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Abstract
This report summarizes the Air Force Research Labora-
tory (AFRL) machine translation (MT) and automatic speech
recognition (ASR) systems submitted to the spoken language
translation (SLT) and low-resource MT tasks as part of the
IWSLT18 evaluation campaign.

1. Introduction
As part of the evaluation campaign for the 2018 International
Workshop on Spoken Language Translation (IWSLT18) [1],
the AFRL Human Language Technology team applied and
improved techniques from previous workshops [2] and Con-
ference onMachine Translation efforts [3] to the Spoken Lan-
guage Translation and Low-Resource Machine Translation
tasks.

2. Spoken Language Translation
2.1. Automatic Speech Recognition

This section describes the ASR systems that were developed
for the baseline condition of the Speech Translation task. We
trained two different English systems and performed system
combination to obtain the final hypothesis for translation.
Section 2.1.1 describes that languagemodels (LMs) that were
used for decoding and rescoring. Section 2.1.2 discusses the
Kaldi ASR system, and Section 2.1.3 describes the Hidden
Markov Model ToolKit (HTK) Tensorflow system. Finally,
Section 2.1.4 describes how we segmented the test data and
performed system combination.

2.1.1. Language Models

LMs were estimated on the provided TED data and subsets
of News Crawl 2007-2017 and News Discussions versions 1-
3. The subset of each news corpus was selected using cross-
entropy difference scoring [4] with TED as the in-domain
text, and selection thresholds were chosen to use 1/8 of each
corpus to train N-gram LMs, and 1/16 of each corpus to train
a recurrent neural network (RNN) LM. Interpolated bigram,
trigram, and 4-gram LMs were estimated using the SRILM
Toolkit,1 and a RNNmaximum entropy LMwas trained using
the RNNLM Toolkit.2 The RNN included 160 hidden units,

1http://www.speech.sri.com/projects/srilm
2http://www.fit.vutbr.cz/$\sim$imikolov/rnnlm

Table 1: Kaldi WER. Decoding was performed using a tri-
gram LM trained on TED.

Acoustic Training Data dev2010 tst2010 tst2013
Speech-Translation TED 19.8 19.6 30.5
TEDLIUM 16.9 14.8 22.3
Combined 16.6 15.1 23.6

300 classes in the output layer, 4-gram features for the di-
rect connections, and a hash size of 109. The LM vocabulary
included 100,000 words that were chosen using the select-
vocab tool from SRILM.

2.1.2. Kaldi System

The acoustic training data available for this year’s evalua-
tion included the Speech-Translation TED corpus and the
TEDLIUM corpus. Based on a preliminary analysis of the
Speech-Translation TED corpus, we removed all segments
longer than 15 seconds from this corpus. The devtest and off-
limit talks were sequestered from TEDLIUM, and a third data
set was created by searching the Speech-Translation TED
and TEDLIUM corpora for non-overlapping time segments.
Next, an initial set of ASR systems were trained on each data
set using the Kaldi open source speech recognition toolkit
[5]. All Kaldi models discussed in this paper are based on
the chain time delay neural network (TDNN)-rectified linear
unit (ReLU) setup using i-vectors.3 Standard data augmenta-
tion methods were applied during the Mel frequency cepstral
coefficient (MFCC) feature generation stage, such as speech
and volume perturbation. Each system was decoded using
the same trigram LM, which was estimated from the provided
TED data using the SRILM toolkit. Table 1 shows the word
error rate (WER) obtained on dev2010, tst2010, and tst2013.

Based on the results in Table 1, a Kaldi ASR system was
trained on TEDLIUM using the interpolated bigram LM de-
scribed in Section 2.1.1. This model was then used to decode
all of the audio from the Speech-Translation TED corpus (in-
cluding segments longer than 15 seconds), and the ASR de-
rived transcripts were folded in with the TEDLIUM data, as
in a semi-supervised training scenario, to build the final Kaldi
ASR system. This data set is referred to as TEDLIUM+ASR

3http://github.com/kaldi-asr/kaldi/tree/master/egs/
swbd/s5c/local/chain
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Table 2: Kaldi WER. Decoding was performed using an in-
terpolated bigram LM, and rescoring was applied using an
interpolated 4-gram and RNN LM.

ASR System dev2010 tst2010 tst2013
Kaldi TEDLIUM 14.0 11.9 17.7
Kaldi TEDLIUM+ASR 13.5 11.4 17.0

in the remainder of this paper.
The test data was decoded as follows. First, the recogni-

tion lattices from the Kaldi bigram systemwere rescored with
the 4-gram LM. Next, 1000-best lists were extracted from
each lattice and rescored with the RNN LM. The final LM
scores were obtained by linearly interpolating the log proba-
bilities from the 4-gram and RNN LM. Interpolation weights
of 0.25 for the 4-gram and 0.75 for the RNN were chosen
based on results from previous experiments. Table 2 shows
the final WER obtained with each system. Based on these re-
sults, we used the TEDLIUM+ASR system in all remaining
experiments.

2.1.3. HTK-Tensorflow System

A hybrid neural network hidden Markov model (HMM)
speech recognition system was developed using Tensorflow
[6] and a version of HTK4 that we modified according
to the method of [7]. First, a Gaussian mixture model
(GMM)-HMM system was trained on TEDLIUM. Phonemes
were modeled using word-position-dependent state-clustered
across-word triphones, and the final HMM set included 6000
shared states with an average of 28 mixtures per state. The
feature set consisted of 12 perceptual linear prediction (PLP)
coefficients, plus the zeroth coefficient, with mean and vari-
ance normalization applied on a per talk basis. Delta, ac-
celeration, and third differential coefficents were appended
to form a 52 dimensional vector, and heteroscedastic linear
discriminant analysis (HLDA) was used to reduce the fea-
ture dimension to 39. Speaker adaptive training (SAT) was
applied using constrained maximum likelihood linear regres-
sion (CMLLR) transforms, and the models were discrimina-
tively trained using the minimum phone error (MPE) crite-
rion.

A residual network (ResNet) was trained on the
TEDLIUM+ASR data set described in Section 2.1.2. This
network is based on the 18-layer network described in [8],
with the batchnorm and ReLU activations moved to utilize
full pre-activation residual units described in [9], and an ad-
ditional fully connected layer for i-vector input. Figure 1
shows the ResNet structure. A context window of 17 was
applied to the feature input, which included 40 log filterbank
outputs normalized to zero mean and unit variance on a per
talk basis. The 100 dimensional i-vectors were extracted on
a per-talk basis with an i-vector extractor that was trained on

4http://htk.eng.cam.ac.uk
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Figure 1: ResNet architecture based on [8, 9] with convolu-
tional (conv), max pooling (maxpool), average pooling (avg-
pool), and fully connected (fc) layers. H×W is the filter size
and /2 indicates that a stride of 2 was applied.

TEDLIUMusing the same procedure as our IWSLT2015 sys-
tem [10]. Cross entropy training was performed using a mini-
batch size of 512 and an initial learning rate of 0.0005 that
was adjusted according to the QuickNet newbob algorithm.5

Recognition lattices were produced using HDecode with
the interpolated trigram LM described in Section 2.1.1, and
then rescored with the 4-gram and RNN LM using the same
procedure as the Kaldi system. Next, confidence scores were
estimated at the acoustic frame level by aligning the 20-best
hypotheses for each utterance and counting the number of
matching HMM states. An adapted ResNet was estimated

5http://www.icsi.berkeley.edu/Speech/faq/nn-train.html
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Table 3: HTK-Tensorflow WER. Decoding was performed
using an interpolated trigram LM, and rescoring was applied
using an interpolated 4-gram and RNN LM.

ASR System dev2010 tst2010 tst2013
ResNet 15.4 12.9 17.5
ResNet-Adapted 15.3 12.6 16.1

for each talk using frames that had a confidence score of 0.9
or higher and a single epoch of cross-entropy training with a
learning rate of 0.0000625. Finally, the test set was decoded a
second time and LM rescoring was reapplied. Table 3 shows
the WER on dev2010, tst2010, and tst2013.

2.1.4. Test Segmentation and System Combination

The WER results reported in the previous sections were ob-
tained by evaluating each ASR system on the automatically
derived segments from the baseline implementation.6 It was
discovered that the segment boundaries did not always align
with non-speech; therefore, we decided to use an alternative
segmentation method.

A neural network based speech activity detector (SAD)
was developed using Tensorflow. The SAD was trained on
40 hours from the TEDLIUM corpus using the automatically
generated phoneme alignments from the HTK GMM-HMM
system to define the speech/non-speech boundaries. The net-
work included a context window of 41 frames on the input,
a hidden layer of 1024 neurons with rectified linear activa-
tion functions, and 2 output units corresponding to speech
and non-speech. The feature set consisted of 40 log filterbank
outputs that were normalized to zero mean and unit variance.
Automatic segmentation of the test data was performed by
evaluating the SAD, applying a dynamic programming al-
gorithm to choose the best sequence of states, and defining
utterance boundaries at the midpoint of each non-speech seg-
ments longer than 0.5 seconds. Lastly, non-speech segments
longer than 1.0 second were trimmed from each utterance.

The final hypothesis was selected by applying N-best rec-
ognizer output voting error reduction (ROVER) to the out-
put from the Kaldi TEDLIUM+ASR and HTK-Tensorflow
ResNet-Adapted system. Table 4 shows the WER obtain us-
ing the updated segmentation. Comparing Table 4 with the
results in Table 2 and 3, we can see that the updated segmen-
tation method provided a substantial improvement in WER.

2.2. ASR Postprocessing

We employed the provided SLT.KIT punctuator component
to re-punctuate our ASR output before applying a truecaser
model to induce the most common case for an English word
before translating with the Marian section described in the
next section.

6http://github.com/isl-mt/SLT.KIT

Table 4: WER using the updated test segmentation method.
The final ASR hypothesis was obtained using N-best
ROVER.
ASR System dev2010 tst2010 tst2013
Kaldi TEDLIUM+ASR 9.5 7.7 12.8
ResNet-Adapted 11.2 8.6 11.2
N-best ROVER 9.5 6.9 9.8

Table 5: English-German cased BLEU scores for the SLT
task. For comparison purposes, this table includes the scores
obtained with the reference English source text.

English Transcripts dev2010 tst2010 tst2013
Reference 27.10 27.40 28.83
ASR 18.48 17.20 18.40

2.3. Machine Translation

Lastly, a Marian [11] neural machine translation system was
employed to translate the repunctuated text from English into
German. This system was trained on the 41 million lines of
preprocessed data provided by theWMT18 organizers for the
news-translation shared task[12]. The data was truecased for
uniformity, then a byte-pair encoding (BPE) [13] model was
trained jointly on the source and target data with 90k merge
operations.

As described in our WMT18 news-task efforts[3], we
used the same parameters in training our Marian transformer
[14] model:

• We used an encoding depth of 6 layers and a decoding
depth of 6 layers.

• We used 8 transformer heads.

• We held the vocabulary size constant during training to
90k entries each for source and target.

• We held the word embedding dimensionality to 512 for
all models.

• We used 1024 units in the hidden layer (where appro-
priate).

• We exclusively used the WMT newstest2014 test set
for validation.

2.4. Results

Results of scoring our repunctuated, translated ASR output
and various references are shown in Table 5.

3. Low-Resource Machine Translation
For the low-resource translation task, we tried a variety of
approaches with Marian [11], and Moses[15] toolkits. We
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Table 6: Corpus size for each language pair in training corpus

Lang. Pair Lines
Basque–English 5,623
French–English 288,366
Spanish–English 278,297
Total corpus 572,286

tried additional approaches with stemming and morphologi-
cal processing, but systems trained with data processed in this
manner were not ready in time for evaluation submission.

3.1. Common Training Corpus

For many of the experiments across different toolkits and sys-
tems, we constructed a common training corpus with uniform
preprocessing in order to reduce variables when comparing
different conditions.

Using the provided parallel Basque–English, French–
English, and Spanish–English TED corpora [16], we con-
struct a training corpus containing all three language pairs.
Sizes of each portion of the training corpus are listed in Table
6. A joint BPE model was trained with 89,500 merge opera-
tions on the combination of all languages in the training data,
then applied to the unified training corpus.

A similar corpus for use in backtranslation was con-
structed from the provided English–Basque, French–Basque,
and Spanish–Basque corpora. Due to the small size of each
of these component corpora, we also add the Basque–English
portion of the OpenSubititles Corpus7. Sizes of each portion
of this backtranslation training corpus are listed in Table 7.
The BPE model from the ‘forward’ was used to segment the
source and target data.

For some Marian experiments, we also constructed
monolingual Basque and English corpora for use in con-
structing pretrained word embeddings. We use 50 million
lines from the English monolingual CommonCrawl corpus
selected for use in backtranslation from our WMT17 news-
task efforts [17]. Additional monolingual Basque data was
taken from the Commoncrawl website8 and language-filtered
using amodified C implementation9 of the algorithm outlined
in [18], yielding a Basque monolingual corpus of 38 million
lines. We then apply BPE to each of these corpora with the
same model as above and use word2vec [19] to generate 512-
dimension word embeddings compatible with our settings in
Marian.

3.2. Marian Systems

We spent the bulk of our efforts building systems with the
Marian toolkit, experimenting with a variety of settings along
two major categories: Sentence-weighting and backtrans-

7http://www.opensubtitles.org
8http://www.commoncrawl.org
9https://github.com/saffsd/langid.c

Table 7: Corpus size for each language pair in backtranslation
training corpus

Lang. Pair Lines
English–Basque 5,623
French–Basque 6,948
Spanish–Basque 6,668
Basque–English OpenSubtitles 458,380
Total corpus 477,619

lated systems.

3.2.1. Sentence-Weighted training

We used the “forward” corpus outlined in Section 3.1 to train
Marian systems with the same network parameters as out-
lined in the SLT translation system in Section 2.3. In Ta-
ble 8, we note our baseline system (#1) scored 11.11 cased
BLEU on dev2018. Next, we utilize the sentence-weighting
feature of Marian that allows each sentence to be assigned a
“weight” to determine how much of an effect each will have
during training. A score of 1.0 is assigned to sentences from
the Basque–English portion of the training corpus, French–
English and Spanish–English sentences are assigned a score
of 0.5. The system trained with these weights (#2) shows a
+2.41 increase in BLEU.

Using the same data as system #2, we train a system that
uses BEER [22] as the validation metric. While we have seen
performance gains using this tactic in other work, here the
resulting system(#3) performs -0.75 BLEU worse than the
previous system.

Next, we consider averaging and ensembling of models.
We take the 4-best model checkpoints from system #2 and
average them into a single model, resulting in system #4’s
+0.87 BLEU gain over system #2.

Lastly, we decode with an ensemble of system #4 and a
model averaged from the four best checkpoints of system #3,
resulting in a BLEU score of 15.45. This system (#5) was
then submitted as our entry to the low-resource MT task.

3.2.2. Backtranslated training corpus

As a contrast, we use the “backtranslation” corpus to train a
shallow “s2s” Marian system that translates English, Span-
ish, and French into Basque. We then translate a 2 million
line portion of the English monolingual corpus described in
3.1 into something resembling Basque and then use the com-
bination of the two in conjunction with the small amount of
provided Basque–English data to train two Marian “bi-deep”
[20, 21] systems, both using BEER [22] as the training val-
idation metric. These systems are listed as #6 (without pre-
trained word embeddings) and #7 (with pretrained word em-
beddings) in Table 8. We note that pretrained word embed-
ding system scores -1.46 cased BLEU lower than the equiv-
alent system without the pretrained embeddings, counter to
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Table 8: Results for various MT systems decoding Basque–
English dev2018 measured in cased BLEU. Our submission
system is highlighted in bold text.

# System BLEU
1. marian-eseufr-trans 11.11
2. marian-eseufr-trans-weight 13.52
3. marian-eseufr-trans-weight-beervalid 12.77
4. marian-eseufr-trans-weight-avg4 14.39
5. marian-eseufr-trans-weight-avg4X2 15.45
6. marian-bt-bideep-beervalid 11.23
7. marian-bt-bideep-preembed-beervalid 9.77
8. moses-bt-bpe 14.06

our experience with our WMT18 systems.

3.3. Moses System

Using both the provided Basque–English data and the back-
translated corpus outlined in Section 3.2.2 we train a Moses
system in a similar vein to the one employed in our WMT18
submission: This system employed a hierarchical reordering
model [23] and 5-gram operation sequence model [24]. The
5-gram English language model was trained with KenLM on
the constrained monolingual corpus from our WMT15 [25]
efforts. Our uniform BPE model used was applied to the par-
allel training data, but the languagemodelling corpus used the
Russian–English joint BPEmodel from ourWMT18 submis-
sion, possibly degrading performance due to this BPE mis-
match. System weights were tuned with the Drem [26] opti-
mizer using the “Expected Corpus BLEU” (ECB) metric.

This system, listed as #8 in Table 8 performs better than
the two other Marian-based backtranslation systems (#6 and
#7).

3.4. Results

Results of various systems described in the above sections
are listed in Table 8. Our final submission system (#5) is
highlighted in bold text.

4. Conclusions

Our experimentation this year show positive results in spoken
language translation, especially our ASR component. How-
ever, for the low-resource MT task, we note that various ap-
proaches we have previously employed with great effect in
high-resource conditions need further adaptation and refine-
ment when scaling down to extremely low-resource condi-
tions.

Opinions, interpretations, conclusions and recommendations are those
of the authors and are not necessarily endorsed by the United States Gov-
ernment. Cleared for public release on 4 Oct 2018. Originator Reference
Number: RH-18-118975 Case Number: 88ABW-2018-4946.
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