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Abstract
We propose a method to transfer knowledge across neural
machine translation (NMT) models by means of a shared dy-
namic vocabulary. Our approach allows to extend an initial
model for a given language pair to cover new languages by
adapting its vocabulary as long as new data become avail-
able (i.e., introducing new vocabulary items if they are not
included in the initial model). The parameter transfer mecha-
nism is evaluated in two scenarios: i) to adapt a trained single
language NMT system to work with a new language pair and
ii) to continuously add new language pairs to grow to a mul-
tilingual NMT system. In both the scenarios our goal is to
improve the translation performance, while minimizing the
training convergence time. Preliminary experiments span-
ning five languages with different training data sizes (i.e., 5k
and 50k parallel sentences) show a significant performance
gain ranging from +3.85 up to +13.63 BLEU in different lan-
guage directions. Moreover, when compared with training an
NMT model from scratch, our transfer-learning approach al-
lows us to reach higher performance after training up to 4%
of the total training steps.

1. Introduction
Neural Machine Translation (NMT) has shown to sur-
pass phrase based Machine Translation approaches not
only in high-resource language settings, but also with low-
resource [1] and zero-resource translation tasks [2, 3]. Al-
though recent approaches yield promising results, training
models in low-resource settings remains a challenge for MT
research [4]. [2] have shown that a multilingual NMT (M-
NMT) model that utilizes a concatenation of data covering
multiple language pairs (including high-resourced ones) can
result in better performance in the low-resource translation
task. Alternatively, [5] proposed a transfer-learning approach
from an NMT “parent-model” trained on a high-resource lan-
guage to initialize a “child-model” in a low-resource setting
showing consistent translation improvements on the latter
task.

Though effective, training models on a concatenation of
data covering multiple language pairs or initializing them by

(*) Work conducted while this author was at FBK.

transferring knowledge from a parent model does not con-
sider the dynamic nature of new language vocabularies. In
relation to how and when model vocabularies are built, there
can be two distinct scenarios. In the first one, all the training
data for all the language pairs are available since the begin-
ning. In this case, either separate or joint sub-word segmen-
tation models can be applied on the training material to build
vocabularies that represent all the data [6, 7]. In the second
scenario, training data covering different language directions
are not available at the same time (most real-world MT train-
ing scenarios fall in this category, in which new data or new
needs in terms of domains or language coverage emerge over
time). In such cases, either: i) new MT models are trained
from scratch with new vocabularies built from the incoming
training data, or ii) the word segmentation rules of a prior
(parent) model are applied on the new data to continue the
training as a fine-tuning task. In all the scenarios, accu-
rate word segmentation is crucial to avoid out-of-vocabulary
(OOV) tokens. However, different strategies for the different
training conditions can result in longer training time or per-
formance degradations. More specifically, limiting the target
task with the initial model vocabulary will result in: i) a word
segmentation that is unfavorable for the new language direc-
tions and ii) a fixed vocabulary/model dimension despite the
varying language and training dataset size.

NMT models are not only data-demanding, but also re-
quire considerable time to be trained, optimized, and put into
use. In particular real-word scenarios, strict time constraints
prevent the possibility to deploy and use NMT technology
(consider, for instance, emergency situations that require to
promptly enable communication across languages [8]). On
top of this, when the available training corpora are limited
in size, delivering usable NMT systems (i.e., systems that
can be used with the requirement of not making severe errors
[9]) becomes prohibitive. In summary: i) on the data side,
acquiring new training material for x undefined languages is
costly and not always possible, and ii) on the model side,
building an NMT system from scratch when new data be-
come available raises efficiency and performance issues that
are particularly relevant in low-resource scenarios.

We address these issues by introducing a method to trans-
fer knowledge across languages by means of a dynamic vo-
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cabulary. Starting from an initial model, our method allows
to build new NMT models, either in a single or multiple
language translation directions, by dynamically updating the
initial vocabulary to new incoming data. For instance, given
a trained German-English NMT system (L1), the learned pa-
rameters can be transferred across models, while adopting
new language vocabularies. In our experimental setting we
test two transfer approaches:

• progAdapt: train a chain of consecutive M-NMT
models by transferring the parameters of an initial
model for L1 to new language pairs L2 . . .LN . In this
scenario, the goal is to maximize performance on the
new language pairs.

• progGrow: progressively introduce new language
pairs to the initial model L1 to create a growing M-
NMT model covering N translation directions. In this
scenario, the goal is to maximize performance on all
the language pairs.

Our experiments are carried out with Italian−English,
Romanian−English, and Dutch−English training data sets of
different size, ranging from low-resource (50k) to extremely
low-resource (5k) conditions.

As such, in a rather different way from previous work [5],
we show our transfer-learning approach in a multilingual
NMT model with dynamic vocabulary both in the source and
target directions. Our contributions are as follows:

• we develop a transfer-learning technique for NMT
based on a dynamic vocabulary, which adapts the pa-
rameters learned on a parent task (language direction)
to cover new target tasks;

• through experiments in different scenarios, we show
that our approach improves knowledge transfer across
NMT models for different languages, particularly in
low-resource conditions;

• we show that, with our transfer learning approach,
it is possible to train a faster converging model that
achieves better performance than a system trained
from scratch.

2. Related work
2.1. Transfer Learning

Recent efforts [10, 11] in natural language processing
(NLP) research have shown promising results when transfer-
learning techniques are applied to leverage existing models to
cope with the scarcity of training data in specific domains or
language settings. The advancements in NLP came following
a much larger impact of transfer-learning in computer vision
tasks, such as classification and segmentation, either using
features of ImageNet [12] or by fine-tuning the last layers
of a deep neural network [13]. Specific to NLP, pre-trained
word embeddings [14] used as input to the first layer of the

network have become a common practice. In a broader sense,
pre-trained models have been successfully exploited for sev-
eral NLP tasks. [15] used an MT model as a pre-training step
to further contextualize word vectors for downstream tasks
like sentiment analysis, question classification, textual entail-
ment, and question answering. In a similar way, a language
model is utilized for pre-training in sequence labeling tasks
[16], question answering, textual entailment, and sentiment
analysis [17].

Close to our approach, [5] explored techniques for
transfer-learning across two NMT models. First, a “par-
ent” model is trained with a large amount of available data.
Then the encoder-decoder components are transferred to ini-
tialize the parameters of a low-resourced “child” model. In
this parent-child setting, the decoder parameters of the child
model are fixed at the time of fine-tuning. Later, in [18], the
parent-child approach has been extended to analyze the effect
of using related languages on the source side.

Although this work shares a related approach with [5], we
diverge by our hypothesis not to selectively update only the
encoder, allowing all the parameters to be updated as a ben-
eficial strategy in our setting. Our strategy is based on both
the source→target and target→source translation directions
that we consider as transferable. Moreover, our transfer-
learning approach relies on a dynamic vocabulary that en-
forces changes in the trainable parameters of the network in
contrast to fixing them1.

2.2. Multilingual NMT

In a one-to-many multilingual translation scenario, [19] pro-
posed a multi-task learning approach that utilizes a single
encoder for the source language and separate attention mech-
anisms and decoders for each target language. [20] used
distinct encoder and decoder networks for modeling multi-
ple language pairs in a many-to-many setting. Later, [21]
introduced a way to share the attention mechanism across
multiple languages. Aimed at avoiding translation ambigui-
ties on the decoder side, a many-to-one character level NMT
setup [22] and a two/multi-source NMT [23] were also pro-
posed. Inspired by [24], who automatically annotated the
source side with artificial flags to manage the politeness level
of the output, other works focused on controlling the gram-
matical voice [25], the text domain [26, 27], and enforcing
gender agreement [28]. Simplified yet efficient multilingual
NMT approaches have been proposed by [2] and [3]. The ap-
proach in [3] applies a language-specific code to words from
different languages in a mixed-language vocabulary. The ap-
proach in [2], by prepending a language flag to the input
string, greatly simplified multilingual NMT eliminating the
need of having separate encoder/decoder networks and at-
tention mechanism for each new language pair. In this work
we follow a similar strategy by incorporating an artificial lan-
guage flag.

1In future work, we plan to further study which parameters are more
beneficial if transferred and which part of the network to selectively update.
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3. Transfer Learning in M-NMT
In this work, we cast transfer-learning in a multilingual neu-
ral machine translation (M-NMT) task as the problem of
dynamically changing/updating the vocabulary of a trained
NMT system. In particular, transfer-learning across models
is assumed to: i) include a strategy to add new language-
specific items to an existing NMT vocabulary, and ii) be able
to manage a number of new translation directions in different
transfer rounds, either by covering them one at a time (i.e.,
in a chain where new languages are covered stepwise) or si-
multaneously (i.e., pursuing all directions at each step). Our
investigation focuses on two aspects. The first one is how the
parameters of an existing model can be transferred to a target
one for a new language pair. The second aspect is how to
limit the impact of parameters’ transfer on the performance
of the initial model as long as new language directions are
added. For convenience, we refer to our approach as TL-DV
(Transfer-Learning using Dynamic Vocabulary).

As shown in Figure 1, our transfer-learning approach is
evaluated in two conditions:

• progAdapt, in which progressive updates are made
on the assumption that new target NMT task data be-
come available for one language direction at a time
(i.e., new language directions are covered sequen-
tially). In this condition, our goal is to maximize per-
formance on the new target tasks by taking advantage
of parameters learned in their parent task;

• progGrow, in which progressive updates are made
on the same assumption of receiving new target task
data as in progAdapt, but with the additional goal of
preserving the performance of the previous language
directions.

We discuss these two scenarios below in §3.2 and §3.3.

3.1. Dynamic Vocabulary

In the defined scenarios, we update the vocabulary Vp of the
previous model with the current language direction vocabu-
lary Vc. The approach simply keeps the intersection (same
entries) between Vp and Vc, whereas replacing Vp entries
with Vc if the entries of the former vocabulary do not exist
in the latter. At training time, these new entries are randomly
initialized, while the intersecting items maintain the embed-
dings of the former model. The alternative approach to dy-
namic vocabulary in a continuous model training is to use
the initial model vocabulary Vp, which we refer to as static-
vocabulary.

3.2. Progressive Adaptation to New Languages

In this scenario, starting from the init model (L1), we per-
form progressive adaptation by initializing the training of a
model at each step (Ln) with the previous model (Ln−1). At
time of reloading the model from Ln−1, a TL-DV update is

performed as described in §3. In this approach, the dataset of
the initial model is not included at the current training stage.
This allows the adaptation to the new language without un-
necessary word segmentation that may arise by applying the
initial model’s segmentation rules. As shown in Figure 1
(left), the adaptation on any of the Ln stages is language in-
dependent, though subject to the available training dataset.
We refer to the application of this approach in the experi-
mental settings and discussion as progAdapt.

3.3. Progressive Growth of Translation Directions

In this scenario, an initial model L1 is simultaneously
adapted to an incremental number of translation directions,
under the constraint that the level of performance on L1 has
to be maintained. For a simplified experimental setup, we
will incorporate a single language pair (source→target) at a
time, when adapting to Ln from Ln−1 (see Figure 1 (right)).
We refer to the application of this approach in the experimen-
tal settings and discussion as progGrow.

4. Experimental Setting
4.1. Dataset and Preprocessing

Our experimental setting includes the init model language
pair (German-English) and three additional language pairs
(Italian-English, Romanian-English, and Dutch-English) for
testing the proposed approaches. We use publicly available
datasets from the WIT3 TED corpus [29]. Table 1 shows the
summary of the training, dev, and test sets. To simulate an
extremely low-resource (MELR) and low-resource (MLR)
model settings, 5K and 50K sentences are sampled from the
last three language pairs’ training data.

At the preprocessing step, we first tokenize the raw data
and remove sentences longer than 70 tokens. As in [2], we
prepend a “language flag” on the source side of the corpus for
all multilingual models. For instance, if a German source is
paired with an English target, we append <2ENG> at the be-
ginning of source segments. Next, a shared byte pair encod-
ing (BPE) model [6] is trained using the union of the source
and target sides of each language pair. Following [30], the
number of BPE segmentation rules is set to 8, 500 for the
data size used in our experimental setting. At different lev-
els of training (Li), a BPE model with respect to the lan-
guage pairs is then used to segment the training, dev, and test
data into sub-word units. While, the vocabulary size of the
init is fixed, the vocabulary varies in the consecutive train-
ing stages depending on the overlap of sub-word units and
lexical similarity between two language pairs.

4.2. Experimental Settings

All systems are trained using the Transformer [31] model im-
plementation of the OpenNMT-tf sequence modeling frame-
work2 [32]. At training time, to alternate between dynamic

2https://github.com/OpenNMT/OpenNMT-tf
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Figure 1: Transfer-Learning; (left) from an initial NMT model to a new language pair, model is applied after inserting the new
vocabulary entries, for instance, the initial model Ln−1 parameters are transfered to Ln with the updated embedding space (i.e.,
keeping V 1

p , V 2
p as overlapping entries, while replacing the non-overlapping V i

p with V j
c new language vocabularies), and (right)

from an initial model Ln−1 to Ln, but incorporating both the previous and new language pair data and vocabulary entries.

Table 1: Languages and dataset sizes for train, dev, and test
sets of the init model for De-En direction and other pairs
assumed to be received progressively (It-En, Ro-En, Nl-En).

Language Train Dev Test Received
German(De)-En 200k 1497 1138 init
Italian(It)-En 5k/50k 1501 1147 L2

Romanian(Ro)-En 5k/50k 1633 1129 L3

Dutch(Nl)-En 5k/50k 1726 1181 L4

and static vocabulary, we utilized an updated version of the
script within the same framework. For all trainings, we use
LazyAdam, a variant of the Adam optimizer [33], with an
initial learning rate constant of 2 and a dropout [34, 35]
of 0.3. The learning rate is increased linearly in the early
stages (warmup training steps=16, 000), and afterwards it is
decreased with an inverse square root of the training step.

To train our models using Transformer, we employ a uni-
form setting with 512 hidden units and embedding dimen-
sion, and 6 layers of self-attention encoder-decoder network.
The training batch size is of 4096 sub-word tokens. At in-
ference time, we use a beam size of 4 and a batch size of
32. Following [31] and for a fair comparison, all baseline
experiments are run for 100k training steps, i.e., all models
are observed to converge within these steps. The consecutive
experiments converge in variable training steps. However, to
make sure a convergence point is reached, all restarted ex-
periments on Li are run for additional 50K steps. All models
are trained on a GeForce-GTX-1080 machine with a sin-
gle GPU. Systems are compared in terms of BLEU [36] using
the multi-bleu.perl implementation3, on the single references
of the official IWSLT test sets.

4.3. Baseline Models

To evaluate and compare with our approach, we train single
language pair baseline models corresponding to the newly in-

3A script from the Moses SMT toolkithttp://www.statmt.org/moses

troduced language pairs at each Li training stage. The base-
line models, referred to as Bi-NMT, are separately trained
from scratch in a bi-directional setting (i.e., source ↔ target).
In addition, we report scores from a multilinugal (M-NMT)
model trained with the concatenation of all available data in
each training stage. The alternative baseline are built by
fine-tuning the init model. These models use the vocab-
ulary (word segmentation rules) of the init model, avoid-
ing the proposed dynamic vocabulary. This fine-tuning ap-
proach is prevalent in continued model trainings, for adapt-
ing NMT models [37, 38] or improving zero-shot and low-
resource translation tasks [39, 40, 41]. For the alternative
baseline where we fine-tune init with its static-vocabulary,
we observed that results were mostly analogous to Bi-NMT
models. Hence, we avoided this comparison in this work and
relied on the former baselines.

5. Results and Discussion

Experiments are performed using the progAdapt (see
§3.2) and progGrow (§3.3) approaches. The experimen-
tal results with the associated discussion are presented in
Table 2 for models characterized by relatively low-resource
data (MLR), and in Table 3 for an extremely low-resource
condition (MELR). In both dataset conditions, the perfor-
mance of the proposed approaches is compared with the
baseline systems (Bi-NMT and M-NMT, see §4.3).

The init model which is trained with a data size 4X
larger than MLR and 40X the size of MELR, achieves BLEU
scores of 26.74 and 23.30, respectively, for the De-En and
En-De directions. In Table 2 and 3, the progAdapt is re-
ported for each training stage (i.e., L2, L3, and L4), whereas
the progGrow is reported for the final stage L4. Moreover,
Table 4 analyzes the effect of language relatedness and train-
ing stage reordering in our TL-DV approach. Bold high-
lighted BLEU scores show the best performing approach,
while the ↑↓ arrows indicate statistically significant differ-
ences of the hypothesis against the better performing base-
line (M-NMT) using bootstrap resampling (p < 0.05) [42].
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Table 2: MLR models performance i) at L1 for the init
De-En direction and baseline (Bi-NMT) It-En, Ro-En, and
Nl-En directions, ii) at L2/3/4 for progAdapt, and iii) at
L4 for the progGrow approach.

Dir De-En It-En Ro-En Nl-En

Init/Bi-NMT
> 26.74 25.21 10.80 21.75
< 23.30 22.39 12.94 19.75

M-NMT
> 24.14 26.42 22.17 24.00
< 21.80 23.57 17.35 21.25

ProgAdapt
> - ↑30.08 ↑24.43 ↑26.36
< - ↑26.24 ↑20.31 ↑25.52

ProgGrow > 26.22 ↑29.61 23.23 24.78

5.1. Low-Resource Setting

For each language pair (i.e., It-En, Ro-En, and Nl-En), the re-
sults of the baseline models Bi-NMT trained using the avail-
able 50K parallel data (MLR setting) are presented in the
first two rows of Table 2. The progAdapt results are re-
ported from three consecutive adaptations to new language
directions. These include the init to It-En, followed by
the adaptation to Ro-En, and then to Nl-En. Compared to
the corresponding Bi-NMT and M-NMT models, all of the
three progressive adaptations using the dynamic vocabulary
technique achieved a higher performance gain.

If we look at the specific level of adaption (Li) against
the Bi-NMT, we observe that the It-En direction showed a
+4.87 and +3.85 gain for the En and It target, respectively.
When we take this model and continue the adaptation to Ro-
En and Nl-En, we see a similar trend where the highest gain
is observed on L3 for the Ro-En direction with +13.63 and
+7.37 points. These significant improvements over the base-
line models tell us that transfer-learning using dynamic vo-
cabulary in a multilingual setting is a viable direction. Its ca-
pability to quickly tune the representation space of the init
model to deliver improved results is an indication of the im-
portance of using different word representations for each lan-
guage pair4.

In case of the progGrow, we observed a similar im-
provement trend as in the progAdapt approach. The re-
sults are reported from the final stage (L4) of the model
growth, but improvements are consistent throughout the L2

and L3 stages. The M-NMT outperformed the Bi-NMT mod-
els except for De-En pair. However, compared to the multi-
lingual model as an alternative method for achieving cross-
lingual transfer-learning, our approach shows improvements
in the consecutive training stages. Overall, our observation
is that the suggested progGrow model can accommodate
new translation directions when the data are received. Most

4We reserve the adaptation from the init model directly to all the three
new language pairs and the comparison with the current setting for future
work.

Table 3: MELR models performance i) at L1 for the init
De-En direction and baseline (Bi-NMT) It-En, Ro-En, and
Nl-En directions, ii) at L2/3/4 for progAdapt, and iii) at
L4 for the progGrow approach.

Dir De-En It-En Ro-En Nl-En

Init/Bi-NMT
> 26.74 7.64 4.56 5.69
< 23.30 5.25 3.86 5.14

M-NMT
> 24.96 16.26 12.67 15.59
< 21.67 10.38 8.67 12.72

ProgAdapt
> - ↓15.16 ↓11.03 ↓11.52
< - ↑14.40 ↑11.10 13.57

ProgGrow > 25.61 ↓15.02 ↓11.20 ↓13.56

importantly, improvements are observed for these newly in-
troduced languages without altering the performance of the
init model in the De-En direction.

Specific to each language direction, It-En shows a
comparable performance with the progAdapt approach,
whereas in case of Ro-En and Nl-En a small degradation
ranging from 0.47 (De-En) to 1.58 (Nl-En) is observed. The
loss in performance is likely due to the increased ambiguities
in the encoder side of the progGrow model, where at both
training and inference time there does not exist a disambigua-
tion mechanism between languages except the prepended
language flag. This observation, which sheds a light on our
initial expectation of more data aggregation benefiting the
model performance, requires further investigation.

5.2. Extremely Low-Resource Setting

In a similar way with what we observed in the MLR exper-
iments, the baseline models in the extremely low-resource
setting demonstrate poor performance. Looking at our ap-
proaches, we observe a relatively higher gain at the first stage
of progAdapt and progGrow. For instance, for the It-
En pair there is a +7.52 improvement compared to the +4.87
in the MLR models (see Table 2) over the Bi-NMT model.
In the subsequent additional language directions (i.e., Ro-En
and Nl-En), we also observe a similar trend. However, in
comparison with the M-NMT, both of our approach perform
poorly when translating to the En target. The main reason
for this could be the aggregation of all the available data for
a single run in the M-NMT model, while our approaches ex-
ploit data when it becomes available in a continuous training.
Alternatively the distance between each language pair could
play a significant role when we adapt in an extremely sparse
data.
prog-Adapt/Grow with Related Languages. When re-
lated language pairs are consecutively added (Ln−1 and
Ln) at each training stages, our TL-DV approach showed
the best performance. For instance, for the Nl-En experi-
ments, we changed the sequence of the added language pair
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Table 4: MLR and MELR models performance at L1 for
progAdapt and progGrow approaches in a closely re-
lated De-En (init) and Nl-En language pairs setting.

MLR MELR

Dir De-En Nl-En De-En Nl-En

ProgAdapt
> - ↑27.23 16.21
< - ↑25.51 15.86

ProgGrow > 26.62 ↑26.41 26.52 ↑15.52

moving from a random order to a sequence based on the
similarity to the init model. Table 4 shows the results
from progAdapt and progGrow, when the Nl-En pair
is used at the L1 training stage. The MLR results con-
firm the trend observed in Table 2, however, with a rel-
atively better performance when translating in to English.
Most importantly, the MELR results show a consistent and
larger gain of +4.69 (Nl-En) and +2.29 (En-Nl) with the
progAdapt, and +1.96 (Nl-En) with progGrow com-
pared to the corresponding results in Table 3. Thus, we em-
phasize on the degree of language similarity as a direct influ-
encing factor when incorporating a new language pair both
in progAdapt and progGrow approaches. .
Prog-Adapt/Grow with Faster Convergence. The other
main advantage of our TL-DV approach comes from the time
a model takes to restart from the init model and reach a
convergence point with better performance. In all experi-
ments with our TL-DV approach a converged model is found
within 10K steps for MELR and 20K for MLR training set-
tings. Compared to ≈100K steps needed by a model trained
from scratch to reach good performance, our approach takes
only 4% to 20% of training steps with significantly higher
performance. For instance, taking into consideration the
MELR models, Figure 2 illustrates the steps required for the
baseline systems to converge (Table 3), in comparison with
our approach where progGrow shows to converge slightly
faster than progAdapt. However, with the relatively larger
data of the MLR models, the progAdapt approach proves
to converge much faster than progGrow, for the reason that
the newly introduced vocabulary and training dataset sizes
are smaller compared to the concatenation of the init and
Li data.

We further analyzed the influence of shared vocabularies
between models Li and Li+1 on the performance of TL-DV.
For this discussion, we took the progAdapt MLR model
from all stages. Figure 3 summarizes the improvement dif-
ferences from consecutive models in relation to the percent-
age of shared vocabularies. For instance, init and the L2

(It-En) model vocabularies have a 47% overlap, whereas L3

and L4 share 53% and 51% with the previous model. The in-
teresting aspect of the shared vocabulary comes from the in-
crease in model performance with a higher fraction of shared
vocabulary entires. Thus, a larger number of shared parame-

Figure 2: Model training steps number comparison for the
three different language pairs between the baseline (right-
most) and the proposed approaches in the MELR setting.

Figure 3: The difference in performance between the base-
line and progAdapt models (Tgt→Src and Src→Tgt direc-
tions) in relation with the shared vocabulary between model
Li and new language pair model Li+1.

ters between two consecutive models allows for a better gain
in performance of the latter.

The results achieved by the transfer-learning with dy-
namic vocabulary approach in two different training size con-
ditions show that: i) adapting a trained NMT model to a new
language pair improves performance on the target task signif-
icantly, and ii) it is possible to train a model faster to achieve
better performance. Overall, the capability of injecting new
vocabularies for new language pairs in the initial model is a
crucial aspect for efficient and fast adaptation steps.

6. Conclusions
In this work, we proposed a transfer-learning approach
within a multilingual NMT. Experimental results show that
our dynamic vocabulary based transfer-learning improves
model performance in a significant way of up to 9.15 in
an extremely low-resource and up to 13.0 BLEU in a low-
resource setting over a bilingual baseline model.

In future work, we will focus on finding the optimal way
of transferring model parameters. Moreover, we plan to test
our approach for various languages and language varieties.
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