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Abstract

We introduce a supervised deep learn-
ing model for Indian languages namely,
Hindi and Urdu which uses minimal syn-
tax and yet improves over the current base-
line for these languages significantly. We
progress with three different models in-
spired from the recent advancements in
this field. In the first model we make use
of sequence modeling to generate depen-
dency path embeddings and jointly learn-
ing the classification process i.e., Identi-
fication and Labeling of arguments. The
second model is a syntax-agnostic model
where we encode the full sentence using
a bi-directional LSTM encoder only using
the raw words/tokens. The third and the
final model adds dependency label to the
previous model making it syntax-aware
and performs very well compared to the
other models. Finally, we talk about evalu-
ation metrics and analysis of these models.

1 Introduction

Semantic role labeling (SRL) is one of the fun-
damental tasks in Natural Language Processing
(NLP) which aims to automatically learn about the
predicate-argument structure for each predicate
in given a sentence as the input. It is a type of
shallow semantic parsing which labels all the
involved constituents in a sentence pertaining to
each verb (predicate), answering queries such
as who did what to whom, when, and where
etc. Semantic roles for a predicate generally are
Agent, Patient etc., and adjuncts like Temporal,
Locative, Cause etc. Since SRL provides a
semantic analysis of a sentence, it can be used in
many fields of NLP. Applications of SRL have
been shown in topics like information extraction

(Bastianelli et al., 2013; Christensen et al., 2010),
question-answering (Pizzato and Mollá, 2008;
Shen and Lapata, 2007) and machine translation
(Liu and Gildea, 2010). SRL has been a trending
topic in the research areas of NLP and as a result
we have seen great contributions in the form
of systems and datasets for various languages.
Though much work has been done towards SRL
for resource-rich languages like English and
Chinese but SRL for Indian Languages (ILs) was
pioneered quite recently (Nomani and Sharma,
2016) . Following which another system was
recently published (Gupta and Shrivastava, 2018).
Both these systems are based on traditional
approaches towards SRL as seen in Gildea and
Jurafsky (2002) and Xue and Palmer (2004).
In this work, we try to apply relatively recent
approaches for SRL which include the use of
neural networks and find out which works to be
the best. Formally, we build three systems-
Model A: Encoding paths between constituents
and the predicate using LSTM
Model B: Encoding the whole sentence in a
bidirectional LSTM without using any syntax at
all.
Model C: Adding a syntactic feature to Model B
becoming syntax-aware.

Model A is an extension for the traditional
approach where we, (1) first perform Argument
Identification i.e., binary classification and (2)
then Argument Classification on the probable
arguments passed on by step 1. This is often
done by training classifiers like SVM on features
extracted from the training data. The features are
based on syntactic information which is crucial for
this approach (Punyakanok et al., 2008). In this
model, we find an embedding for the dependency
path between a constituent and the current predi-
cate and combine that with other features as used59



in earlier systems (Roth and Lapata, 2016). This
model performs slightly better than the current
baseline in ILs (Gupta and Shrivastava, 2018).
The gold data is a human-annotated corpus with
fully descriptive dependency trees, it has a few
chances of error. But in reality we would be given
a raw input sentence that would then be parsed
by the system and could bring in more error than
gold data and affect training badly. Results using
automatic parses in the first work (Nomani and
Sharma, 2016) verify this. So we apply the recent
advancements in SRL which are syntax-agnostic.
Model B takes the input as a raw sentence in form
of tokens and the only prior information is what
are the predicate(s) in this sentence. The sentence
is considered as a sequence and we perform SRL
as a sequence labeling task. Surprisingly, even
for such low resourced language as Hindi and
Urdu are, this outperforms Model A and hence
the previous baseline. Model C, along with the
words adds the dependency label as a feature in
the sequence and consequently performs even
better than Model B which can be attributed to the
use of syntactic feature(s). This makes it the best
system available for Hindi and Urdu.

2 Related Work

There are mainly two ways to approach seman-
tic role labeling. The first approach is a tradi-
tional one which uses some features extracted out
of the gold data. The gold data is a syntactic
parsed data with details such as constituent bound-
aries, syntactic categories, the whole tree struc-
ture of the sentence with syntactic relations, part-
of-speech(POS) tags for each token in the sen-
tence etc. These features are then used to train a
linear classifier like SVM for the tasks of Argu-
ment Identification and Argument Classification
subsequently (Xue and Palmer, 2004). These tasks
can also be done as a single multi-label classi-
fication task (Surdeanu and Turmo, 2005). The
best predicate-argument structure is chosen at in-
ference stage by techniques like integer linear pro-
gramming (Punyakanok et al., 2004) or dynamic
programming (Täckström et al., 2015). At this
stage, structural constraints may lead to improve-
ment in results (Punyakanok et al., 2008). These
constraints are either linguistically driven or they
exist as a result of the annotation process.

In the last few years, significant work has been
done towards fully syntax-agnostic approaches us-

ing deep neural networks. Collobert et al. (2011)
was the pioneer in introducing such an approach
which considers SRL as a sequence labeling task
using a convolutional neural network. It takes as
input the raw sentence and the constituent bound-
aries. Although, their approach could not beat
the best systems which were still using traditional
approaches. The breakthrough in syntax-agnostic
SRL was done by Zhou and Xu (2015) whose sys-
tem differs from Collobert et al. (2011) by us-
ing a Deep Bidirectional LSTM network which
takes only the predicates indices as input along
with the raw sentence. More recently, an end-to-
end semantic role labeler was built by He et al.
(2017) in which they first identify the predicate(s)
in a given input sentence and then for each iden-
tified predicate, label the arguments with respec-
tive boundaries in the sentence. In such mod-
els, the raw sentences tokens are first converted
to vector form embeddings taken from pre-trained
models. All the above was done for span-based
SRL. Marcheggiani et al. (2017) did a similar ap-
proach for dependency based SRL. In dependency
based SRL, the task it to label the head words of
constituents given the gold data has a dependency
tree structure. The data for both Hindi and Urdu
uniquely have a dependency parsed structure with
span-based labeling unlike other languages like
English, Chinese etc. where span-based SRL is
done for syntactic parses whilst head/dependency-
based SRL is done for dependency parses. Before
these systems became popular, neural networks
were used in syntax-aware systems also (FitzGer-
ald et al., 2015; Täckström et al., 2015; Roth and
Lapata, 2016).

The first one to work on SRL for ILs was
Nomani and Sharma (2016). They use simple
features like dependency labels, syntactic cate-
gories, head word of the chunk, head words POS
tag, Named entities etc. Gupta and Shrivastava
(2018) improved the labeler by introducing fea-
tures like word embeddings to address the data
sparsity issue, path from chunk1 to predicate and
post-positionals of the chunk. These fall under
the traditional approaches discussed above. Our
first model uses neural method but only to model
the dependency path and therefore it still majorly
relies on syntactic features. Vaidya et al. (2011)
has shown that the predicate-argument structure is

1Similar to previous work, we call a word-
span/constituent as a chunk.60



closely related to dependency relations. The same
was proven in the system by Nomani and Sharma
(2016) where dependency labels used alone gave
good F1-scores for both Hindi and Urdu. Though
when they used automatic labels, there is a huge
drop in results mainly due to errors in the depen-
dency parse. Dependency/Syntactic parsing in it-
self is a difficult problem and hence we build a
fully syntax-agnostic model to eliminate our re-
liance on syntax. Although, our third model shows
that syntax can still improve performance if it is
free from errors.

3 Models

3.1 General Pipeline

The general architecture of SRL is explained in
this section. The first step is to identify seman-
tic predicates in the input sentence. In English
propbank, there are both verbal and nominal predi-
cates (Hajič et al., 2009), whilst in Hindi and Urdu
only verbal predicates are present as of now. Next,
the system should disambiguate word-sense of the
predicate in consideration. Propbank has multi-
ple senses for verbs and each sense of the same
verb can have different labels. This step can be
used to improve training or it can just be used
at inference time by looking in the corresponding
frameset files, the specific roles a verb with given
sense can have. The next two steps are Argument
Identification and Argument Classification. Argu-
ment Identification is done because a high num-
ber of candidate arguments have the role NULL
which may affect the decision boundaries if a clas-
sifier is learned directly on full candidates (Xue
and Palmer, 2004). Argument Classification is
then done to label the remaining candidates which
are the most potential arguments from the previ-
ous step. For Hindi and Urdu, labeling is done
at the chunk/constituent level. A re-ranker using
integer linear programming or dynamic program-
ming can be applied as a last step to get the best ar-
gument structure for the sentence. For each pred-
icate, we have the identified arguments, each with
its scores for every role class. Now we may ap-
ply some constraints(structural/linguistic) on the
possible output structure and penalize some of the
outcomes. Finally we get the result with the best
possible predicate-argument structure.

3.2 Sequence Modeling and LSTM

The long short-term memory (LSTM) network is
an alternative architecture for a Recurrent neu-
ral network (RNN) where each block is a LSTM
cell/unit instead of a typical neuron. RNNs pro-
cess a sequence token by token where each block
is given the previous information plus the current
token information.
x and y are the input and output respectively, (t)

denotes the time step, wmf and wmf are the matrix
from input or recurrent layer to the hidden layer
and σ is the activation function. Without y(t−1)

term, the RNN model becomes a feed forward net-
work only with number of layers equal to sequence
length. RNN is shown in the equation below:

y(t)m = σ(
∑

f

wmf x
(t)
f +

∑

i

wmi y
(t−1)
i ) (1)

When we take one-hot encoded/binary-coded
features(as vector), the representation is not
effective since data for Hindi and Urdu is quite
sparse and vector size is large. To address this, we
experiment with recurrent networks to improve
the feature representation/encoding and reduce
its dimensionality. We use RNNs variant, the
LSTM network because it is known to handle long
range dependencies (Zhou and Xu, 2015) and in
a sentence, the current word is quite dependent
on distant words. Also, gradient parameters may
vanish or explode especially in processing long
sequences (Bengio et al., 1994). To resolve these
issues, long short-term memory (Hochreiter and
Schmidhuber, 1997) was presented.

LSTM Network. Long short-term mem-
ory(LSTM) (Hochreiter and Schmidhuber, 1997;
Graves et al., 2009) has a modified architecture
with respect to a simple RNN. Memory blocks
are used instead of the hidden neural units. The
memory block may contain several cells which
are activated three multiplicative gates: the input
gate, the forget gate and the output gate. These
changes improve the RNN model for sequence
modeling. Figure 1 shows a basic LSTM cell.
y is the output from memory block. h is the

hidden value which equals ′y′ from the basic RNN
model discussed above. c is the cells state value
for block m. Number of cells in a block is fixed
to be one. α, β and γ stand for the input, forget
and output gates activation values. All three mul-61



Figure 1: LSTM memory block with one cell.
(Graves et al., 2009)

tiplicative gates have different activation σ respec-
tively and the computations are done as follows:
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The gates allow the cells to store and access
information over long periods of time/long steps.
When the input gate is closed, the new coming in-
put information will not affect the previous cell
state. Forget gates remove some historical infor-
mation over time steps. The output gate should
be open for a cell, if rest of the network has to
access this cells stored value. In NLP related
problems, structural knowledge can be accessed
by training the sequences both forward and back-
ward so that the contextual information from left
as well as right can be incorporated for better in-
ference. Thus bi-directional LSTM (BiLSTM)
was proposed (Schuster and Paliwal, 1997). The
BiLSTM which we use is slightly different from

their’s. We take a LSTM layer to processes the se-
quence in forward direction whose output is taken
by the next LSTM layer as input, where the con-
nections are in backward direction. Pairs of these
forward and backward layers can be stacked to-
gether to make a Deep BiLSTM proposed in ear-
lier work (Zhou and Xu, 2015).

3.3 Model A - Path embedding model

This model closely follows the architecture of
PathLSTM (Roth and Lapata, 2016) and is shown
in Figure 2. Given a candidate chunk, first we find
the path from this chunk to the predicate being
considered and initialize its embedding as follows.
Each node in the path is represented as the head-
word embedding, POS tag of the chunk, depen-
dency relation with the parent chunk, all three con-
catenated. Note that this path makes connections
at the chunk level only and ends at the predicates
chunk. The head-word embeddings are pre-trained
embeddings computed similarly as previous work
(Gupta and Shrivastava, 2018). The POS tag and
dependency relation are given a one-hot vector ini-
tialization. Now, we use our sequence model to
compute the vector representation of this path.

This differs from the previous work (Gupta
and Shrivastava, 2018) as they represent each
distinct path as a one-hot encoded vector which is
probably not a very optimal way since the number
of distinct paths is quite high. For example,
in Hindi propbank, even considering only the
chunk POS categories2 in our dependency paths
from argument to predicate, nearly 2400 unique
paths are present in the training data. If we take
the dependency labels only in path (considering
direction as argument to predicate), there are
around 5900 distinct paths out of which major
paths are k1↑root, k2↑root, ccof↑root etc., which
occur for only 3.7%, 2.7% and 2.4% respectively
(root signifies the predicate). This implies, for
almost all paths amongst these, the training data
is very less to make any significant improvement
in learning from path as a feature. Further, using
one-hot implies that we assume that certain paths
are likely to impact role labeling in a similar way
which may not be true (Roth and Lapata, 2016).
Thus, some representation learning should be
done, instead of taking the full path as it is.

The dependency path is given to the LSTM

2Number of distinct POS categories at chunk level is 12.62



Figure 2: Model A - Path embeddings with LSTM

network as a sequence. The path is taken from the
argument chunk to the predicate chunk. Particu-
larly, an element xi corresponds to the head-word
of the chunk wi, followed by POS category of
chunk and then its dependency relation with the
next chunk in path, xi+1. The last blocks output
state from the network gives us the embedding of
this path. As shown in Figure 2, the embedding
of a dependency path, specifically is hn which
is returned by the LSTM layers last block after
the input of the last element of the sequence, xn,
which corresponds to the initialized encoding of
the predicate’s chunk.

We use syntactic categories, dependency roles
and head-word of chunks in the path because all of
them can affect the decision of role labeling (Roth
and Lapata, 2016; Gupta and Shrivastava, 2018).

Model A is depicted in Figure 2 and its com-
ponents are: (1) L is the LSTM network which
takes input of the length of our path where each
node is initialized as discussed above, (2) F is
the additional input layer which takes features
other than the path as input, (3) layer C concate-
nates two neural layers: the upper block is a lin-
ear neural layer which takes last node (hn) of
L (dependency path embedding) as input and the
lower block is another linear neural layer which
takes input from F, (4) layer A applies an acti-
vation function on the input it receives, and fi-
nally (5) S is a softmax classifier which produces
output for each class k ∈ K depending on the
task(identification or classification). This makes
a joint learning model which learns dependency
path embeddings and performs SRL as well. For-
mally, we are given a initialized dependency path
X with elements xi ∈ {x1, ..., xn} where n is the
length of the path and the features F as one-hot en-
codings. The LSTM formalization computes hid-
den embeddings at each step hi ∈ {h1, ..., hn} but

we only need the embedding hn which makes our
LSTM network slightly modified than the usual
one because gradient parameters will be updated
depending on just the last blocks output. We for-
malize the next layers as follows :

C = (WLhn + bL)|(WFF + bF )

A = relu(C)

Sk = Ak/
∑

k∈K
Ak

We perform the training for argument identifica-
tion and argument classification separately follow-
ing the findings from earlier work in English (Xue
and Palmer, 2004) as well as for Hindi and Urdu
(Nomani and Sharma, 2016). This also means that
different path embeddings are learned depending
on what the task is. The features F are taken as it is
from the current baseline (Gupta and Shrivastava,
2018) for ILs for making our comparison more ob-
vious. These features are - predicate word(verb)
root form, its suffix separately, head word of the
candidate chunk taken from pre-trained embed-
dings, candidate chunks vibhakti(post-positional),
head word POS tag, candidate chunks POS cate-
gory.

3.4 Model B - Syntax-agnostic deep model

This model takes the sentence as a sequence pro-
cessed word by word. A sequence say of length L
is processed np times if the number of predicates
in the sentence is np. Hence, the time complexity
of this model is O(npL). At each step in the se-
quence, the current words embedding and a binary
bit indicating whether word is itself the predicate
or not, is given as the input. These are the only
features needed to train our network.

Given a sentence-predicate pair (s, v) as the in-
put, we have to predict the output sequence y.
We have used IOB tagging (Collobert et al., 2011;
Zhou and Xu, 2015) for this problem. Therefore,
each yi ∈ y should belong to the set of IOB tags.
The set contains the tags, O - is given to words out-
side the argument chunk, Bk - is given to words at
beginning of the chunks and Ik - is given to the
words inside the chunks. k denotes the various
roles shown in section 4. Let the length of the se-
quence be n, where n = |s| = |y| . Our goal is
to find the highest scoring tag sequence y from all
the possible tag sequence for an input. Our model
uses a Bidirectional LSTM (BiLSTM) network to63



learn a locally decomposed scoring function deter-
mined by the input:

∑n
t=1 logp(yt|s) . To incor-

porate constraints like IOB order, structural con-
straints(explained later in this section), we extend
the scoring function (He et al., 2017) with penal-
ization terms:

f(s, y) =
n∑

t=1

logp(yt|s)−
∑

c∈C
c(s, y1:t)

Given the input s and length-t prefix y1:t,
each constraint function c applies a non-negative
penalty on the scoring function f .

The model is depicted in Figure 3. The input
colored as red is the raw word, binary bit bi to
indicate whether word wi is the predicate. The
dotted box next to it is shown to incorporate
additional features if required, which is basically
our third model and not of use in this model.
The input is then embedded as the concatenation
of word embedding and the binary bit at the
embedding layer. The next layer is the beginning
of our BiLSTM network. Layer Lk is forward
if k is odd and backward if k is even. We chose
the number of layers as two for reasons given
in section 6. Recent best works (Zhou and Xu,
2015; Marcheggiani et al., 2017; He et al., 2017)
in English SRL have used up till 8 layers. Finally,
the output of this goes to a softmax layer to
compute a locally normalized distribution over
the output tags.

Constrained Decoding. The approach above
does not yet apply any constraints on the output
structure. We use A search over tag prefixes
to apply constraints on the output structure at
decoding time (He et al., 2017). We list some
example constraints as follows:
IOB Constraints: We need to ensure that our
system does not produce invalid IOB tagging
such as Bk tag followed by Ik tag or say I-ARG0
followed by B-ARG1 etc. We apply infinitely
high penalty for such transitions.
SRL Constraints: Though there have been no
constraints described in the data or in previous
work for Hindi and Urdu propbanks, but some
structural constraints have been applied for En-
glish SRL (Punyakanok et al., 2008; Täckström
et al., 2015). We only experiment with the Unique
core roles constraint, i.e., numbered arguments
(ARG-0,1,2,3) can occur at most once for each

Figure 3: Model B and C - 2 Layer BiLSTM
model.

predicate.

3.5 Model C - Syntax-aware deep model
We build a third model to see the effect of adding
syntax to Model B which is fully syntax agnostic.
Going with the findings by Nomani and Sharma
(2016) that dependency label alone gives great re-
sults, we go ahead with it as the only feature to
be used. In Figure 3, the red colored input with
dotted box is meant to incorporate any other fea-
tures and this is where we add dependency label.
Since the dependency parsing in Hindi and Urdu
propbanks is only till the chunk level, so a whole
chunk, i.e., all tokens inside are assigned the same
dependency relation label.

Formally, at the embedding layer, we now con-
catenate embeddings of the word, the binary bit
indicating if this word is the predicate and the de-
pendency role encoded as a one-hot vector. After
this, the training is exactly same as model B.

4 Dataset

We carry out our experiments on Hindi Propbank
and Urdu Propbank exactly on the sections used
in earlier work. We use the same train and test set
for both the languages. Hindi and Urdu propbank
are still in the process of annotation. These are
build on top of the respective treebanks which has
dependency parsed trees with parsing up till the
chunk level. The semantic label annotation is also
done at chunk level. Chunk boundaries, POS cate-
gories of tokens as well as the whole chunk, mor-
phology features etc. are already annotated in the
gold corpus. The treebanks and hence the prop-
banks (since it is build on treebank) of both lan-
guages are represented in the Shakti Standard For-
mat (Bharati et al., 2007). Gupta and Shrivastava
(2018) did a 5-fold cross validation on this data
and the results showed a very slight change with64



respect to the train-test split used earlier (Nomani
and Sharma, 2016). This shows that the data dis-
tribution in the train-test splits is normalized and
hence, we don’t perform cross-validation on our
models in this work. They have also given a good
explanation about the data set but they missed to
give out any statistics about the data. Therefore,
we decided to provide full details on the data with
this work and show them in Table 1. The exact
data file names used for training and testing are
listed in section 8 of this paper.

Hindi train Hindi test Urdu train Urdu test
Sentences 1643 448 4657 1234

Tokens 36690 9827 133058 35532
Final Sentences 1300 358 988 309

Final Tokens 30141 8285 33374 10628
Propositions 2309 631 1192 391

Verbs 166 94 40 24
Arguments 5872 1620 3745 1207

ARG0 1185 320 433 137
ARG1 2046 559 624 210
ARG2 175 33 99 27
ARG3 4 0 14 2

ARG2-ATR 352 77 53 8
ARG2-GOL 61 13 4 9
ARG2-LOC 54 11 137 54
ARG2-SOU 46 14 79 33
ARGM-LOC 679 210 399 136
ARGM-MNR 350 106 67 21
ARGM-TMP 328 97 210 72
ARGM-ADV 131 38 194 52
ARGM-PRP 114 31 102 26
ARGM-DIS 94 34 25 10
ARGM-EXT 92 23 10 4
ARGM-CAU 83 29 46 4
ARGM-MNS 42 13 24 7
ARGM-DIR 20 8 6 2
ARGM-NEG 7 2 13 1
ARGM-PRX 2 1 1194 393
ARGM-VLV 0 0 0 0
ARGM-MOD 2 0 1 0

ARGA 0 0 1 1
ARGC 0 0 0 0

Table 1: Hindi and Urdu Propbank data statistics.

Final Sentences and Final tokens signify the
numbers after filtering out sentences with no pred-
icate. The total number of distinct verbs in full
Hindi and Urdu datasets after filtering are 186 and
46.

5 Experiments

Evaluation metrics. To compare Model A with
the previous works, we have used the same eval-
uation metric as used by them, which is to give
the results of the tasks of identification and clas-
sification separately. Since model B and C do
not perform identification and classification sep-
arately, we cannot compare this directly to results

of previous works and model A. We propose the
use of the evaluation script used for Carreras and
Màrquez (2005). It gives a more perceivable un-
derstanding of the results of a model since it com-
pares the actual sentences, one-to-one from the
gold corpus and from the predictions. Accord-
ing to the script, a prediction is counted correct
if and only if it has the exact same chunk bound-
ary and the same label. We also project the results
of Model A to test data sentences and evaluate it
with conll 2005 script to make a clear comparison
of all models we built.

5.1 Model A
We train different networks for argument identifi-
cation and classification using the PyTorch library
for deep neural networks. For direct comparison
with previous work, features other than path are
same as the ones used in previous work (Gupta and
Shrivastava, 2018) and evaluation metric is also
the same. The hyper-parameters of the model are
as follows:

Learning rate for identification is 0.001 and for
classification is 0.0001. Dropout rate is 0 for both
the tasks and hidden layer size of LSTM network
is 100 for both the tasks. Layer C is composed
of two neural blocks each of size 100, whose out-
put of size 200 is sent over to layer A after con-
catenation. We have used Cross Entropy function
to compute loss and Stochastic Gradient descent
(SGD) for optimizations. The model was run for
200 iterations for identification task and 300 itera-
tions for classification task. The results for Hindi
and Urdu are given in comparison with their cor-
responding state-of-the-art in Table 2 and Table 3
for identification and classification respectively.

Language Model Precision Recall F1-score
Hindi Gupta et. al 91.41 90.49 90.94

Our Model 93.35 93.29 93.32
Urdu Gupta et. al 92.05 91.49 91.76

Our Model 91.50 91.17 91.33

Table 2: Argument Identification results.

Language Model Precision Recall F1-score
Hindi Gupta et. al 65.04 66.62 65.80

Our Model 70.23 72.25 71.22
Urdu Gupta et. al 86.72 86.37 86.54

Our Model 85.57 85.52 84.73

Table 3: Argument Classification results.
65



5.2 Model B and C

Our BiLSTM has only 2 layers - 1 forward LSTM
and 1 backward LSTM. The hidden dimension
is set to be 300. A softmax layer for predicts
the output distribution. All weight matrices of
the BiLSTM are initialized as random orthonor-
mal matrices as described in Saxe et al. (2013).
The pre-trained embeddings for both Hindi and
Urdu are taken from Fast-Text (Bojanowski et al.,
2017). Tokens that are not present in the pre-
trained model are given a randomly initialized em-
bedding. Size of the embedding is 300 for both
languages.
Training: We use Adadelta (Zeiler, 2012) as op-
timizer with ε = 1e6 and ρ = 0.95 which are
also the default parameters available in the pro-
posed paper. We use mini-batches of size 50. We
clip gradients with norm larger than 5 and set the
RNN-dropout probability to 0.1. All the models
are trained for 300 iterations without any early
stopping since we dont have a development data
to check the development loss. In the final model
we only use the IOB constraints.

6 Results and Analysis

The problem with Model A is that it also depends
on a feature template which can be language/data
specific. Hindi propbank was created automat-
ically while Urdu was purely human-annotated,
this is why Urdu’s dataset is better and thus it gives
better results. The Urdu verbs are also very less
in number as seen in Section 4 and thus the sys-
tem doesn’t have to learn a lot of predicates. Also,
the majority arguments in Urdu belong to ARGM-
PRX which is a complex noun-verb/adjective-verb
predicate but this class achieves the best F-score
and contributes heavily towards the results. This
also means that the data sparsity is low.

In Model A, We chose the path configuration
from argument chunk to predicate chunk because
it gave better results than the reverse path which is
also the actual dependency path. The first model
learns the path embeddings and performs only
slightly better than the previous work (Gupta and
Shrivastava, 2018). The difference in this model
and previous work is only that it uses LSTM to en-
code path while the previous work used a one-hot
encoding for this feature. Though, in our case it
provides only a slight gain. This can be attributed
to the fact that the data available for each unique
path is very less to learn a reliable embedding.

In Model B and C, number of layers is kept as 2
because increasing number of layers degraded per-
formance. The primary reason for this could be at-
tributed to less training points in data. We only use
IOB constraints since they gave a significant im-
provement in results whilst the Unique Core Roles
constraint did not. These models are overall the
best performers as they are in a way learning more
complex features from the whole sentence than the
pre-defined features used in model A.

Language Model Precision Recall F1-score
Hindi Gupta et al. 42.52 49.66 45.81

Model A 44.38 50.53 47.26
Model B 56.71 56.39 56.55
Model C 70.41 70.41 70.41

Urdu Gupta et al. 86.41 67.16 75.58
Model A 85.01 66.91 74.88
Model B 63.10 63.20 63.15
Model C 77.98 78.16 78.07

Table 4: SRL full task results evaluated using
conll-2005 shared task evaluation script.

7 Conclusion and Future Work

More data for both the languages can be helpful to
improve the performance further and get a better
analysis. A detailed report can then be achieved
on what quantity of data is actually required for
SRL in low-resource settings. Once more data is
available, analysis of results will give the reasons
why and how deep learning models perform better
than the traditional ones. Results of our paper have
shown that deep learning is performing very well
even in such low data. This shows that more com-
plex features have been missed when manually ex-
tracting features from a parsed sentence. Hence,
better feature engineering also lies in the future
scope of SRL for Indian Languages.

8 Data Sections

The names of the files in training set and test-
ing set of Hindi are provided in the following
link. https://github.com/ashg1910/
indian_srl

References
E. Bastianelli, G. Castellucci, D. Croce, and R. Basili.

Textual inference and meaning representation in hu-
man robot interaction. In Proceedings of the Joint
Symposium on Semantic Processing. Textual Infer-
ence and Structures in Corpora, pages 65–69, 2013.66



Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE transactions on neural networks, 5(2):157–
166, 1994.

A. Bharati, R. Sangal, and D. M. Sharma. Ssf: Shakti
standard format guide. Language Technologies Re-
search Centre, International Institute of Information
Technology, Hyderabad, India, pages 1–25, 2007.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
Enriching word vectors with subword information.
Transactions of the Association for Computational
Linguistics, 5:135–146, 2017. ISSN 2307-387X.
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