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Abstract

A spoken language translation (ST) system consists of at
least two modules: an automatic speech recognition (ASR)
system and a machine translation (MT) system. In most
cases, an MT is only trained and optimized using error-free
text data. If the ASR makes errors, the translation accuracy
will be greatly reduced. Existing studies have shown that
training MT systems with ASR parameters or word lattices
can improve the translation quality. However, such an ex-
tension requires a large change in standard MT systems, re-
sulting in a complicated model that is hard to train. In this
paper, a neural sequence-to-sequence ASR is used as fea-
ture processing that is trained to produce word posterior fea-
tures given spoken utterances. The resulting probabilistic
features are used to train a neural MT (NMT) with only a
slight modification. Experimental results reveal that the pro-
posed method improved up to 5.8 BLEU scores with synthe-
sized speech or 4.3 BLEU scores with the natural speech in
comparison with a conventional cascaded-based ST system
that translates from the 1-best ASR candidates.

1. Introduction

Spoken language translation is one innovative technology
that allows people to communicate by speaking in their na-
tive languages. However, translating a spoken language, in
other words, recognizing speech and then translating words
into another language, is incredibly complex. A standard ap-
proach in speech-to-text translation systems requires effort to
construct automatic speech recognition (ASR) and machine
translation (MT), both of which are trained and tuned inde-
pendently.

ASR systems, which aim for the perfect transcription of
utterances, are trained and tuned by minimizing the word
error rate (WER) [1]. MT outputs are optimized and auto-
matically measured based on a wide variety of metrics. One
of the standard methods is the BLEU metric. However, all
the errors from the words in ASR outputs are treated uni-
formly without considering their syntactic roles, which are
often critical for MT. Many studies have investigated the ef-
fectiveness of the WER metric of ASR on the whole speech
translation pipeline [2, 3, 4] and verified that ASR errors that
compose the WER metric do not contribute equally to the
BLEU score of translation quality.
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Furthermore, most MT systems are only trained and op-
timized using error-free text data. Despite the fact that ASR
technologies and their recognition rates have continued to
improve, the occurrence of speech recognition errors remains
inevitable. This is because there are many ambiguities due to
a wide variety of acoustic and linguistic patterns produced
by different speakers with various speaking styles and back-
ground noises. If the ASR engine makes mistakes, the trans-
lation accuracy will be significantly reduced. Thus, ignor-
ing the existence of ASR errors while constructing a speech
translation system is practically impossible.

Previous research on traditional phrase-based MTs has
attempted to train the ASR and MT parameters of the log-
linear model to directly optimize the BLEU score of the
translation metric of full speech translation systems [3]. It al-
lows the model to directly select recognition candidates that
are easy to translate and improve the translation accuracy
given an imperfect speech recognition. Ohgushi et al. [5]
further elaborated various techniques in the context of the
joint optimization of ASR and MT, including minimum er-
ror rate training (MERT) [6], pair-wise ranking optimization
(PRO) [7], and the batch margin infused relaxed algorithm
(MIRA) [8]. Other studies directly performed translation on
the lattice representations of the ASR output [9, 10, 11]. The
results showed that a better translation can be achieved by
translating the lattices rather than with the standard cascade
system that translated the single best ASR output.

Recently, deep learning has shown great promise in many
tasks. A sequence-to-sequence attention-based neural net-
work is one type of architecture that offers a powerful model
for machine translation and speech recognition [12, 13]. Sev-
eral studies revisited similar problems and proposed handling
lattice inputs by replacing the encoder part with a lattice en-
coder to obtain a lattice-to-sequence model [14, 15]. With
these methods, robust translation to speech recognition errors
became possible. However, this approach requires a large
modification to standard NMT systems, resulting in a com-
plicated model that is hard to train. Also, as the NMT takes
word lattices as input, it might be difficult to backpropagate
a translation error to the ASR part.

An extreme case is to train the encoder-decoder architec-
ture for end-to-end speech translation (ST) tasks, which di-
rectly translates speech in one language into text in another.
Duong et al. [16] directly trained attentional models on par-
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allel speech data. But their work focused only on alignment
performance. The works by Berard et al. [17] might be the
first attempts that successfully build a full-fledged end-to-end
attentional-based speech-to-text translation system. But they
only performed with a small parallel French-English BTEC
corpus, and their best results were behind the cascade base-
line model. Later on, Weiss et al. [18] proposed a similar
approach and conducted experiments on the Spanish Fisher
and Callhome corpora of telephone conversations augmented
with English translations. However, most of these works
were only done for language pairs with similar syntax and
word order (SVO-SVO), such as Spanish-English or French-
English. For such languages, only local movements are suf-
ficient for translation. Kano et al. [19] showed that direct at-
tentional ST approach failed to handle English-Japanese lan-
guage pairs with SVO versus SOV word order.

In this research, we also focus on English-Japanese
and we aim for a neural speech translation that is robust
against speech recognition errors without requiring signifi-
cant changes in the NMT structure. This can be considered
as a simplified version of the one that directly performed
translation on the lattice representations. But, instead of pro-
viding full lattice outputs, we perform a neural sequence-to-
sequence ASR as feature processing that is trained to pro-
duce word posterior features given spoken utterances. This
might resemble the word confusion networks (WCNs) [20]
that can directly express the ambiguity of the word hypothe-
ses at each time point. The resulting probabilistic features are
used to train NMT with just a slight modification. Such vec-
tors are expected to express the ambiguity of speech recog-
nition output candidates better than the standard way using
the 1-best ASR outputs while also providing a simpler struc-
ture than the lattice outputs. During training, the approach
also allows backpropagating the errors from NMT to ASR
and performs join training. Here, we evaluate our proposed
English-Japanese speech translation model using both syn-
thesized and natural speech with various degrees of ASR er-
rors.

2. Overview of Attention-based Speech
Translation

Our English-Japanese end-to-end speech translation system
consists of ASR and MT modules that were constructed
on standard attention-based, encoder-decoder neural network
architecture [21, 22].

2.1. Basic Attentional Encoder-Decoder model

An attentional encoder-decoder model consists of an en-
coder, a decoder, and attention modules. Given input
sequence * = [r1,Za,...,xy] with length N, the en-
coder produces a sequence of vector representation h"¢ =
(h§™e, h§™, ..., hSr©). Here, we used a bidirectional recur-
rent neural network with long short-term memory (bi-LSTM)
units [23], which consist of forward and backward LSTMs.
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The forward LSTM reads the input sequence from x; to x v

and estimates forward h¢™¢, and the backward LSTM reads
the input sequence in reverse order from x to z; and es-

timates backward h¢"*¢. Thus, for each input z,,, we obtain
hee by summation forward 2°"¢ and backward h°"¢:

h,’el’ﬂc — }W + enc (l)

n

The decoder, on the other hand, predicts target sequence
Yy = [Yo,Y1,Y2,---, yn| with length M by estimating con-
ditional probability p(y|x). Here, we use uni-directional
LSTM (forward only). Conditional probability p(y|x) is es-
timated based on the whole sequence of the previous output:

P(Ym|Y<m, ) = softmax(WyiL‘f,fc). 2)

Decoder hidden activation vector ﬁﬁfc is computed by apply-
ing linear layer W, over context information c,, and current
hidden state hd¢:

hdee = tanh(W,[cp,; h3e)). (3)

Here, ¢,, is in the context information of the input se-
quence when generating current output at time m. It is es-
timated by the attention module over encoder hidden states

here:
N
Cm = Z am (n) * hee, “4)
n=1

where variable-length alignment vector a,, is computed
whose size equals length of input sequence x:

a, = align(hflm, hﬁfc) (5)
softmax (dot(he"¢, hiec)).

This step assists the decoder to find relevant information on
the encoder side based on the current decoder hidden states.
Several variations calculate align(h¢™¢, hdc¢). Here, we sim-
ply use the dot product between the encoder and decoder hid-
den states.

2.2. Automatic Speech Recognition

Speech recognition tasks estimate a word sequence given
a sequence of speech features. Input sequence x =
[1, ..., zn] is the input speech filter bank feature sequence
of the source language, and target sequence y = [y1, ..., Y]
is the predicted corresponding word sequence in the source
language.

2.3. Machine Translation

Machine translation tasks estimate a word sequence of a tar-
get language given a word sequence of a source language.
Input sequence * = [z1,...,xy] is the word sequence of
the source language, and target sequence y = [y1, ..., Y]
is the predicted corresponding word sequence in the target

Proceedings of the 15" International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



language. Here, z,, is a one-hot vector in the baseline or
posterior vector in the proposed method, ¥, is the index rep-
resentation of the words, and yg is an index representation of
the target sequence’s start.

2.4. Speech-to-text Translation

Speech-to-text translation tasks estimate a word sequence of
a target language given a sequence of speech features. Here,
we use both the sequence-to-sequence ASR and MT systems.
Output sequence y from ASR becomes input sequence x in
an MT system.

3. Proposed method: NMT using Spoken
Word Posterior Features

DNN ASR Baseline
one-hot vector
0 “some” | 1 "some”
Speech : : 0 |“same”
0 |“break” - :
5 5 1 “make” “ "
o O ||
] S e Proposed
c Q= Posterior vector
(i} (&) )
0 [“some”
£S v : :
9 0.2/"break”
- 0.8"make”

Figure 1: Construction of spoken word posterior features

Fig. 1 illustrates the construction of spoken word pos-
terior features. Here, we train an end-to-end ASR using the
standard attention-based encoder-decoder neural network ar-
chitecture described in the previous section. But instead of
providing 1-best outputs of the most probable word sequence
to the translation system,

gm = argmax p(ym|y<m7 CB), (6)
Ym
we utilize the posterior probability vectors before the
argmax function:

p(ym|y<ma :I:) @)

This way the vectors can still express the ambiguity of the
speech recognition output candidates with probabilities.

The resulting probabilistic features are then used to train
the NMT with only a slight modification. We train the
end-to-end NMT using the standard attention-based encoder-
decoder neural network architecture described in the previ-
ous section. The only difference is in the input features. In-
stead of training the model with the one-hot vector of the
most probable words, we utilize the posterior vectors ob-
tained from the ASR. However, the dimension of input vector
representation used in a standard one-hot vector and the pro-
posed posterior vectors is the same. The overall architecture
is illustrated in Fig. 2.
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Figure 2: Proposed NMT architecture

4. Experiments

We evaluated the performance of the proposed method on
an English-Japanese translation task. To simulate the effect
of various ASR errors, we first assessed it on synthesized
speech and later applied it to natural speech.

4.1. Data set

The experiments were conducted using a basic travel expres-
sion corpus (BTEC) [24]:

e Text corpus
We used a BTEC English-Japanese parallel text corpus
that consists of about 460k (BTEC1-4) training sen-
tences and 500 sentences in the test set.

e Synthesized speech corpus
Since corresponding speech utterances for the BTEC
parallel text corpus are not available, we used Google
text-to-speech synthesis [25] to generate a speech cor-
pus of the BTEC1 source language (about 160k utter-
ances). We used about 500 speech utterances in the
test set.

e Natural speech corpus
We also evaluated with natural speech. In this case,
we used the ATR English speech corpus [26] in our
experiments. The text material was based on the basic
travel expression domain. The speech corpus we used
consisted of American, British, and Australian (AUS)
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English accents with about 120k utterances spoken by
100 speakers (50 males, 50 females) for each accent.

The speech utterances were segmented into multiple
frames with a 25-ms window size and a 10-ms step size.
Then we extracted 23-dimension filter bank features using
Kaldi’s feature extractor [27] and normalized them to have
zero mean and unit variance.

4.2. Models

We further used the data to build a speech translation system
with attention-based ASR and MT systems. The ASR and
NMT share the same vocabulary (16,745 words). The di-
mensions of the distributed vector representation are smaller
than vocabulary size (the size depends on the model settings).
The hidden encoder and decoder layer consists of 500 nodes.
A batch size of 32 and a dropout of 0.1 were also applied.
For all systems, we used a learning rate of 0.0001 for the en-
coder and 0.0005 for the decoder and adopted Adam [28] to
all the models.

As we aim to have a neural speech translation that is ro-
bust against speech recognition errors without requiring sig-
nificant changes in the NMT structure. We constructed three
types of models that fit those requirements:

e Text-based machine translation system (upper-
bound)
This is a text-to-text translation model from the source
language to the target language. Here the BTEC
English-Japanese parallel text corpus is used to train
the model.

e Baseline speech translation

This speech-to-text translation model was created by
cascading the ASR (speech-to-text) in the source lan-
guage with a text-to-text MT module using 1-best
ASR outputs. First, we pre-trained the NMT with the
BTEC English-Japanese parallel text corpus and then
fine-tuned the NMT model with a one-hot vector pro-
vided from the ASR.

e Proposed speech translation
This speech-to-text translation model was created by
cascading ASR (speech-to-text) in the source language
with the text-to-text MT module using the ASR poste-
rior vectors. First, we pre-trained the ASR with the
speech of the source language and the NMT with the
BTEC English-Japanese parallel text corpus. After
that, we fine-tuned the parameter of both models by
jointly training, where the posterior vector of ASR out-
put is used as the NMT input.

Note that the ASR systems used for the baseline and the
proposed systems are the same. Also, all translation sys-
tems were tuned adequately, and the best model from training
epochs was selected for each system.
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5. Result
5.1. Speech Recognition System

To simulate different degrees of ASR errors, we constructed
an ASR model using synthesized speech with different num-
bers of training epochs, resulting in four different models
with the following WERs: (1) System 1 (WER=15.17%),
System 2 (WER=12.34%), System 3 (WER=11.05%), and
System 4 (WER=8.82%). As a model that is trained with
natural speech, our performance achieved a 24.98% WER.

5.2. Translation System

As mentioned earlier, we compare three translation system:
one for standard text-based machine translation, one for
baseline speech translation with the cascade model, and one
for our proposed speech translation.

44
43
42
40
39
38
37
36

System 1 System 2 System 3 System 4

BLEU
=

I Proposed Baseline =—Text translation

Figure 3: Translation quality given synthesized speech input
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Figure 4: Translation quality given natural speech input

The quality of those translation systems with the input
of synthesized speech was evaluated using BLEU [29] and
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Figure 5: Attention matrix of text translation

shown in Fig. 3. Here System 1-4 represent of using different
ASR systems (1-4), respectively. The results show that the
better the ASR performance, the stronger the baseline cas-
cade model. Nevertheless, our proposed approach stable out-
performed the cascade model in all cases. The BLEU score
improved from 4.8 to 5.8 compared to the baseline model.

The proposed methods (System 3 and 4) exceed the text
translation because the recognition candidates included in the
posterior vector made it possible to correctly distinguish con-
fusing words in the word embedding of the text translation.
We will scrutinize this result in the next section.

Next, the quality of the speech translation systems using
natural speech was also evaluated using BLEU and shown in
Fig. 4. For the text translation, we provided the transcription
of the natural speech, which is different than the text used
in Fig. 3. This system used the ASR model where WER is
24.98%. Importantly, unlike several published ASR systems
using BTEC dataset, our ASR system only used the text tran-
scription of the training set for the language model. There-
fore, the ASR results reported in the paper could not reach
state-of-the-art ASR performance. Nevertheless, the transla-
tion results are still convincing as evidence of the proposed
framework’s effectiveness. The proposed method improved
the 4.3 BLEU score of the baseline model, confirming that
the proposed method is also effective for natural speech.

6. Discussion

Table 1 shows the sentence output examples in English-
Japanese translation: (1) with ASR error, and (2) without
ASR error. In the first example, to analyze the effect of ASR
error, we compare the sentence output of the proposed model
and the baseline (the cascase model). Here, ASR misrecog-
nized “shoe” as “station”. This error impacted the baseline
(cascade system), where it translated “station” as “eki” (the
correct translation for “shoe store” is “kutsuya”). How-
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Figure 6: Attention matrix of proposed method

Table 1: Examples of sentences output: (1) with ASR error,
and (2) without ASR error.

Example 1: With ASR error
Excuse me where is the closest shoe store?

ASR reference

ASR result Excuse me where is the closest station store?
Baseline Sumimasen ichiban chikai eki wa doko desuka?
Proposed Sumimasen ichiban chikai kutsuya wa doko desuka?

MT reference Sumimasen ichiban chikai kutsuya wa doko desuka?
E le 2: Without ASR error

i d like to have a perm and a haircut please

ASR reference

ASR result id like to have a perm and a haircut please
Text translation | Paama to paama o onegai shitai nodesuga
Proposed Paama to katto o onegaishimasu

MT reference Paama to katto o onegaishimasu

Table 2: Posterior vector

Recognized “ Posterior

station 0.439
shoe 0.321
change 0.086
cashier 0.036
always 0.016

ever, in the proposed method, it was still able to translate it
to “kutsuya”. This might be because the ASR provided a
posterior vector in which the recognition candidate and each
a posteriori probability are weighted (Table 2). Here, “shoe”
information was still contained in the posterior vector with
only slightly lower probability than “station,” and based on
the context information, the machine translation translated
the word as “kut suya.”

In the second example, ASR provided a correct sentence.
Here, we compare the sentence output of the proposed model
and the text translation. Since the contexts of “perm” and
“haircut” are close, the text translation mistakenly translated
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both “perm” and “haircut” into “paama” (Fig. 5 illustrates
the text translation’s alignment matrix). On the other hand,
having a posterior vector as the input in the proposed model
(see the attention matrix in Fig. 6) allowed NMT to correctly
distinguish confusing words by the word embedding of the
text translation.

7. Conclusions

In this research, a speech translation system that is robust
against speech recognition errors is obtained by using a pos-
terior vector, which is a normalized vector that expresses the
ambiguity of the speech recognition candidates, as the input
of an NMT engine. The lower the WER of the ASR model is,
the weaker the tendency of translation error becomes. Never-
theless, the whole test’s accuracy surpassed the baseline. As
aresult, the posterior vector improved the BLEU score by 4.8
to 5.8 points over the baseline in the simulation experiment
and improved it by 4.3 BLEU points over the baseline in the
experiment using natural voice. By providing the probability
of the speech recognition output candidates in speech trans-
lation, an optimal input selection for NMT was made. In the
future, we will directly perform join training from ASR to
NMT.
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