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Abstract
In this paper, we empirically investigate applying word-level
weights to adapt neural machine translation to e-commerce
domains, where small e-commerce datasets and large out-
of-domain datasets are available. In order to mine in-
domain like words in the out-of-domain datasets, we com-
pute word weights by using a domain-specific and a non-
domain-specific language model followed by smoothing and
binary quantization. The baseline model is trained on mixed
in-domain and out-of-domain datasets. Experimental re-
sults on En → Zh e-commerce domain translation show that
compared to continuing training without word weights, it
improves MT quality by up to 3.11% BLEU absolute and
1.59% TER. We have also trained models using fine-tuning
on the in-domain data. Pre-training a model with word
weights improves fine-tuning up to 1.24% BLEU absolute
and 1.64% TER, respectively.

1. Introduction
Domain adaptation (DA) techniques in machine translation
(MT) have been widely studied. For statistical machine
translation (SMT), several DA methods have been proposed
to overcome the lack of domain-specific data. For exam-
ple, self-training [1, 2] uses a MT system trained on general
corpus to translate in-domain monolingual data as additional
training sentences. Topic-based DA [3, 4] employs topic-
based translation models to adapt for different scenarios.
Data selection approaches [5, 6, 7, 8] first score the out-of-
domain data using language model trained on both domain-
specific and non-domain-specific monolingual corpora, then
rank and select the out-of-domain data that are similar to
in-domain data. Instance weighting methods [9, 10] score
each sentence/domain using statistical rules, then train the
MT models by giving sentence/domain-level scores.

Neural machine translation (NMT) has become state-of-
the-art in recent years [11, 12, 13, 14, 15]. There are sev-
eral research works on NMT domain adaptation. For exam-
ple, back-translation methods [16] use a NMT model trained
on the reverse direction to translate domain-specific mono-
lingual data as additional training sentences. Fast DA ap-
proaches [13, 17] train a base model using mixed in-domain
and out-of-domain datasets, then fine-tuning on in-domain
datasets. Mixed fine-tuning [18] combines fine-tuning and
multi-domain NMT. Similar to instance weighting in SMT,

sentence/domain weighting methods [19, 20] can also be
used for NMT domain adaptation based on different objec-
tives. DA with meta information [21] is proposed to train
topic-aware models using domain-specific tags for the de-
coder. Chunk weighting method [22] describes a way of se-
lecting and integrating positive partial feedback from model-
generated sentences into NMT training.

In this paper, we propose word-level weighting for NMT
domain adaptation. We compute the word weights in out-of-
domain datasets based on the logarithm difference of prob-
ability according to a domain-specific language model and
non-domain-specific language model followed by smoothing
and binary quantization. This gives the in-domain words in
out-of-domain sentences higher weights and biases the NMT
model to generate more in-domain-like words. Thus, the
work presented in this paper can be viewed as a general-
ization of instance weighting. To remove noise in the word
weights, we study the effectiveness of using smoothing meth-
ods. Specifically, a weighted moving average filter is pro-
posed to apply smoothing to the computed word scores with
its nearby words.

Experiments on En → Zh e-commerce domain trans-
lations tasks show that: 1) Domain adapted model with
smoothed word weights gains significant improvement over
non-smoothed weights; 2) Continuing training the model
with computed word weights improves translation results
significantly compared to continuing training without word
weights; and 3) Compared to directly fine-tuning on in-
domain datasets, fine-tuning after pre-training with word
weights results in translation performance improvement on
the in-domain e-commerce test set.

The rest of the paper is structured as follows. The ap-
proach and model we use is described in Section 2, where we
first recap the NMT objective and then present the details of
the proposed word-level weighting approach. Experimental
results and discussions are presented in Section 3 and Section
4, followed by conclusions and outlook in Section 5.

2. Approach

We present word weighting objective on NMT before dis-
cussing how to generate the weights.
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2.1. Objective

In this work we use attention-based neural machine trans-
lation model [11, 12, 14] for experiments. Given a parallel
bilingual dataset D, the NMT model is trained to maximize
the conditional likelihood L of a target sequence yT1 : y1 , . . .
, yT given a source sequence xN

1 : x1 , . . . , xN :

L =
∑

(xN
1 ,yT

1 )∈D

T∑

t=1

log p(yt|yt−1
1 , xN

1 ) (1)

Training objective (1) can be simply modified to word-
level loss Lw with word weights wt:

Lw =
∑

(xN
1 ,yT

1 ,wT
1 )∈D

T∑

t=1

wt log p(yt|yt−1
1 , xN

1 ) (2)

The word weights wt for a target sequence yT1 can be 0
or 1. We set wt = 1 for all in-domain sentences. For out-
of-domain sentences, wt = 1 means the word in the out-of-
domain sentence is related to in-domain datasets (selected),
wt = 0 means it is not.

Our training objective (2) can be seen as a generalization
of the original training objective (1) and instance weighting
methods [19, 20]. The original loss (1) sets wt = 1 for ev-
ery word in all sentences. The instance-level loss can be ex-
pressed as giving a target sentence, wt = w ∀t, where w
is the weight for the sentence or the domain. Our training
objective is similar to [22], however, instead of generating
chunk-based user feedback for model predictions, we com-
pute the word weights using language models trained on real
target data.

2.2. Approaches to the objective

To compute discriminative word weights, we first follow the
data selection methods in SMT [5]. To state this formally,
let I be the domain-specific corpus, O be the non-domain-
specific corpus, and yt be the word in out-of-domain sen-
tences at target position t. We denote by PI(yt|yt−1

t−n) the
per-word probability conditioned on previous n − 1 words,
according to a language model trained on I . Similarly, we
denote by PO(yt|yt−1

t−n) the per-word probability conditioned
on previous n − 1 words according to a language model
trained on O. We can estimate PI(yt|yt−1

t−n) and PO(yt|yt−1
t−n)

by training language models on I and O, separately. There-
fore, the word scores st can be computed in the log domain:

st = logPI(yt|yt−1
t−n)− logPO(yt|yt−1

t−n) (3)

Since the value of st is strongly correlated with the neigh-
borhood words, it is worth investigating smoothing of the
word scores before binary thresholding to remove the noise.
Hence, a weighted moving average kernel:

ŝt =

⌊L
2 ⌋∑

k=⌊−L
2 ⌋

ckst+k (4)

is then applied to smooth word score st at each target
position t. Here L is the kernel size and ck are values of the
kernel for k ∈ [−L

2 , L
2 ]. In our experiments, we heuristically

set the values of the kernel based on mean average with ck =

c = 1
L or gaussian distribution with ck = 1√

2πσ
e

−k2

2σ2 , where
we set σ to be the global variance of the word scores.

The special case of sentence-level weights can be ex-
pressed as ŝt = ŝ ∀t, where ŝ is the averaged smoothed word
scores for the target sentence yT1 . In this case, the training ob-
jective (2) becomes equivalent to sentence weighting method
from [20] with appropriately modified scoring function.

After smoothing the word scores, we finally binarize the
smoothed word scores based on a threshold T :

wt =

{
1, if ŝt ≥ T

0, otherwise
(5)

In our experiments we set the threshold T = 0.5 and only
keep the words above the threshold. This means we select a
word if wt = 1 and do not select it if wt = 0. Considering
word weights wt are gathered in a binary form during contin-
uing training, the selected words would be good candidates
that we want to extract from out-of-domain corpus O. In fact,
word weights wt are precomputed offline and used during the
training. It can be set to any real value, depending on the way
of thresholding.

2.3. Chunk-based weighting

Considering that the selected words in a target sentence
might still be noisy and we select single random words,
we alternatively experimented with selecting only the part
(chunk) in the target sentence that has the longest consec-
utive weights (LCW) with wt = 1. For each target sen-
tence, we pick only one chunk and set all other weights to
zero. See Figure 1 for an example. Then, because the sur-
rounding context is also selected, the chunk is less likely to
be noise. If there are multiple such chunks with the same
length in the sentence, we simply randomly sample one of
them. We found that the chunk-based approach in practice
performs slightly better than word-level weighting.

3. Experiments
In this section, we conduct a series of experiments to study
how well NMT performs when word-level weights are given
for out-of-domain training data. We also study the effective-
ness of the smoothing methods.

3.1. Datasets and data processing

We report the results on our in-house English-to-Chinese e-
commerce item descriptions dataset. Item descriptions are
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provided by private sellers and like any user-generated con-
tent, may contain ungrammatical sentences, spelling errors,
and other type of noise. We first segmented the Chinese sen-
tences with Stanford Chinese word segmentation tool [23]
and tokenized English sentences with the scripts provided
in Moses [24]. On both languages, we use subword units
based on byte-pair encoding (BPE) [25] with 42,000 sub-
word symbols learned separately for each language. For
En-Zh we have 0.53M in-domain e-commerce sentence pairs
and 5.15M sampled out-of-domain sentence pairs (UN, sub-
titles, TAUS data collections, etc.) that have significant n-
gram overlap with the item description data. We validate our
models on an in-house development set consisting of 3173
item descriptions, and evaluate on an in-house test set of
739 item descriptions using case-insensitive character-level
BLEU [26] and TER [27] with in-house tools. For devel-
opment and test sets, a single reference translation is used.
Statistics of the data sets are reported in Table 1.

To compute our word weights we train a domain-specific
4-gram language model and a non-domain specific 4-gram
language model using KenLM [28]. For the domain-specific
language model, we collected domain-specific monolingual
data from an e-commerce website, resulting in the number
of 15M sentences. For the non-domain-specific language
model, we use sampled LDC Chinese Gigaword (LDC Cat-
alog No.: LDC2003T09) with 36M sentences. It should be
noted that we train our language models on the word-level.
In order to score a BPE-level corpus with such a language
model, we score its words and copy this score for each of the
subword units. After the word scores are computed, we then
smooth them via a guassian distributed kernel with window
size L = 5. We choose window size L = 5 considering that
the language model is trained based on sequences of four
words. We observed similar results with different window
sizes, which is discussed in Section 4. Finally, we binarize
the smoothed word scores into binary word weights by set-
ting the threshold T = 0.5. The computed word weights are
applied to the target side of out-of-domain sentences during
the phase of continuing training. In order to get better trans-
lation results, we first trained the baseline model with mixed
in-domain and out-of-domain data according to training ob-
jective 1, where no weights are used. We start our experi-
ments by continuing training from this baseline model.

We implemented our NMT model using Tensorflow [29]
library. The encoder is a bidirectional LSTM with size of 512
and the decoder is a LSTM with 2 layers of same size. All the
weight parameters are initialized uniformly in [−0.1, 0.1].
We set dropout on RNN inputs with dropping probability 0.2.
We train the networks with batch size 120 using SGD with
initial learning rate 1.0 and gradually decaying to 0.1 after
the initial 2 epochs.

3.2. Results

Statistics of the out-of-domain sentences/tokens selection af-
ter applying different types of weights are summarized in Ta-

ble 2. Before the selection, the number of out-of-domain
sentences is 5.15M and the number of tokens is 93.4M.
When sentence-level weights are used, the sentences with
wt = 0 are ignored, resulting in the number of remain-
ing sentences/tokens around 2.63M and 26.3M, respectively.
When word-level weights are used, there are 1, 279, 927 sen-
tences where all word weights in the sentences are equal to
zero. After removing these sentences, around 3.87M sen-
tences are preserved and the number of selected tokens with
word weights wt=1 is around 36.6M. Given computed word
weights, we alternatively choose only the chunk with the
longest consecutive weights (LCW) where wt = 1, resulting
in chunk-level weights with the selected number of tokens
further reduced to 25.8M.

We train a baseline NMT model on mixed in-domain and
out-of-domain data with objective defined as Eq. 1 for 6
epochs. The data is mixed completely (mixed 0.53M in-
domain e-commerce and 5.15M sampled out-of-domain sen-
tence pairs) while training the baseline model. The baseline
model initialized by a mix of in-domain/out-of-domain data
can be regarded as a kind of ”warm start”. We have also
tried training a baseline with out-of-domain data only and
observed slightly worse result after fine-tuning on in-domain
data (0.5 BLEU). Hence, we use the baseline model trained
on a mix of in-domain/out-of-domain data in the following
experiments. Given the baseline model, we then directly fine-
tune on in-domain data for another 10 epochs or first con-
tinue training on the mixed data with sentence/chunk/word
weights for 3 epochs and then fine-tune on in-domain data
for 10 epochs. The model is saved after each epoch. We take
the model which gives the best result on our development set
for evaluation. Note that we always set word weights wt = 1
for our in-domain dataset.

In Table 3, we show the effect of different types of
weights on translation performance. First, the baseline
trained on mixed in-domain and out-of-domain datasets gives
24.37% BLEU and 61.66% TER, respectively. Directly fine-
tuning on in-domain dataset already improves the model due
to the bias of the model towards in-domain data.

Continuing training on mixed datasets with previous ob-
jective defined in Eq. 1 shows insignificant changes in terms
of BLEU and TER. However, introducing sentence-level
weights improves the model from 24.37% to 25.79% BLEU
and 61.66% to 60.82% TER, respectively. Compared to con-
tinuing training without weights, sentence-level weights are
generated as described in Section 2.2, where wt ∀t are set to
the same sentence weight w ∈ {0, 1} . We set the threshold
equal to 0.5 and keep the sentences with weights above the
threshold. The result from sentence-level feedback suggests
that mining good out-of-domain sentences which are sim-
ilar to in-domain datasets and dissimilar to out-of-domain
datasets benefits model translation towards in-domain-like
sentences even without fine-tuning on in-domain datasets.

The use of word-level weights improves the baseline
model even better, from 24.37% to 26.14% BLEU and
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Data set e-commerce + out-of-domain
Language English Chinese

Training
Sentences 5,689,989

Running words 97,266,344 96,480,106
BPE vocabulary 33,484 45,867

Dev Sentences 3173 (item descriptions)
Running words 51,130 48,900

Test Sentences 739 (item descriptions)
Running words 19,034 18,262

Table 1: Corpus statistics for the e-commerce English→Chinese MT tasks.

Corpus Sent. count Token count
ood. sentences 5,153,191 93,427,867
+sent. weights 2,633,109 26,275,096
+word weights 3,873,264 36,617,395
+chunk weights 3,873,264 25,813,480

Table 2: Out-of-domain training corpus statistics. ood. sen-
tences indicates the number of sentences/tokens in the out-
of-domain corpus. +sent. weights indicates the number
of selected out-of-domain sentences where the weights of
the sentences are equal to 1. +word weights and +chunk
weights indicate the statistics of selected out-of-domain sen-
tences/tokens after applying word weights generation and
LCW methods as described in Section 2.2 and 2.3.

61.66% to 60.34% TER, respectively. In this approach, the
number of selected tokens is drastically reduced to 36.6M
from 93.4M tokens, nearly 61% drop in number of tokens
with improved translation performance. Word-level weights
also outperform sentence-level weights by 0.35% in BLEU
score and 0.48% in TER. It can be explained by the fact that
each word in the sentences are given its own similarity to the
in-domain datasets. Considering sentence-level weights set
all words in a sentence with the same weight, even though
part of the words in the sentences might not be related to the
in-domain corpus, word-level weights are more accurate and
effective.

Finally, chunk-level weights are generated from our
word-level weights based on LCW. Here we aim to train
the domain-adapted model from more consecutive segments
rather than single selected words. On top of word-level
weights, it improves by another 0.28% BLEU absolute and
0.24% TER, respectively. Out-of-domain sentences can be
split into chunks which can be related to the in-domain
and can be translated independently in terms of the context.
The selection of the consecutive chunk with in-domain-like
context can positively affect the training towards domain-
adapted model. By focusing on in-domain related and out-
of-domain unrelated part, word/chunk-level weights can ef-
fectively reduce the unnecessary noise in the out-of-domain
training data. Compared to continuing training without word
weights, we are able to further reduce the corpus by 72%

tokens (25.8M vs. 93.4M selected tokens), resulting in an
improvement of 2.11% BLEU absolute and 1.59% TER, re-
spectively. It should also be noted that with similar number
of tokens (25.8M vs. 26.3M), chunk-level weights outper-
forms sentence-level weights by 0.63% BLEU absolute and
0.72% TER.

Next, we further fine-tune the model with chunk-level
weights and obtain further improvements of 0.88% BLEU
absolute and 1.81% TER. Compared to directly fine-tuning
on the baseline, continuing training the model with chunk-
level weights and then fine-tuning improves translation re-
sults from 26.06% to 27.30% BLEU and 59.93% to 58.29%
TER, respectively.

Results from the study on the effect of using different
smoothing methods are shown in Table 4. The word weights
generated without using smoothing methods, where ŝt = st,
lead to poor translation quality of 21.38% from 24.37%
BLEU and 66.25% from 61.66% TER, respectively. We need
to smooth the word scores before thresholding because the
values of logPI(yt|yt−1

t−n) − logPO(yt|yt−1
t−n) are noisy. If

there are selected isolated words like ’,’ which have higher
scores than the surrounding text, it may cause rare vocabu-
lary problem after training.

The results from word weights computed from mean av-
eraged filter and normal distributed filter are relatively close,
25.99% vs. 26.14% BLEU and 60.70% vs. 60.34% TER,
respectively. These results are obtained via a filter with win-
dow size L = 5. In practice, we also tried setting window
size L = 3 and L = 7, but didn’t observe different results.
We found that the surrounding word scores have to be con-
sidered for smoothing in order to make the word weights wt

less noisy as well as more precisely representing the similar-
ity to the in-domain/out-of-domain.

Additionally, we also experimented with randomly se-
lecting words in the out-of-domain sentences with binary
mask. However, we observed a drop in the translation ac-
curacy.

3.3. Examples

In Table 5, we show an example for which the system trained
with word weights produces a better translation. The En-
glish sentence is ”non-spill spout with patented valve”. The
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Item descriptions
No. System description BLEU [%] TER [%]
1 Baseline 24.37 61.66
2 1 + continue training without word weights 24.31 61.69
3 1 + continue training with sentence weights 25.79 60.82
4 1 + continue training with word weights 26.14 60.34
5 1 + continue training with chunk weights 26.42 60.10
6 1 + fine-tuning on in-domain 26.06 59.93
7 5 + fine-tuning on in-domain 27.30 58.29

Table 3: E-commerce English → Chinese BLEU results on test set. Baseline is trained on mixed in-domain and out-of-domain
data. No. 2 is continuing training from baseline with objective defined as Eq. 1. No. 3 is continuing training from baseline with
sentence-level weights and No. 4 is with word weights, as defined in Section 2.2. No. 5 refers to assigning wt using LCW method
described in Section 2.3. No. 6 is equivalent to directly fine-tuning on in-domain datasets starting from the baseline model and
No. 7 is equivalent to fine-tuning on in-domain datasets after No. 5 is finished.

System BLEU [%] TER [%]
Baseline 24.37 61.66
+w.w. without smooth. 21.38 66.25
+w.w. (mean smooth.) 25.99 60.70
+w.w. (gauss. smooth.) 26.14 60.34

Table 4: Study on the effect of different smoothing meth-
ods for word weights generation. Baseline is the same as
before. w.w. without smoothing means the word weights
(w.w.) are computed without smoothing in the log domain.
w.w. (mean smooth.) indicates smoothing the word scores
via using a mean average filter before thresholding and w.w.
(gauss. smooth.) indicates using a normal distributed fil-
ter before thresholding. The approaches regarding different
smoothing methods are described in Section 2.2.

word ”spout” is rare in our data, appearing in the out-of-
domain training sentences only once. The Chinese side of
this training example can be seen in Figure 1 together with
the weights assigned to the individual words by our method.
When smoothing is applied, isolated Chinese words such as
”空气” (”air”) are removed. With the longest consecutive
words (LCW) method, the only remaining chunk is ”防/溢
出/喷口/内” (”inside the non-spills spout”), which is related
to our in-domain data. The system with word weights is then
trained only on this chunk on the target side, while the base-
line model is trained on the entire sentence and generates
inappropriate translations.

4. Discussions
The domain adaptation techniques (sentence-level/chunk-
level/word-level) introduced in this paper are all derived from
word weights generation. They aim to select out-of-domain
sentences/chunks/words which are more related to in-domain
corpus and unrelated to out-of-domain corpus. The word
weights are computed prior to system tuning via the loga-
rithm difference of LM probability scoring and are then used

for tuning the sequence-to-sequence model. By measuring
domain similarity with external criteria such as LM, this kind
of out-of-domain data selection is able to highlight the in-
domain-related and out-of-domain-unrelated parts and leads
to less variation and errors in our e-commerce domain adap-
tation. In addition, the selected out-of-domain segments have
to be smoothed in order to reduce noise.

5. Conclusions

In this work, we generate word-level weights by calculat-
ing the logarithm difference of the probability of two ex-
ternal language models for domain adaptation. This ap-
proach better selects the out-of-domain segments related to
e-commerce domain, and requires fewer tokens for training.
We experimented with continuing training models with sen-
tence/chunk/word weights and show that they all give trans-
lation improvement in terms of BLEU and TER compared to
continuing training without word weights. Experiments on
our in-house English-Chinese datasets also show that contin-
uing training with word weights then fine-tuning improves
results over directly fine-tuning on baseline model.

In future, with the computed word weights as the ini-
tial parameters, we want to devise strategies to make online
domain adaptation possible by dynamically updating word
weights during training, which could in turn lead the in-
domain data translation to better match its references.
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