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Abstract

This work describes AppTek’s speech translation pipeline
that includes strong state-of-the-art automatic speech recog-
nition (ASR) and neural machine translation (NMT) com-
ponents. We show how these components can be tightly
coupled by encoding ASR confusion networks, as well as
ASR-like noise adaptation, vocabulary normalization, and
implicit punctuation prediction during translation. In another
experimental setup, we propose a direct speech translation
approach that can be scaled to translation tasks with large
amounts of text-only parallel training data but a limited num-
ber of hours of recorded and human-translated speech.

1. Introduction

AppTek participated in the evaluation campaign of the
International Workshop on Spoken Language Translation
(IWSLT) 2018 with the goal of obtaining best possible
speech translation quality by streamlining the interface be-
tween ASR and machine translation (MT). We tested a new
way of encoding multiple hypotheses of ASR as input to an
NMT system. We also experimented with a novel direct neu-
ral translation model that translates source language speech
into target language text, while at the same time benefiting
from text-only parallel training data in a multi-task learning
framework. To make these experiments possible, we made
sure that our NMT system can handle different types of input,
and its source language vocabulary is harmonized w.r.t. the
ASR system vocabulary. We also fine-tuned the NMT model
on ASR-like noise, making it more robust against recognition
errors. Finally, we tested different punctuation prediction ap-
proaches and found that the implicit prediction of punctua-
tion marks by the MT component works best in our setting.
Although improving our state-of-the-art NMT model was
not our main focus, we benefited from fine-tuning the model
on the in-domain data, as well as from ensembles of mod-
els which differ in architecture — recurrent neural network
(RNN) model with attention [1] or transformer architec-
ture [2] — and/or input modality — ASR confusion network
(CN) or first-best ASR output. This paper is organized as
follows. We start by reviewing related work in 2, point-
ing out some differences and novelties in our approach. In
Section 3, we describe our methods for data filtering, pre-
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processing, and punctuation prediction. Section 4 gives an
overview of our ASR system. Section 5 describes the details
of AppTek’s NMT system. Section 6 gives details of how
ASR confusion networks can be encoded as an input of the
NMT system. In Section 7, we describe our direct speech
translation prototype. The results of our speech translation
experiments are summarized in Section 8.

2. Related Work

Theoretical background for tighter coupling of statistical
ASR and MT systems had been first published in [3]. In prac-
tice, it was realized e. g. as statistical phrase-based transla-
tion of ASR word lattices with acoustic and language model
scores [4] or confusion networks with posterior probabili-
ties [5]. In both cases moderate improvements of translation
quality were reported when the ASR scores were included
in the log-linear model combination; the improvements were
larger when the baseline recognition quality was low.

In the first publication on word lattice translation using
a neural model [6], the proposed lattice-to-sequence model
had an encoder component with one hidden state for each
lattice node, as well as attention over all lattice nodes. This
is a different and more computationally expensive model as
compared to what we propose in this work. In our encoder,
the number of hidden states is the same as the number of slots
in the input confusion network, which is usually only slightly
higher than the number of words in the utterance.

Adapting the NMT system to ASR-like noise was pro-
posed by [7]. We follow the same strategy, but the noise that
we introduce is not random; it is sampled from a distribution
of most common ASR errors based on statistics from recog-
nizing the audio of the TED dataset.

Direct translation of foreign speech was proposed by [8],
who used a character-level sequence-to-sequence model'.
They report experimental results on a small (163 hours
of speech with transcriptions and translations) Spanish-to-
English Fisher and Callhome dataset. The authors use multi-
task learning with a single speech encoder and two decoders,
one for English (direct translation) and one for Spanish,
which allows them to incorporate supervision from Spanish

A later work by [9] extends the approach of [8] to word-level models.
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transcripts. In contrast, we follow the opposite approach, in
which we have a single target language decoder and two sep-
arate encoders, one for source language speech, and one for
source language text. This approach allows us to benefit from
large quantities of text-only parallel MT training data, in a
multi-task learning scenario, and thus, in contrast to previ-
ous work, to potentially compete with the standard approach
that uses strong, but separate components for ASR and MT.

Punctuation prediction in MT (and especially neural MT)
context was investigated in comparative experiments in [10].
Similarly to that paper, we also confirmed experimentally
that implicit prediction of punctuation marks by the NMT
system resulted in the best BLEU and TER scores in our set-
ting (see Section 3.3 for details).

3. Data Preparation
3.1. Parallel Data Filtering

In line with the evaluation specifications, we used the TED
corpus, the OpenSubtitles2018 corpus [11], as well as the
data provided by the WMT 2018 evaluation (Europarl,
ParaCrawl, CommonCrawl, News Commentary, and Rapid)
as the potential training data for our NMT system, amount-
ing to 65M lines of parallel sentence-aligned text. We then
filtered these data based on several heuristics, with the two
most important ones described next.

Since especially the crawled corpora are very noisy, they
often contain segments in a wrong language, or even things
like programming code and XML markup. We used the
CLD2 library? for sentence-level language identification to
keep only those sentence pairs in which the source sentence
was labeled as English and target sentence as German with
the confidence of at least 90%.

Another heuristic was based on sentence length: we only
kept sentences with at least 3 and at most 80 words (after to-
kenization). We also removed sentence pairs in which source
and target sentence lengths differ by a factor of 5 or more.

Overall the filtering yielded a corpus of 37.6M lines and
556M words (on the English side, counted untokenized),
which we used in all of the experiments presented in this
paper. It included 256K unique lines of TED talks with 4.4M
words on the English side.

3.2. Preprocessing

We used two types of preprocessing. The first one was the
standard Moses tokenization [12] for text translation and
lowercasing on the English side. The German side was true-
cased using a frequency-based method. The second prepro-
cessing was used only for English with the goal of converting
text into speech transcript similar to the one produced by the
ASR system. Starting from the Moses tokenization, we re-
moved all punctuation marks and spliced back contractions
(e.g. do n’t — don’t) to match the corresponding to-

2https://github.com/CLD20wners/cld2
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kens in the ASR lexicon. We also converted numbers written
with digits to their spoken form using a tool based on the
num2words® python library.

The final step for both types of preprocessing was
segmentation into sub-word units with byte pair encoding
(BPE) [13], separately for each language. We used 20K
merging operations. During testing, we used the option to
revert BPE merge operations resulting in tokens that were
observed less than 50 times in the segmented training data.

3.3. Punctuation Prediction

To translate a speech transcript with an NMT system trained
with the first, standard preprocessing described above, we
need to automatically enrich it with punctuation marks. To
this end, we trained a RNN for punctuation restoration simi-
lar to the one presented in [14]. Only the words in a sentence
are used to predict punctuation marks (period, comma, and
question mark only). The acoustic features are not used.

For the setup with the ASR-like preprocessing of En-
glish, punctuation prediction is done implicitly during trans-
lation, since the target side of the training corpus contains
punctuation marks. Thus, the output of the ASR system can
be directly used (after BPE) as input to the NMT system.

4. ASR system

The ASR system is based on a hybrid LSTM/HMM acous-
tic model [15, 16], trained on a total of approx. 390 hours
of transcribed speech from the TED-LIUM corpus (exclud-
ing the black-listed talks) and the IWSLT Speech-Translation
TED corpus*. We used the pronunciation lexicon provided
with the TED-LIUM corpus. The acoustic model takes 80-
dim. MFCC features as input and estimates state posterior
probabilities for 5000 tied triphone states. It consists of 4 bi-
directional layers with 512 LSTM units for each direction.
Frame-level alignment and state tying were obtained from
a bootstrap model based on a Gaussian mixtures acoustic
model. We trained the neural network for 100 epochs by min-
imizing the cross-entropy using the Adam update rule [17]
with Nesterov momentum and reducing the learning rate fol-
lowing a variant of the Newbob scheme.

The language model for the single-pass HMM decod-
ing is a simple 4-gram count model trained with Kneser-
Ney smoothing on all allowed English text data (ap-
prox. 2.8B running words). The vocabulary consists of the
same 152k words from the training lexicon and the out-
of-vocabulary rate is 0.2% on TED.dev2010 and 0.5%
on TED.tst2015. The LM has a perplexity of 133 on

3https://github.com/savoirfairelinux/num2words

4We realized that the provided audio-to-source-sentence alignments of
the TED talks were often not correct. As this could significantly degrade the
performance of the audio encoder for the direct speech translation approach
described in Section 7, we had to automatically recompute these alignments
by force-aligning each TED recording to its corresponding source sentences,
and applied heuristics to overcome the problem of transcription gaps (speech
segments without a translation in the parallel data).
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TED.dev2010 and 122 on TED.tst2015.

Since TED talks are a relatively simple ASR task, we
decided not to proceed with sequence training of the acous-
tic model or LM rescoring with LSTM models in order to
have more uncertainty in the lattices. Acoustic training of
the baseline model and the HMM decoding were performed
with the RWTH ASR toolkit [18]. We trained BLSTM mod-
els with RETURNN [19], which integrates into RWTH ASR
as an external acoustic model for decoding. Prior to con-
structing CNs from lattices [20], we decomposed the words
into individual arcs according to the BPE scheme described
in Section 3.2. The construction algorithm uses arcs from the
first-best path as pivot elements to initialize arc clusters [21].

5. Neural Machine Translation System

We used the RETURNN toolkit [22] based on TensorFlow
[23] for all NMT experiments. We trained two different ar-
chitectures of NMT models: an attention-based RNN model
similar to [1] with additive attention and a Transformer
model [2] with multi-head attention.

In the RNN-based attention model, both the source and
the target words are projected into a 620-dimensional em-
bedding space. The models are equipped with either 4 or 6
layers of bidirectional encoder using LSTM cells with 1000
units. A unidirectional decoder with the same number of
units was used in all cases. We applied a layer-wise pre-
training scheme that lead to both better convergence and
faster training speed during the initial pre-train epochs [22].
We also augmented our attention computations using fertility
feedback similar to [24, 25].

In the Transformer model, both the self-attentive en-
coder and the decoder consist of 6 stacked layers. Every
layer is composed of two sub-layers: a 8-head self-attention
layer followed by a rectified linear unit (ReLU). We ap-
plied layer normalization [26] before each sub-layer, whereas
dropout [27] and residual connection [28] were applied after-
wards. Our model is very similar to “base” Transformer of
the original paper [2], such that all projection layers and the
multi-head attention layers consist of 512 nodes followed by
a feedforward layer equipped with 2048 nodes.

We trained all models using the Adam optimizer [17]
with a learning rate of 0.001 for the attention RNN-based
model and 0.0003 for the Transformer model. We applied a
learning rate scheduling similar to the Newbob scheme based
on the perplexity on the validation set for a few consecutive
evaluation checkpoints. We also employed label smoothing
of 0.1 [29] for all trainings. The dropout rate ranged from
0.1t0 0.3.

6. Translation of ASR Confusion Networks

To encode confusion networks as input to the NMT system,
we propose a novel, simple scheme. For a given speech utter-
ance represented by acoustic vectors 0, we treat a confusion
network C with J slots as the source sentence for the NMT.
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Instead of the one-hot encoding x; € {0, 1} (where K is the
source vocabulary size) at position j within the sentence, the
input is encoded as a K-dimensional vector X; € RX with
f’; = pj(wklo),k =1,...,K. Here, wy is the k-th word in
the vocabulary, and p;(wk|o) is the posterior probability of
the word wy, to appear at position j in C. In practice, p;(wy)
is different from O only for a small number of words.

In the end, following the notation of [1], we represent the
input to the RNN encoder as the vector EX; where E € RV*K
is the word embedding matrix and N is the dimension of the
word embedding (e. g. 620). Thus, EX; is a weighted combi-
nation of word embeddings for all the words in the CN slot
J» with the highest weight given to the word with the highest
posterior probability. In the corner case of only one arc per
slot with the posterior probability of 1.0, we obtain a single
word sequence. Thus, we can still use normal sentence pairs
(e.g. from text-only parallel data) for training, along with the
pairs of source CNs and their target language translations.
The new input representation EX; has the same dimensions
as Ex; and thus can be directly used to train a standard RNN
NMT model or any other model that uses word embeddings.
We kept the posterior weights fixed during back-propagation.

Word sequences of different length can be obtained from
a CN because epsilon arcs can be inserted as alternatives
in some of the slots. The best solution when training an
NMT system on CNs would be to add an artificial source
language token EPS that would not appear in the original
text-only training data. However, because we decided against
re-training the system on CN input from scratch, we mapped
all epsilon arcs to the English word “eh”, which denotes hes-
itation. It appears often enough in the English side of the
parallel text-only corpus, but is almost always omitted in the
human translation into German.

We also used CNs to simulate ASR word errors in text
data. Following the work of [7], we used such noisy data
in the training of the NMT system to make it more robust
against similar real ASR word errors. To this end, for each
word w in the first-best ASR output for the TED training cor-
pus, we collected all the slot alternatives w/,, n=1,...,N,, to
this word in the corresponding ASR CNs with their averaged
posterior probabilities. After re-normalization of these prob-
abilities, for each word w we obtained a confusion probabil-
ity distribution p,,. Then, in a given sentence, we replaced
every occurrence of the word w by one of its alternatives w/,
with probability p,,(w/,) from this distribution. One of the
alternatives can also be an epsilon arc, we keep them (con-
verted to “eh” as described above) to adapt the NMT system
to epsilon arcs in CN input, inserting up to 2 consecutive arcs
after each word with a probability e.

Finally, we used two control parameters to limit the noise
level: probability to change a word p and probability to
change anything at all in a given sentence s. Experimentally,
we determined the settings e = 0.02, p = 0.25,s = 0.6 which
resulted in WER of the noisy text as compared to its original
text that was similar to the WER of the baseline ASR system.
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Table 1: Results measured in BLEU [%] and TER [%] for the individual systems for the English—German speech translation
task, translation of correct transcript vs. first-best ASR output of the TED.tst2015 set.

correct transcript ASR output (WER of 10.9%)
# System BLEU TER BLEU TER
0 RWTH IWSLT 2017 best non-ensemble system 30.5 52.3 - -
1 text translation baseline (RNN) 324 50.5 252 60.2
2 text translation baseline (Transformer) 33.0 50.5 26.3 58.7
3 speech translation baseline (RNN) 314 51.9 26.6 60.0
4 speech translation baseline (Transformer) 30.7 52.8 25.8 59.5

7. Direct Speech Translation

In the direct approach to speech translation, a single neural
network is used to predict the target translation given the au-
dio features of the source sentence. The amount of training
data for this setting, i.e. audio with the corresponding ref-
erence translations pairs from the TED corpus, is compara-
tively low. To exploit the much larger parallel text corpora,
we choose a multi-task setup in which the network simulta-
neously learns to translate either from source audio or from
source text. For this, we extend the RNN-based attention
model described in Section 5 with an additional audio en-
coder that takes MFCC features as input. It consists of 5 bi-
directional LSTM layers with 512 units each. Max-pooling
layers with a pool size of 2 are inserted after each of the first 3
LSTM layers, reducing the sequence length by a factor of 8.
Also, a separate attention mechanism is added for the audio
encoder. The decoder switches between the context vector
from the text encoder c;ex; and the one from the audio en-
coder ¢; audio depending on which input is given (using nota-
tion from [1]). The remaining part of the decoder is shared
between both tasks.

To ensure that both types of input are seen frequently
enough during training, we duplicate the speech translation
corpus so that it grows to 30% the size of the parallel text
corpus (66 duplicates). The concatenation of text and audio
examples is then traversed in random order. For the direct
system, the same optimization and regularization techniques
are applied as in the NMT system described in Section 5.

8. Experimental Evaluation

We participated in the speech translation task of the
IWSLT 2018 evaluation, the translation direction was
English—German. All NMT models are trained on the fil-
tered bilingual data as described in Section 3.1, no mono-
lingual data was used. For the fine-tuning experiments, we
used the TED talk part of the bilingual data together with
the test sets TED.tst2010,2013, 2014 (which were not
used for tuning or evaluation). The TED talk part was also
included in the baseline system. For the experiments with
the confusion networks, we ran the ASR system to recognize
the speech of the 170K TED training set and the test sets
TED.tst2010,2013,2014 and used the resulting CNs
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with the corresponding German translations as (additional)
training data.

We shuffled the training samples before each epoch and
removed sentences longer than 75 and 100 sub-words in
the attention RNN-based and the Transformer setup, respec-
tively. We evaluate our models almost every 10K iterations
and select the best checkpoint based on perplexity on the val-
idation set. NMT decoding is performed using beam search
with a beam size of 12 and the scores are normalized w.r.t the
length of the hypotheses. We used TED.dev2010 consist-
ing of 888 sentences as our validation set and evaluated our
models on TED.tst2015 test set with 1080 segments. The
systems were evaluated using case-sensitive BLEU [30] and
normalized case-sensitive TER [31].

8.1. Baselines

First we trained a model with standard preprocessing for
written text described in Section 3.2 and evaluated its qual-
ity on the correct transcript with punctuation marks of the
TED.tst2015 set, as shown in Table 1. We observed a
slightly better BLEU score for the Transformer architecture
(line 2) as compared to the recurrent architecture (line 1). We
also made a comparison to the best single system of RWTH
Aachen University on this set from the IWSLT 2017 evalua-
tion. With our baseline system we improved upon that result
by 1.9% to 2.5% absolute.

We then trained a model with speech-like preprocessing
of the English side of the parallel corpus as described in Sec-
tion 3.2. This model not only translates English words to
German, but also predicts punctuation marks. To match this
condition, we applied the same preprocessing to the correct
English transcript of TED.tst2015, removing the punc-
tuation marks. The evaluation included punctuation marks.
Because of the dual task (translation and punctuation predic-
tion), the MT quality is lower, but only by 1% BLEU (line 3
of Table 1). Here, the recurrent architecture outperforms the
transformer architecture (line 4) by a significant margin. Be-
cause of this, most of our subsequent experiments were based
on the recurrent model.

8.2. Effects of ASR errors and Punctuation Prediction

When we translate the first-best ASR output for
TED.tst2015, which has an ASR word error rate of
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Table 2: Results measured in BLEU [%] and TER [%] for the individual systems for the English—German speech translation

task, translation of ASR output.

TED.dev2010 TED.tst2015 tst2018
# System BLEU TER BLEU TER BLEU TER
1 speech translation baseline (RNN) 26.5 55.2 26.6 60.0 - -
2 + fine-tuning on TED corpus 27.1 54.2 27.5 57.5 - -
3 + 2 additional encoder layers 27.3 54.7 27.6 57.5 - -
4 + fine-tuning on TED with noise 27.1 54.1 28.0 56.5 21.1 64.1
5 fine-tuning of 1) on TED CNs only 26.6 55.7 26.9 583 - -
6 fine-tuning of 1) on TED correct + CNs 26.6 55.5 27.0 585 20.3 66.5
7 fine-tuning of 1) on TED correct+noise + CNs 26.2 55.9 27.0 57.9 20.2 66.7
8 speech translation baseline (Transformer) 26.1 55.6 25.8 59.5 - -
9 + fine-tuning on TED corpus 27.0 54.4 27.0 57.7 - -
10 Ensemble of 2, 3, 4,9 27.9 53.7 28.3 56.7 214 64.2
11 Ensemble of 2, 3, 4, 6 27.3 55.6 28.0 58.1 21.2 64.4
12 Ensemble of 2, 3,4, 5, 6,7 27.5 54.2 28.3 56.7 21.5 64.1

10.9%, we observe a significant degradation of MT quality.
For example, the BLEU score goes down from 31.4% to
26.6%, cf. line 3 of Table 1. This means that the NMT
system is sensitive to ASR errors. Otherwise, the differences
between architectures are similar when compared on the
ASR first-best output as opposed to correct transcript.

8.3. Confusion Network Translation

For the subsequent experiments, we start with the RNN
speech translation baseline. Table 2 presents the results on
the ASR output for the TED.dev2010 validation set and
TED.tst2015 test set. For the lines where confusion net-
works are mentioned, they were used as input to the NMT
system as described in Section 6. The CNs were pruned
based on the threshold of 0.0001 for the posterior probability;
a maximum of 20 arcs per slot with highest probability were
kept. The average density of the final CNs on the training
and validation sets was 1.8 and 2.2, respectively.
Fine-tuning on the TED corpus (using the correct tran-
script as the English side of the parallel corpus) improves the
result on the test set by 0.9% BLEU absolute, as shown in
line 2 of Table 2. We fine-tuned our models with a small
learning rate of 0.00001 for the Transformer model and the
models using CNs, which is additionally decayed by a factor
ranging from 0.8 to 0.9 after each half an epoch. For the at-
tention RNN-based models which do not use CNs as input,
the learning rate was set to 0.0001 with decay rate of 0.9. We
also tried fine-tuning using a model with 6 encoder layers in-
stead of 4, but have not obtained any further improvements
as compared to the fine-tuned model with 4 encoder layers.
Next, we duplicated the TED parallel corpus and intro-
duced noise into the duplicate. The level of noise was se-
lected to be similar to the ASR word error rate on the devel-
opment set, and the noise itself was created as described in
Section 6. Line 4 of Table 2 shows that after fine-tuning on
both correct and noisy TED corpus, we obtain an improve-
ment of 0.5% BLEU and 1.0% TER when translating the
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first-best ASR output for the TED.tst2015 set, as com-
pared to fine-tuning without the noise (line 2). Thus, to some
extent the NMT system was able to learn how to cope with
noise that is based on common ASR errors.

Because we could only run ASR on the 170K sentences
from the TED corpus, for which the speech was well-aligned
with reference translations, we decided to use confusion net-
works for fine-tuning of the NMT system only. To make it
possible, we replaced the original English word embeddings
of the model with the linear combination of the embeddings
of CN slot alternatives, as described in Section 6. The fine-
tuning was done on a random mix of correct TED talk tran-
scripts and ASR CNs for these transcripts at the same time.

Lines 5-7 of Table 2 list the results of three fine-tuning
experiments which include CNs in the source-side training
data. We either continued training of the model on 170K CNs
(and the reference translations of the corresponding tran-
scripts), or on CNs plus correct transcripts of the same set,
or on CNs plus correct transcripts and transcripts with noise
that was inserted as in the experiment in line 4 of Table 2.
In all three cases we used a lower learning rate, a smaller
batch size, and continued fine-tuning for 5-6 epochs. Unfor-
tunately, the BLEU/TER scores go down as compared to the
best result in line 4 when translating first-best ASR output.

Detailed analysis of the NMT output from line 6 (best
result on the validation set) showed that when translating
confusion networks, the model is able to recover from some
recognition errors. For example, the TED.tst2015 ut-
terance you throw the ball but you’re hit right
as you throw is translated by the system in line 4 of
Table 2 as Sie werfen den Ball, aber das ist Ihr
Thron because of the ASR error as you throw — is
your throne. The system that translates the correspond-
ing ASR confusion network, however, is able to produce
a correct translation: Sie werfen den Ball, aber Sie
werden getroffen. Inanother anecdotal example there is
no error in the first-best ASR output, but the NMT system is
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not able to disambiguate the meaning of the word picking.
The English source is: see over there somebody is
kind of picking their nose. The translation of the
first-best ASR output is: Da driilben, da ist jemand
in der Nase (Over there, someone is in the nose). When
the corresponding CN is translated, the translation preserves
the original meaning: Sehen Sie, da ist jemand,
der sich in die Nase bohrt. We looked at the CN
alternatives for the word picking. It had a posterior prob-
ability of 0.77, and the top competing hypotheses were
taking (0.14), making (0.06), shaking (0.02), sticking
(0.004). The embeddings of these words seem to have helped
the NMT system to correctly infer the meaning of picking
in the given context.

In many cases, however, multiple alternatives, especially
to an empty slot, sometimes confused the system to a point
where translation quality was adversely affected. In a final
contrastive experiment, we used the system from line 7 in
Table 2 to translate not the CNs, but the first-best ASR out-
put for the same test set. The result — BLEU of 28.0% and
TER of 56.5% on TED.tst2015 — was nearly identical to
line 4 in the table and showed that the system was fine-tuned
well to the TED domain, and the noise in the CNs made the
NMT system more robust against the errors which the ASR
system could not avoid to make. However, the system does
not generalize well to unseen CNs and may make errors by
encoding meaning from alternatives to correctly recognized
words, even if their posterior probability is low. Neverthe-
less, we think that the approach is promising and can benefit
from a better training strategy, more CNs in training, and a
better, adaptive weighting of CN alternatives. We plan to im-
plement these improvements in our future work.

8.4. Direct Speech Translation

The direct translation system trained on the 170K segments
of the TED corpus where both the audio files and their trans-
lations are available and well aligned yields a BLEU score of
15.6% when translating the speech of the TED.tst2015
set. For comparison, a standard text-only attention RNN
model trained on the same corpus using the correct English
transcript reaches the BLEU/TER scores of 18.5% on the
first-ASR output for the same set. Although the results are
much worse than for the NMT systems in Table 2 trained on
large amounts of data, we see that the direct system can still
produce results only moderately worse than a system trained
on the same data, but on English text instead of speech.
When we try to improve the direct system by multi-task
learning using all of the text parallel data as described in Sec-
tion 7, we obtain a BLEU score of 17.1% after many days of
training that has not converged, neither until the evaluation
nor paper submission deadline. Thus, although in prelimi-
nary tests multi-task learning seems to work correctly and
bring improvements, the approach requires a faster imple-
mentation and a better training/optimization strategy.
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8.5. Final Results

The Transformer model, even when fine-tuned on the TED
corpus, did not result in additional improvements over the
attention based RNN model (lines 8 and 9 of Table 2). How-
ever, it contributed to the ensemble of several systems (line
10). The RNN model that uses CN input can potentially
be ensembled with the Transformer NMT model (using ei-
ther first-best or CN ASR output as input). However, we did
not have time to implement the necessary changes for such
model combination. Therefore, for our primary evaluation
submission we combined only the RNN models which trans-
late either first-best ASR input (models from lines 2, 3, 4 of
Table 2) or confusion networks (models from lines 5-7 of Ta-
ble 2). The BLEU of this ensemble system in line 12 is only
marginally better than of the best single system from line 4.

For the 2018 evaluation data, we first used the acoustic
sentence segmentation of the ASR system. Because it was
too fine-grained and unreliable due to many pauses of the
speakers and could lead to context loss for the NMT sys-
tem, we ran the punctuation prediction algorithm described
in Section 3.3 on the first-best ASR output, but used its re-
sults only to define new segment boundaries at time points
when a period or question mark was predicted after a word.
We then re-ran the recognition to generate first-best and CN
ASR output using the segmentation obtained in this way. The
performance on the 2018 evaluation data is reported in the
last column of Table 2. The BLEU and TER scores were
provided by the organizers for our primary and contrastive
submissions. We observed similar tendencies here as on the
TED.tst2015 set: unfortunately, using ASR confusion
networks as input to NMT results in worse scores (e.g. by
0.8% absolute in BLEU) as compared to the best single sys-
tem translating ASR first-best output. Our primary submis-
sion from line 12 obtains the best results also on the 2018
evaluation set, but the improvement due to ensembling of
multiple systems is not significant.

9. Conclusion

AppTek participated in the speech translation task of the
IWSLT 2018 evaluation, achieving the BLEU score of 21.5%
on the 2018 English to German evaluation data with the pri-
mary submission. Our best setup used an ensemble of atten-
tion RNN MT models which translate either first-best ASR
output or ASR confusion networks, generating target lan-
guage text with punctuation marks. We proposed a novel
scheme for encoding CNs in NMT and showed that the
negative effect of some ASR errors can be reduced when
CNss are translated, although further improvements in train-
ing strategy are necessary to obtain significant improvements
in speech translation quality. Preliminary experiments with
direct speech translation with a single sequence-to-sequence
model showed promising improvements due to a novel multi-
task learning scenario that allows for exploitation of text-only
parallel MT training data.
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