends, its
walk at a disconnected node, which results in a lot
of one-word sentences in the synthesized pseudo-
corpus. To remedy this, the minimal sentence
length hyperparameter disallows generating sen-
tences with only one word, or sentences shorter
than the pre-specified value. Section 3.2 contains
details on this and other hyperparameters.

In our algorithm2, the random walk starts at a
random synset and chooses a lemma correspond-
ing to that synset based on the probabilities pro-
vided by WordNet’s inverse mapping from synsets
to lemmas. Once the lemma has been emitted, we
check if the synset has any hypernym and/or hy-
ponym connections assigned to it (depending on
the direction constraint). If it does, we choose
one at random with equal probability and con-
tinue the walk towards it, choosing a new lemma
from the new synset. This process continues un-
til one of two conditions are met: (a) there are
no more connections to take, or (b) the process
is terminated according to the dampening factor
(α). We then restart the process and create a new
pseudo-sentence, until we have generated the re-
quired number of sentences. Some examples of
pseudo-sentences produced by our system:

measure musical notation tonality minor mode

Dutch-processed cocoa powder chocolate milk

2Although Goikoetxea et al. provide an implementation
of their random walk algorithm, due to the differences out-
lined above and the special use cases for our research, we
have decided to reimplement it in Python and use NLTK’s
version of WordNet (Bird and Loper, 2004). Our code and
generated datasets are being made available online.
https://github.com/GreenParachute/

wordnet-randomwalk-python



size direction min.sent.len. token count avg.sent.len. %same sents vocabulary %rare words
500k up 2w/s 3,515,524 7.03 18.5 64,257 67.35
500k down 2w/s 1,475,336 2.95 68.56 55,508 53.35
500k both 2w/s 2,401,498 4.80 20.06 67,049 39.86
500k up 3w/s 4,011,247 8.02 17.06 63,923 66.48
500k down 3w/s 2,097,641 4.20 71.01 46,701 52.33
500k both 3w/s 2,822,171 5.64 12.22 67,353 33.30
1m up 2w/s 7,041,365 7.04 27.93 66,840 41.84
1m down 2w/s 2,947,657 2.95 78.57 59,894 40.81
1m both 2w/s 4,802,354 4.80 28.49 67,647 15.82
1m up 3w/s 8,032,165 8.03 26.31 66,401 40.52
1m down 3w/s 4,195,458 4.20 79.46 51,310 43.91
1m both 3w/s 5,636,469 5.64 18.88 67,683 11.31
2m up 2w/s 14,079,962 7.04 39.56 67,587 19.32
2m down 2w/s 5,898,583 2.95 85.91 63,089 30.03
2m both 2w/s 9,602,490 4.80 37.66 67,756 3.88
2m up 3w/s 16,061,599 8.03 37.65 67,081 18.20
2m down 3w/s 8,389,396 4.19 85.92 55,314 35.99
2m both 3w/s 11,274,757 5.64 26.99 67,757 2.34

Table 1: Statistics of generated random walk corpora

3.2 Pseudo-corpora properties

We controlled the generation of the pseudo-
corpora using the following hyperparamters:

1. Size. We define corpus size in terms of
the number of random restarts, i.e. number
of pseudo-sentences generated. We generate
pseudo-corpora of sizes 1k, 10k, 100k, 500k,
1m and 2m sentences.

2. Direction. As we are only walking the Word-
Net taxonomy, we define direction as allow-
ing the walk to either only go up the hierar-
chy, down the hierarchy, or both ways.

3. Minimum sentence length. We impose a
constraint on minimal sentence length and
generate corpora with 2-word and 3-word
minimum length sentences.

Combining all the hyperparameters yielded a
total of 36 pseudo-corpora of varying sizes, direc-
tions and minimal sentence lengths. However, due
to space constraints and the fact that the smaller
corpora have shown to be too variable to make
confident inferences, we only present data and
analyses of the three largest corpus groups.

Note that we are not necessarily looking for
a combination of hyperparameters that performs
best on evaluation tasks, rather we use them as
a tool to generate pseudo-corpora with different
properties. Following that, for each pseudo-corpus
we measure the following statistical properties: to-
tal number of tokens, average sentence length (av-
erage tokens per sentence), percentage of identical

sentences, size of vocabulary, and percentage of
rare words in the vocabulary (see Table 1).

From Table 1 it is visible that the number of to-
kens grows with the size in terms of number of
restarts. Interestingly, however, although the aver-
age sentence length correlates with absolute num-
ber of tokens, it stays constant regardless of the
number of restarts, all other things being equal.
For example, the average sentence length for the
500k.both.2w/s is 4.8, and the average sentence
length for the 2m.both.2w/s corpus is also 4.8 to-
kens per sentence. This holds for any other anal-
ogous combination, further supporting the claim
that the underlying graph structure of the corpus is
the source of certain word distributions and regu-
larities present in the corpus.

Furthermore, the number of tokens also varies
depending on the other two hyperparameters: di-
rectionality and minimum sentence length. For
example, both average sentence length and abso-
lute number of tokens are sensitive to the direc-
tion hyperparameter. Regardless of the number of
restarts, corpora generated by only walking up the
taxonomy create the longest sentences on average
and have the largest number of tokens, while only
walking down the taxonomy generates the shortest
sentences and the lowest number of tokens.

Such behaviour is a direct consequence of the
WordNet taxonomy’s structure and the distribu-
tion of edges between nodes. The taxonomy is
a tree, and as such the vast majority of its nodes
are leaf nodes positioned near the bottom. Conse-
quently, each time the random walk restarts, it is
far more likely to start somewhere near the bottom



of the taxonomy, rather than at the top. There-
fore, if the walk can only go up, on the majority
of restarts it will be able to traverse the taxon-
omy for a large number of nodes before either α
kicks in, or it reaches the top and has nowhere to
go. Conversely, if the walk is constrained to only
move down the taxonomy then on most restarts the
walk will only be able to take a few steps before it
has nowhere to go and is forced to terminate. Fi-
nally, the reason that allowing both directions in
the walk generates shorter sentences than going
only up is because almost by definition, a synset
can have only 1 hypernym, but several hyponyms,
so it is more likely to choose a node that is directed
downward. In doing so, it behaves more similarly
to the algorithm that only goes down and generates
shorter sentences than the upward one.

Naturally, the larger the corpus (both in terms
of random restarts and tokens), the larger the vo-
cabulary. When comparing the impact of the di-
rection hyperparameter, going down produces cor-
pora with the least WordNet coverage, and go-
ing in both directions yields the highest coverage.
Again, this is a direct consequence of the structure
of the underlying graph. Due to the nature of the
random walk going downward the paths are short
and there is not much variety, so the vocabulary
coverage depends exclusively on the position of
the random restarts and is thus significantly lower.

Finally, we look at rare words in the generated
corpora. We define a word type as rare if it ap-
pears in the corpus less than 10 times. We calcu-
late the percentage of rare words (types/lexemes)
versus the full vocabulary. Overall, the percentage
of rare words gets smaller as corpus size increases,
as more and more words appear over 10 times.
However, the hyperparameters seem to have vary-
ing effects on this value. For the 500k corpora,
the highest percentage of rare words are in cor-
pora generated by only going up, while the low-
est percentage are in corpora generated when the
walk is allowed to proceed in both directions. All
percentages are slightly lower for corpora with a
3-word sentence minimum when compared to cor-
pora with a 2-word sentence minimum. Moving
up by one size, corpora with 1m sentences seem
to be at a tipping point. Looking at corpora with
a 2-word sentence minimum, they follow the per-
centage of rare words ordering as the 500k corpora
of up-down-both, but just barely, and if we look
at 3-word sentence minimum corpora the top two

rankings switch places. This switch is also appar-
ent in all the 2m-sentence corpora. The percent-
age of rare words drops off much quicker for cor-
pora generated by only going up compared with
corpora generated by only going down. Conse-
quently, even though the up direction generates
corpora with the highest percentage of rare words
in the smaller sizes, this percentage quickly drops
as the corpus size increases. Hence, corpora of
2m sentences generated by only going up have a
smaller percentage or rare words compared with
the corpora generated by only going down. Likely
this is a consequence of the much more drastic in-
crease in absolute number of tokens between the
two corpus varieties. The upward corpora consis-
tently have roughly twice as many tokens as the
downward corpora, given same number of sen-
tences (i.e. restarts). Overall, the corpus with
the smallest percentage of rare words, with only
2.34% rare words in the vocabulary, is the one gen-
erated with 2m restarts and allowing the walk to
move in both directions. Likely, this is because it
is generated from the graph with the most connec-
tions, and hence an overall higher coverage; at the
size of 2 million sentences, it would have traversed
most of the taxonomy several times over, thereby
significantly reducing the number of rare words.

3.3 Scaling Linguistic Laws of Natural
Languages

The properties described in Subsection 3.2 are a
consequence of the corpora being artificially gen-
erated from a WordNet’s taxonomic graph struc-
ture and from the way the random walk algo-
rithm has traversed this graph. However, inspect-
ing word distributions in the corpus showed inter-
esting regularities that seem to indicate similarities
with natural corpora. The regularities in the fre-
quency of text constituents have been summarized
in the form of linguistic laws (Altmann and Ger-
lach, 2016; Gerlach and Altmann, 2014). Linguis-
tic laws provide insights on the mechanisms of text
(language, thought) production. One of the best
known linguistic laws is Zipf’s Law (Zipf, 1949).
It states that the frequency, F of the rth most fre-
quent word (i.e. the fraction of times it occurs in a
corpus) scales as follows:

Fr ∝ r−λ,∀ r � 1 (1)

Zipf’s Law is approximated by a Zipfian distri-
bution which is related to discrete power law prob-



(a) Direction: up (b) Direction: down (c) Direction: both

Figure 1: Zipf distributions of two natural corpora (shaded blue and orange) and all our pseudo-corpora.
We group the three different directions taken by the random walk.

(a) Direction: up (b) Direction: down (c) Direction: both

Figure 2: Heaps’ law of two natural corpora (shaded blue and orange) and all our pseudo-corpora. We
group the three different directions taken by the random walk.

ability distributions. Here, λ is the scaling expo-
nent and is ≈ 1.0 for natural languages.

Heaps’ law is another scaling property and
shows how vocabulary grows with text size. Con-
sider n be the length of a text and v(n) be its vo-
cabulary size. Then Heaps’ law is formulated as:

v(n) ∝ nβ,∀ n� 1 (2)

where the exponent for the Heaps’ law is found
to be 0 < β < 1 for natural languages.

Here we investigate whether our pseudo-
corpora uphold these laws, so as to confirm their
naturalness. We employed Kolmogrov-Smirnov
(KS) Distance to compare the pseudo-corpora
against the natural corpora. In our case, we check
KS distance between the natural and pseudo-
corpora for both Zipf’s and Heap’s law.

Our analysis revealed that the KS distance be-
tween our 2 natural corpora is consistent with
the distance between the natural and synthetic
corpora, indicating consistent variations for both
Zipf’s and Heaps’ law. For both our natural and
synthetic corpora, λ ≈ 1.1 and β ≈ 0.9. In
this case, it is fair to assume that our pseudo-

corpora maintain these properties of natural lan-
guage. This finding is important because it indi-
cates that embeddings trained on pseudo-corpora
will have similar shortcomings to embeddings
trained on natural text. For example, past research
has highlighted difficulties of learning good em-
beddings for rare words in natural corpora (Lazari-
dou et al., 2017; Pilehvar and Collier, 2017).

In addition, in Figures 1 and 2 respectively
we also plot Zipf’s law and Heaps’ law for all
our pseudo-corpora, alongside two natural cor-
pora (the Brown corpus (Francis, 1964) and a
small chunk of wikitext-2 (Merity et al., 2016)).
Though our test of KS distance confirms that all
the pseudo-corpora follow Heaps’ law and a Zip-
fian distribution, it is still interesting to note the
slight variations in the Zipf curves. Uniformly, the
’up’ pseudo-corpora most closely match the nat-
ural corpora, the ’down’ pseudo-corpora do so to
a much lesser degree, and ’both’ fall somewhere
in the middle. This indicates that the direction-
ality hyperparameter also enables us to simulate
slightly different underlying graph structures, in
a sense pruning the original graph from the per-



spective of the random walk. These figures rein-
force the fact that the nature of the random walk
algorithm, the structure of the graph and the paths
that are walked have an impact on the resulting
pseudo-corpus.

Motivated by these findings, in the next section
we will evaluate the performance of a set of em-
beddings trained on a number of pseudo-corpora
and consider the effect of rare words on the per-
formance of these embeddings.

4 Evaluation and analysis

After generating all the corpora, we trained word
embeddings and evaluated their performance on
the task of word similarity.

4.1 Training

We trained our embeddings using the 2017 version
of Pytorch SGNS, a publicly available implemen-
tation3 of the skip-gram with negative sampling
(SGNS) algorithm, introduced by Mikolov et al.
(2013a). We only made minor data-handling opti-
misations – the objective function is not modified
in any way.

The vectors were computed with SGNS using
a window of five words on both sides of a slid-
ing focus word, without crossing sentence bound-
aries. Twenty words were randomly selected from
the vocabulary based on their frequency as part of
the negative sampling step of the training. The fre-
quencies in this weighting were smoothed by rais-
ing them to the power of 3

4 before dividing by the
total. All vectors produced by the SGNS system
had 300 dimensions and trained for 30 epochs. We
train separate embeddings on each combination of
the three hyperparameters and report scores from
the best performing epoch.

4.2 Evaluation

We evaluate the performance of our embeddings
on five different benchmarks: the similarity-
focused SimLex-999 (Hill et al., 2015); the En-
glish test set from the SemEval 2017 Task 2 chal-
lenge (Camacho-Collados et al., 2017) (hence-
forth referred to as SemEval-17); the relatedness
dataset WS-353 (Finkelstein et al., 2002); and the
Princeton evocation benchmark (Boyd-Graber et
al., 2006). However, we suspect none of these
benchmarks are ideally suited to the task at hand,

3https://github.com/theeluwin/
pytorch-sgns

as they are all based on human judgements on an
often broad idea of word similarity, yet we are
specifically modelling taxonomic relations. For
this reason, in addition to the above benchmarks,
we develop a novel test set, inspired by the work
of (Pedersen et al., 2004)4: we take the word pairs
from SimLex, and replace the human similarity
judgements with a WordNet similarity measure
(based on the distances in the graph). We refer
to this benchmark as WordNet-paths. This serves
as a sanity check and an appropriate test set for our
taxonomic embedding model.

As is common practice, we evaluate our model
by computing a Spearman correlation score be-
tween the cosine similarity of the word vectors
from our model and the scores in our benchmarks.
Table 2 presents the results alongside the percent-
age of rare words in a given benchmark.

4.3 Discussion

The aim of this experiment is not to beat state of
the art scores, but rather to investigate different
WordNet taxonomic structures generated by the
random walk hyperparameters and their impact on
rare words and performance of word embeddings
trained on the pseudo-corpora. We hypothesise
that the direction constraint of the random walk
has an effect on the percentage of rare words in
the resulting corpus, which in turn affect the per-
formance of the trained embeddings.

With that in mind, we look at Table 2. Our high-
est correlation scores come from the WordNet-
paths benchmark, which is not surprising as this
benchmark reflects most accurately what our mod-
els have learned – taxonomic relations in Word-
Net. The highest overall score comes from the
largest corpus, but looking at the different groups
of different-sized corpora, the best performing
model is always the one allowing both directions
in the random walk, which generates the low-
est percentage of rare words. Our hypothesis is
clearly confirmed on this benchmark, where all
the best scores come from corpora with the lowest
percentage of rare words, while the lowest scores
come from corpora with the highest percentage of
rare words in two out of six cases.

In contrast with WordNet-paths, our worst per-
formance is achieved on the evocation benchmark.
This is to be expected, as the evocation benchmark
models a relationship between words that is very

4http://wn-similarity.sourceforge.net



simlex ws353 semeval evoc wn-paths
corpus %rare score %rare score %rare score %rare score %rare score
500k-up-2w/s 2.63 39.03 8.01 39.24 11.81 37.23 5.26 7.93 2.63 52.89
500k-down-2w/s 2.53 19.22 6.86 21.23 10.47 20.46 3.72 4.46 2.53 41.86
500k-both-2w/s 1.14 32.56 2.97 42.76 4.83 38.12 1.31 9.87 1.14 56.31
500k-up-3w/s 2.92 37.07 7.09 34.65 11.60 35.70 4.71 8.61 2.92 50.60
500k-down-3w/s 2.97 31.26 8.70 33.34 10.06 27.51 5.26 4.13 2.97 49.12
500k-both-3w/s 1.04 34.84 2.75 45.53 4.72 40.36 1.10 10.61 1.04 57.00
1m-up-2w/s 1.24 41.73 3.20 43.34 5.85 39.56 2.08 8.61 1.24 53.44
1m-down-2w/s 1.09 30.46 3.43 41.69 6.26 35.09 2.08 6.90 1.09 47.56
1m-both-2w/s 0.50 40.55 0.92 48.25 1.75 40.93 0.44 11.14 0.50 57.60
1m-up-3w/s 1.19 42.28 2.75 39.75 5.85 40.51 2.19 9.75 1.19 54.15
1m-down-3w/s 1.93 36.37 5.03 42.65 8.11 36.19 4.05 5.48 1.93 51.15
1m-both-3w/s 0.35 42.13 0.69 46.59 1.33 39.16 0.33 10.93 0.35 57.73
2m-up-2w/s 0.59 42.58 1.14 44.38 2.77 39.61 0.77 8.63 0.59 53.52
2m-down-2w/s 0.69 34.87 1.14 41.79 4.00 36.75 0.99 5.62 0.69 47.67
2m-both-2w/s 0.15 43.28 0.46 47.03 0.41 40.48 0.22 10.95 0.15 58.00
2m-up-3w/s 0.50 43.40 1.14 43.97 2.46 39.71 0.77 9.65 0.50 54.01
2m-down-3w/s 1.04 36.80 3.43 44.29 5.44 35.17 2.41 4.85 1.04 49.47
2m-both-3w/s 0.05 43.28 0.46 47.51 0.31 40.35 0.22 11.14 0.05 56.55

Table 2: Results for all embeddings trained on various corpora, showing Spearman correlation scores for
best epoch per corpus trained on, as well as the percentage of rare words in a given benchmark. Cells
shaded green represent the lowest percentage of rare words and the highest Spearman score obtained in
the given group of embeddings on a given benchmark. Cells shaded red represent the highest percentage
of rare words and the lowest Spearman score on the given group.

different in nature from the purely taxonomic re-
lationship that we model here. This, together with
the fact that our best correlation scores come from
the WordNet paths benchmark, confirms that our
embeddings do indeed reflect a purely taxonomic
understanding of words. Yet in spite of the cor-
relation scores being so low, our hypothesis holds
here as well – in each group of comparable em-
beddings, the highest score comes from pseudo-
corpora that traversed both directions, and gener-
ated the least rare words. The lowest scores stem
from corpora with the highest percentage of rare
words in five out of six cases.

As expected, we achieve much higher correla-
tions scores on the remaining three benchmarks.
Though the highest scores are achieved on WS-
353, the overall performances between bench-
marks are comparable insofar as they all model
word similarity and relatedness. Our hypothesis
holds just as consistently when examining the re-
sults on SemEval-17 and WS-353, where five out
of six times and six out of six times respectively,
the best performing model stems from a corpus
that yields the lowest percentage of rare words,
while the inverse holds four out of six times.

SimLex-999 seems to be somewhat of an out-
lier among these benchmarks. This is peculiar be-
cause, though it is more similarity-focused, the na-
ture of the relations should not be that different
from the one in WS-353 and SemEval-17. Our

hypothesis still holds in the larger corpora (2m-
2w/s, 2m-3w/s and 1m-3w/s), but in the smaller
ones the lowest percentage of rare words is pro-
duced by the corpora allowing both directions, yet
the highest scores actually come from the corpora
produced going up. Given that the inconsistencies
happen in the smaller corpora, it is possible that
this is just an unlucky sample, or that the interplay
of confounding factors has a stronger effect in the
smaller corpora and negatively affects the perfor-
mance of the corpora allowing both directions.

Overall, the distribution of best-worst models is
fairly consistent across the 5 benchmarks. The
best models are those going in both directions,
and 2-word sentence minimum models are usually
slightly outperformed by 3-word sentence models,
though the differences are marginal. Unsurpris-
ingly, models allowing both directions also con-
sistently produce the lowest percentage of rare
words. From this, it seems, also follows that more
often than not those models have the best scores.

5 Conclusion

In our work we expand our understanding of the
random walk algorithm, in terms of the rela-
tionship between the structure of the underlying
knowledge graph, the properties of the pseudo-
corpora generated from the graph, and the perfor-
mance of the embeddings trained on these pseduo-



corpora. We use the WordNet taxonomy as a case
study for our work. We find that all our pseudo-
corpora resemble natural corpora at a statistical
level. We attribute these properties to the under-
lying tree structure of the graph from which the
pseudo-corpora are built. We also train word em-
beddings on these corpora to study the impact of
these properties on the embedding performance on
word similarity evaluation tasks. Our evaluations
confirm a successful modelling of taxonomic rela-
tions, and on most benchmarks our data supports
the hypothesis that the ratio of rare words in a
pseudo-corpus affects embedding performance.

Understanding the properties of the pseudo-
corpora generated from a knowledge graph struc-
ture can inform how the random walk should be
designed and run for any graph. E.g. knowing
that a tree-like graph structure results in pseudo-
corpora exhibiting Zipfian properties is useful as
it highlights the presence of rare words in the cor-
pora. As the vocabulary of the lexical resource is
finite, the problem of rare words within the gener-
ated pseudo-corpora can be addressed by ensuring
that the pseudo-corpus is large enough so that even
the relatively rare words appear frequently enough
to learn adequate embeddings. This perspective
helps in answering questions such as: how large
should a pseudo-corpus be?

Though this might seem obvious, an important
takeaway is that the properties of any pseudo-
corpus generated from a knowledge graph will be
affected by the properties of that graph–its struc-
ture and node connectivity will be reflected in the
generated corpora, thus impacting the resulting
embeddings. We do not claim that any graph struc-
ture will exhibit the exact properties we found, but
rather that this kind of analysis should be consid-
ered when using a random walk algorithm.

As far as future work, there are several excit-
ing avenues that can be explored. Most immedi-
ately, it would be important to examine whether
the natural properties and rare word percentages
in the pseudo-corpora hold when applied to more
dense graph structures with connections beyond
the WordNet taxonomy, such as WordNet gloss
relations, polysemy, antonymy, meronymy, etc.
Going further, one could apply the random walk
to other knowledge bases to see if the regulari-
ties hold there as well. Additionally, combining
pseudo-corpora from different knowledge bases,
or simply enriching one graph with connections

from another, adding additional thematic relations
from other knowledge bases. Certainly, this would
make the problem more complex, and would ren-
der the directionality parameter moot, as a lot of
those connections do not have an inherent direc-
tionality to them. But this is definitely the next
step in improving scores and increasing coverage.

Going even further, it would be beneficial to
explore the application of both these taxonomic
embeddings, as well as more complex knowledge
graph embeddings, on tasks other than word sim-
ilarity, such as hypernym prediction (which are
better suited to exploiting taxonomic knowledge)
or perhaps using them to tackle the problem of
type and token identification of multi-word ex-
pressions.
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