
Efficient text generation of user-defined topic using generative adversarial
networks

Chenhan Yuan
Dept. of Computer Science

Virginia Tech
VA, USA

chenhan@vt.edu

Yi-chin Huang
Dept. of Computer Science

National Pingtung University
Pingtung, Taiwan

ychin.huang@gmail.com

Cheng-Hung Tsai
Institute for Information Industry

Taipei, Taiwan
jasontsai@iii.org.tw

Abstract

This study focused on efficient text generation
using generative adversarial networks (GAN).
Assuming that the goal is to generate a para-
graph of a user-defined topic and sentimental
tendency, conventionally the whole network
has to be re-trained to obtain new results each
time when a user changes the topic. This
would be time-consuming and impractical.
Therefore, we propose a User-Defined GAN
(UD-GAN) with two-level discriminators to
solve this problem. The first discriminator
aims to guide the generator to learn paragraph-
level information and sentence syntactic struc-
ture, which is constructed by multiple-LSTMs.
The second one copes with higher level in-
formation, such as the user-defined sentiment
and topic for text generation. The cosine sim-
ilarity based on TF-IDF and length penalty
are adopted to determine the relevance of the
topic. Then, the second discriminator is re-
trained with generator if the topic or senti-
ment for text generation is modified. The
system evaluations are conducted to compare
the performance of the proposed method with
other GAN-based ones. The objective results
showed that the proposed method is capable
of generating texts with less time than oth-
ers and the generated text are related to the
user-defined topic and sentiment. We will fur-
ther investigate the possibility of incorporating
more detailed paragraph information such as
semantics into text generation to enhance the
result.

1 Introduction

Text generation, as a basic natural language pro-
cessing task, has many applications, such as dia-
logue robots (Li et al., 2017), machine translation
(Hu et al., 2017), paraphrasing (Power and Scott,
2005) and so on. With the rise of deep learning,
different neural networks are introduced to gener-
ate text. For example, researchers use the recur-

rent neural network (RNN) (Mikolov et al., 2010)
to train the language model because of its capa-
bility to process sequential data. However, the
RNN suffers from the gradient vanishing problem
(Hochreiter, 1998) when the sequence becomes
longer. To address this problem, Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997)is further adopted as a sequential neural net-
work model to generate sentences.

Lately, the Generative Adversarial Networks
(GAN) framework (Goodfellow et al., 2014) has
been introduced into the NLP community. GAN
has two different models for completing the data-
generating task. One of them is Generator G,
which is responsible for generating data, and an-
other one is discriminator D, which determines
whether the input data is the real data or not.
The generator G continuously optimizes generated
data based on the judgment of discriminator D. Af-
ter several epochs, the generated data will become
more realistic.

However, GAN was originally designed to pro-
cess continuous data, and using discrete data as
input would make it impossible to update the gra-
dients of the GAN framework(Huszár, 2015). To
process discrete data, several variants of the GAN
model for generating text have been proposed.
These GAN variants could achieve good perfor-
mances in text generation task, such as MaskGAN
(Fedus et al., 2018), RankGAN (Lin et al., 2017),
and TextGAN (Zhang et al., 2016).

In order to make these models fit the distribu-
tion of real text data better, the number of pa-
rameters of text generation models based on neu-
ral network are increased, which means that train-
ing these neural network models often takes a lot
of time even using GPU. Conventionally, topic-
related text generation models incorporate an ar-
bitrary topic as an input by adopting mechanisms
like attention (Feng et al., 2018). Therefore, each



time when the user wants to generate new sen-
tences with another topic or sentimental tendency,
the text generation models have to be retrained
with all parameters to satisfy new requirements.
In some scenarios, e.g., news generation, spend-
ing lots of time retraining model is not practical
and the user wants new responding quickly.

To tackle this problem, a novel text genera-
tion model based on GAN is proposed, which is
called User-Defined Generative Adversarial Net-
works (UD-GAN). The key idea is to separate the
sentence syntax model as the basic model and the
topic-related model as a higher-level model, and
these two could be trained independently from
each other. So, when the topic or other user-
defined information is modified, e.g., sentimental
tendency, only one of both models needs to be re-
trained. In this way, once the basic syntax model
is established, the following training will become
much faster, since only the higher-level model has
to be retrained.

In our proposed method, the discriminator is
constructed based on this idea. One of the discrim-
inators called discriminator-general, which learns
to determine the proper context information and
whether the input sentence is a valid syntactic
structure. Another discriminator is called the
discriminator-special, which ensures the output is
user-defined. Inspired by SeqGAN (Yu et al.,
2017), we use the evaluation results of the gener-
ated text from discriminators as a reward to guide
the generator to select future actions, which is to
generate an updated word.

For training the discriminator-special, it will
take feature vectors as input, instead of sentences.
The feature vector is defined based on the senti-
ment detection and topic relevance of generated
sentence. The cosine similarity based on TF-IDF
and length penalty are jointly adopted to represent
topic relevance.

Note that the UD-GAN is designed to be
more practical to generate short paragraphs,
which means sentences generated by it should
be context-aware and behave like a paragraph to-
gether with surrounding sentences. To achieve
this idea, discriminator-general is designed with
hierarchical multiple LSTM layers. The LSTM
at the top of the network processes paragraph-
level information while the bottom LSTMs pro-
cess sentence-level information.

The organization of the paper is as follows:

First, we discussed the related works of our
method in the section 2. The proposed method
is described in the Section 3, including the fea-
ture extraction and model definition and training.
In the Section 4, the experiment settings and eval-
uation results of the comparing methods are de-
picted. Finally, the concluding remarks and future
works are described in the Section 5.

Algorithm 1 Initial training generator Gθ,
discriminator-special Dγ, discriminator-general
Dφ

1: Initialize Gθ, Dφ and Dγ with random
weightsθ, φ and γ

2: Pre-train Gθ using MLE on real text data set
3: Generate negative samples using Gθ to train
Dφ and Dγ

4: Generate synthetic positive samples to train
Dγ

5: Minimizing the cross entropy to pre-train Dγ
6: Minimizing the cross entropy to pre-trainDφ
7: for i← 1 to M do
8: for j ← 1 to N do
9: Generate a sequence Y1:T v Gθ

10: Compute rewards via Eq.5
11: Update parameters of Gθ via Eq.4
12: end for
13: for k ← 1 to P do
14: Generate negative samples using Gθ
15: Train Dφ with negative samples and real

text data via Eq.6
16: end for
17: for l← 1 to T do
18: Generate feature vectors corresponding

to negative samples generated by Gθ
19: Generate synthetic feature vectors
20: Train Dγ with negative and synthetic

feature vectors via Eq.6
21: end for
22: end for

2 Related Work

Text generation is a basic task in natural language
processing (NLP). In previous works, many re-
searchers (Power and Scott, 2005) extracted gram-
mar rules from text to generate new texts. These
works are capable of generating semantically rich
and grammatically correct text, but due to the fixed
grammar rules, generated sentences are quite lack
of diversity. As neural networks could fit the dis-



Figure 1: The framework of the proposed UD-GAN

Algorithm 2 Following training generator Gθ,
discriminator-special Dγ

1: Initialize Gθ, Dγ with random weightsθ, Dγ
2: Load trained Dφ
3: Do 2v5 steps in Algorithm 1
4: for i← 1 to M do
5: Do 8v12 steps in Algorithm 1
6: for l← 1 to T do
7: Generate feature vectors corresponding

to negative samples generated by Gθ
8: Generate synthetic feature vectors
9: Train Dγ with negative and synthetic

feature vectors via Eq.6
10: end for
11: end for

tribution of real data better, some researchers de-
sign GAN-based models as language models to
generate text. Unlike standard GAN, the loss func-
tion or training method of generator are modified
to enable GAN to process discrete data.

For example, In TextGAN (Zhang et al., 2016),
researchers apply feature matching with standard
GAN loss function to train the generator. Rein-
forcement learning (Sutton et al., 2000) is another
useful machine learning technique to train model
with unlabeled data. Trained model will choose
next actions to maximize expected reward, which
is given by interface environment. Yu proposed
SeqGAN (Yu et al., 2017), which combine rein-
forcement learning with GAN. In SeqGAN, the
generator uses the result of discriminator as a re-
ward and choose next actions, which is to generate
the next words in text generation task. To gener-
ate longer text, LeakGAN (Guo et al., 2018) is in-
troduced to enable the discriminator leaks features
extracted from its input to generator, which then

uses this signal to guide the outputs in each gener-
ation step before generating the entire sentence.

Another vital application of NLP is the senti-
ment analysis (Pang et al., 2008; Wilson et al.,
2005). Generally, the sentiment analysis task mea-
sures the emotional tendency of the whole sen-
tence based on the word usage that can represent
emotions in that sentence. Therefore, the estab-
lishment of an emotional word dictionary is essen-
tial. Affective Norms for English Words (ANEW)
(Bradley and Lang, 1999) lexicon sorts all words
according to rating score from 1 to 9. The highest
score means the sentence convey a very positive
emotion, and the lowest one represents the most
negative emotion for the sentence. Based on that,
some researchers (Hutto and Gilbert, 2014) con-
struct a gold-standard list of lexical features then
combine these lexical features with consideration
for five general rules, which could represent the
sentiment of a sentence. The VADER algorithm
proposes a rule-based sentiment analyzer that has
outperformed the other machine learning-based al-
gorithms.

3 Proposed Method

3.1 Basic Structure of UD-GAN

As shown in Fig.1, UD-GAN contains a gen-
erator Gθ that is capable of generating context-
dependent sentences and the two-level discrimina-
tors. Discriminator-general Dφ guides the gener-
ator to learn the paragraph-level information and
correct syntactic structure, while discriminator-
special Dγ determines whether the generated text
is related to the user-defined topic and senti-
ment. Discriminator-special Dγ is trained with
synthetic perfect data and generated text data,
while discriminator-generalDφ is trained with real



text data and generated text data.

As we apply reinforcement learning with pol-
icy gradient to train the generator, the outputs
of the two discriminators for the generated text
will be combined and served as a reward to
train the generator. Generator Gθ will choose
the best next actions based on the reward it re-
ceived. After the first training via Algorithm 1,
the discriminator-general parameters are saved as
the pre-trained model. In the subsequent train-
ings, we only train the parameters of the generator
Gθ and discriminator-special Dγ via Algorithm 2.
The details about training method and structure of
discriminators and generator are described as fol-
lows.

3.2 The Framework of D-Special

The Feature Vector of D-Special

Discriminator-special Dγ takes a vector con-
taining 5 elements as input, which could represent
the sentimental and topical relevance of each sen-
tence.

In our model, users can describe the cause and
effect of an event in one sentence, which is used as
the topic for generating sentences. We use the first
element to represent the similarity between sen-
tence entered by the user and generated sentence,
which could also represent the user-defined topic
relevance of the generated text. Based on the TF-
IDF (Sparck Jones, 1972) value of each word in
the sentence that the user entered and the gener-
ated sentence, the cosine similarity between these
two sentences is calculated as a parameter to mea-
sure the user-defined topic relevance of the gener-
ated sentence. A larger value of cosine similarity
means that the generated sentence is related to the
user-defined topic.

However, if only this element is used to in-
struct the generator Gθ to generate topic-related
sentences, the resulting sentences will be substan-
tially as long as the user-defined topic sentence.
More importantly, the generated sentences will
lack diversity with same meaning. Therefore, we
propose the second element, length penalty, to
reduce the negative impact of the first element.
The difference between the length of the gener-
ated sentence and the length of the topic sentence

defined by user is mapped in [0, 1] via Eq.1.

penaltyg′ = ∣∣leng′ − leni∣∣
max
g∈G
|leng − leni| −min

g∈G
|leng − leni|

(1)

where i is input sentence, g′ is the evaluated
generated sentence and G is the set of gener-
ated sentences. We set 0.5 to the optimal length
penalty, which means that if the length of the sen-
tence is very close to or very far from the length of
topic sentence, it is unqualified.

We implemented the VADER algorithm to cal-
culate the probability that a generated sentence be-
longs to a positive, negative or neutral emotion
class. As VADER gives three values that corre-
spond to the probability of each sentiment cate-
gory, the sum of which is 1, these three values will
be saved in the third to fifth elements. The optimal
sentiment is defined by the user.

In conventional GAN training, the discrimina-
tor treats real text data as the positive sample and
generated text as the negative sample. However,
there is no sentence in real corpus that has ex-
actly the same features as the positive sample,
since its feature vector is constructed by apply-
ing the above mention algorithm, while the user-
defined feature vector is a specific value. There-
fore, we train the discriminator-special Dγ with
synthetic data, which is treated as positive sam-
ple. For example, supposing that the user would
like to generate an essay with one positive emo-
tion, then the UD-GAN will generate [1,0.5,1,0,0]
vectors corresponding to the number of generated
sentences, which will be combined with vectors
corresponding to the generated sentences as the in-
put of discriminator-special.

The Structure of D-Special
Two linear layers with Relu as the activation

function are used as discriminator-specialDγ . The
output of this network will be part of the reward to
train generator Gθ after it passed through a soft-
max layer.

We explain here why the multiple fully con-
nected layer is implemented as a discriminator-
special. The first reason is that after the
Discriminator-General is constructed, in the sub-
sequent training, the discriminator-special will
be continuously retrained when demands of user
change. This requires spending as little time as
possible to train a good discriminator-special. The



Figure 2: The proposed framework for Discriminator-general

multiple fully connected layer has fewer param-
eters, which means this network will converge
faster than others will. Another reason is that the
aim of training discriminator-special is to distin-
guish whether the input vector corresponds the
user-defined one. For an input with only five
variables, a neural network with two fully con-
nected layers is complicated enough to determine
the class of input vector correctly.

3.3 The Framework of D-General

Unlike conventional ideas of using classifier-
based models as a discriminator, the discriminator-
general Dφ needs to process sequence data and
context information, such as the paragraph infor-
mation for each sentence to generate paragraph-
level text.

Therefore, as shown in Fig.2, we designed
a hierarchical-multiple-LSTM neural network as
the discriminator-general Dφ. The bottom multi-
layers LSTM takes an embedding vector for each
word in a sentence as the input and it outputs a
feature matrix representing the corresponding sen-
tence. The top bidirectional LSTM (Graves and
Schmidhuber, 2005) takes the feature matrices of
these sentences, which belong to the same para-
graph, as input and it outputs a feature matrix
representing that paragraph. After transforming
through two different linear layers respectively,
the above two feature matrices will be combined
together. Finally, the discriminator-general calcu-
lates the score of the input sentence via Eq. 2.

R(Y ) = softmax[(1− β)LSTMα+ βLSTMη]
(2)

where β is a trainable parameter ranging 0-1.

3.4 Generator
GeneratorGθ is designed with GRU (Chung et al.,
2014). In UD-GAN, due to the excessive pa-
rameters of the two discriminators, it is easy to
guide the generator to be over-fitting. As a com-
monly used variant of LSTM, GRU avoids this
over-fitting problem. In addition, having fewer pa-
rameters than conventional LSTM allows GRU to
take less time to converge, which is the first prior-
ity in UD-GAN.

3.5 Reward and Policy Gradient Training
The reinforcement learning has been incorporated
to enable GAN to process discrete data. In this
scenario, generator Gθ will use the results from
discriminators on the generated text as reward to
generate next words. In UD-GAN, the reward is
calculated based on results of two discriminators.
Generator Gθ tries to maximize expected reward
from the initial state till the end state via Eq.3(loss
function).

J(θ) =
T∑
t=1

E(Rt|St−1, θ)

=

T∑
t=1

Gθ(yt|Y )[λ(Dφ(Y )) + (1− λ)Dγ(Y ))]

(3)

Where λ is a manually set weight and Y is
a complete sequence and Rt is the reward for a
whole sequence. In our experiments, we set λ
to 0.8 to give more weight to the discriminator-
general Dφ for generating sentences with better
syntactic structure. Note that since discrimina-
tors can only make the judgement with a complete
sequence, the Monte Carlo search (Silver et al.,
2016) is adopted to find out some of the possible
generated complete sequences of each state. the



average judgment results of the discriminators for
these sequences are calculated as a reward of this
state.

In this paper, we implemented policy gradient
method. The gradient of Eq.3 can be derived ap-
proximately as follows:

∇θJ(θ) '
T∑
t=1

Eyt∼Gθ [∇θlogGθ(yt|Y )QGθDφ,Dγ (yt|Y )]
(4)

where QGθDφ,Dγ (yt|y1:t−1) can be derived via
Eq.5.

QGθDφ,Dγ (yt|y1:t−1) = λ(Dφ(Y ))+(1−λ)Dγ(Y ))
(5)

The loss function of both discriminators is intro-
duced as follows:

J = −(EY vPdata [R(Y )]− EY vGθ [1−R(Y )])
(6)

whereR(Y ) is the reward from two discriminators
for a whole sequence.

4 Experimental Analysis

4.1 Dataset
We crawled nearly 10,000 press released from the
opinion section of Newsweek as the training cor-
pus. The opinion section of Newsweek is selected
as training corpus because the paragraphs of the
essays in Newsweek are generally closely related
and not long. The other reason is that through the
articles in the opinion section, authors can often
convey their own sentiment tendencies.

NER is used to replace name-entities with their
name-entity tags to decrease vocabulary. After to-
kenizing the corpus, long sentences of more than
45 words in the corpus were removed. The fi-
nal training corpus has 425K sentences and 103K
paragraphs.

4.2 Experimental Setting
SeqGAN and LeakGAN are used as the baseline
system to evaluate UD-GAN. We train SeqGAN
and LeakGAN for 20 epochs, which is same as
the number of times UD-GAN is trained. Other
parameters of baselines remain unchanged as im-
plemented in their original papers.

The bottom of the discriminator-general con-
sists of three layers of LSTM. The hidden dimen-
sion of discriminator-general bidirectional LSTMs

GAN-based models ROUGE-L
UD-GAN(GS) 364.73
UD-GAN(S) 370.54
UD-GAN(G) 340.19
SeqGAN 342.27
LeakGAN 345.03

Table 1: The ROUGE-L score for each system. UD-
GAN(G+S) represents initial training and UD-GAN(S)
represents following training. UD-GAN(G) only has
discriminator-general and generator. Note that this
score is the sum of all generated sentences’ ROUGE-
L results.

for the UD-GAN and the bottom LSTMs is
set to 64. Besides, the hidden dimension of
discriminator-special linear layer and GRU unit
of generator is set to 32. In each epoch of ini-
tial training, generator G is trained once, and the
discriminator-general is trained four times while
the discriminator-special is trained twice.

For evaluating the effectiveness of the proposed
method, we first compared the sentences relevance
to user-defined topic and sentimental tendency,
and then compare the training time of each sys-
tem. Finally, the fluency and correctness of UD-
GAN and baseliens were evaluated.

4.3 Relevance of Topic and Sentiment
Relevance of Topic

As an objective summary accuracy evaluation
method that is widely used, ROUGE (Lin, 2004)
is also adopted here to evaluate whether gener-
ated sentences are related to user-defined topics.
Generated sentences are treated as summaries to
be evaluated, and the topic sentence defined by
user is used as a reference summary to evaluate
whether the generated sentence is related to the
topic. Note that even if the ROUGE scores of the
generated sentences are not high, it does not mean
that these sentences are not closely related to the
user-defined topic necessarily. One possibility is
that the generated sentences will use other words
or syntactic structures to describe the topic sen-
tence.

In this paper, we report the sum of ROUGE-L
scores of all sentences. Based on the longest com-
mon subsequence, ROUGE-L is a score related to
recall rate. As shown in Table.1, the ROUGE-
L scores for UD-GAN (G+S) and UD-GAN(S)
are slightly higher than baseline systems and UD-
GAN (G).



Positive Negative Neutral
UD-GAN(GS) 0.39 0.05 0.56
UD-GAN(S) 0.41 0.04 0.55
UD-GAN(G) 0.10 0.08 0.82
SeqGAN 0.09 0.08 0.83
LeakGAN 0.08 0.07 0.85

Table 2: The probability of sentiment tendency of gen-
erated sentences

Relevance of Sentimental Tendency
The VADER algorithm is used to calculate the

probability that the sentimental tendency of the
generated sentences to be positive, negative or
neutral. Here, we evaluated the system perfor-
mance by setting the target sentimental tendency
as positive.

As shown in Table.2, the average probability
in each sentimental tendency category of all sen-
tences is calculated. With training discriminator-
special, UD-GAN (G+S) and UD-GAN (S) are
more likely to generate positive sentences than
baselines. Which proves that the proposed method
is capable to generate the sentences with the de-
sired sentiment. However, since the total number
of sentences expressing positive sentimental ten-
dency in the training corpus is quite low, the prob-
ability of UD-GAN generating positive sentiment
is still not higher than 0.5.

Generate Context-dependent Sentences
To demonstrate that UD-GAN can generate

context-dependent sentences, we show sentences
generated by UD-GAN and baselines. As shown
in Table 3, one can see that the proposed UD-GAN
does generate sentences related to the user-defined
topic. UD-GAN tries to add some conjunctions
when generating sentences so that the sentences
seem to be related, and each sentence is extended
with other related words based on the topic. Note
that there are some Name-Entity (NE) tags gen-
erated by the models because the NE tagging has
been done for simplifying the corpus lexicon.

However, semantically, these sentences are not
intrinsically related to each other, which is a prob-
lem we will address in the future.

4.4 Training Time Evaluation

The time spending on gradient propagation and
update of UD-GAN and baselines are compared,
instead of the time spending on loading and saving
data. Our platform is a workstation with a GeForce

topic: the attack in douma occurred days
after trump indicated that he wanted to pull
us troops out
UD-GAN(S):
1. the country contacts to the u.s. and trains
troops for government living on the federal
system in LOCATION .
2. we are discussed actively : if u.s. is the facts
that citizens in the country will likely vote
for type elections ?
3. during these attack things occurred days , i
say just PERSON who pulls in the exchange
best troops out as trade in LOCATION .
4. and he often enthusiastic , telling only having
heard nothing happened while you can indicate
to pull out from country .
5. but these generations in LOCATION can
predict the next five attacks occur.
LeakGAN:
1. it prompted the opposition during a “ real ”
of subtlety , and video straws .
2. but if PERSON know that we serve the best
drives these country purposes . ”
3. besides disarming our administration and
pricing and its traditional views .
4. with her contempt for all enough neighbors . ”
5. one day i ’d go beyond my candor .
SeqGAN:
1. we do n’t mean .
2. you should be “ changed ” that you know .
3. i ’ve always been proposing the findings .
4. in other words , he ’s because you have a
testament to his goodness – not a result .
5. he gave economic law .

Table 3: An example of the generated sentences from
different systems

GAN-based models Time s
UD-GAN(GS) 29061.48
UD-GAN(S) 4841.99
UD-GAN(G) 29036.65
SeqGAN 27011.08
LeakGAN 30471.95

Table 4: Time spending on training of each models



GTX 1080 Ti graphics card with 11G RAM.
All GAN-based models compared here are imple-
mented in pytorch (Paszke et al., 2017) framework
to eliminate the impact of different frameworks on
time consumption.

As shown in Table.4, because the structure of
discriminator-general is more complex than the
structure of discriminator D of baselines, ini-
tial training of UD-GAN takes the longest time.
However, in the subsquent trainings, due to the
gradient propagation and parameter update of
discriminator-special is quite fast, the time re-
quired to train UD-GAN (S) is the shortest. The
UD-GAN (S) takes only about an hour and a half
to complete training, which is much less than the
nearly eight hours of training time for baselines.

4.5 Fluency and Accuracy

As shown in table 5, we report BLEU (Papineni
et al., 2002) scores of UD-GAN and baselines
to compare the fluency and accuracy of text they
generate. The BLEU we use here is the average
value of 1-gram BLEU, 2-gram BLEU and 3-gram
BLEU, which are given the same weights .

In the case of training the discriminator-general
only, the BLEU score of the UD-GAN (G) is be-
tween SeqGAN and LeakGAN. Therefore, the ac-
curacy and fluency evaluation of using multi-layer
LSTMs as a discriminator is comparable to that
of using a classifier-based model, such as CNN,
as the discriminator. When the discriminator-
general and discriminator-special are simultane-
ously trained (initial training), UD-GAN (G+S)
has a slightly higher BLEU score than UD-GAN
(G). That is to say, even if discriminator-special
is added and the result of discriminator-general,
which can distinguish the correctness of the sen-
tence, is less weighted, the resultant generator
of UD-GAN (G+S) can still learn how to gen-
erate a sentence with the correct syntax. Then
we change the user-defined topic and sentimen-
tal tendency to train the discriminator-special only
(subsequent training). The results showed that the
BLEU score of the UD-GAN(S) is still between
LeakGAN and SeqGAN. It means that retraining
the discriminator-special has no effect on whether
the generator can learn the correct syntax with-
out changing the weights of rewards generated by
discriminator-general and discriminator-special.

GAN-based models BLEU score
UD-GAN(G+S) 0.6412
UD-GAN(S) 0.6409
UD-GAN(G) 0.6357
SeqGAN 0.6303
LeakGAN 0.7161

Table 5: The average BLEU score for each system.
Note that UD-GAN(S) achieves comparable BLEU
performance with baselines, whose training needs far
less time than baselines.

5 Conclusion and Future Work

In this paper, we propose a UD-GAN method to
re-train text generation model more efficiently to
generate sentences that are consistent with the new
user-defined topic and sentimental tendency. We
compared the accuracy and fluency of sentences
generated by UD-GAN with other GAN-based
text generation models. The experimental results
showed that sentences generated by UD-GAN are
competent. Meanwhile, UD-GAN takes much
less time in the re-train stage than other models.
According to experimental results, UD-GAN can
also successfully generate sentences related to the
user-defined topic and sentimental tendency, while
baselines does not have this capability. Besides,
UD-GAN can also generate paragraph-level text.

However, the sentences generated by UD-GAN
are still inferior to the state-of-the-art method, i.e.,
LeakGAN, in terms of fluency. And the current
paragraph-level information used here does not in-
clude complex linguistic information, such as the
order of sentences. In future work, we will try
to maintain the existing advantages of UD-GAN
while improving the readability of generated text.

References
Margaret M Bradley and Peter J Lang. 1999. Affective

norms for english words (anew): Instruction manual
and affective ratings. Technical report, Citeseer.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

William Fedus, Ian Goodfellow, and Andrew M Dai.
2018. Maskgan: Better text generation via filling in
the . arXiv preprint arXiv:1801.07736.

Xiaocheng Feng, Ming Liu, Jiahao Liu, Bing Qin, Yibo
Sun, and Ting Liu. 2018. Topic-to-essay generation
with neural networks. In IJCAI, pages 4078–4084.



Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672–2680.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2018. Long text generation
via adversarial training with leaked information. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems,
6(02):107–116.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Controllable
text generation. arXiv preprint arXiv:1703.00955,
7.

Ferenc Huszár. 2015. How (not) to train your genera-
tive model: Scheduled sampling, likelihood, adver-
sary? arXiv preprint arXiv:1511.05101.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth international AAAI
conference on weblogs and social media.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversar-
ial learning for neural dialogue generation. arXiv
preprint arXiv:1701.06547.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang,
and Ming-Ting Sun. 2017. Adversarial ranking for
language generation. In Advances in Neural Infor-
mation Processing Systems, pages 3155–3165.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends R© in In-
formation Retrieval, 2(1–2):1–135.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Richard Power and Donia Scott. 2005. Automatic gen-
eration of large-scale paraphrases.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradi-
ent methods for reinforcement learning with func-
tion approximation. In Advances in neural informa-
tion processing systems, pages 1057–1063.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of Human
Language Technology Conference and Conference
on Empirical Methods in Natural Language Pro-
cessing.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Yizhe Zhang, Zhe Gan, and Lawrence Carin. 2016.
Generating text via adversarial training. In NIPS
workshop on Adversarial Training, volume 21.


