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Abstract

Clickbaits are catchy headlines that are
frequently used by social media outlets
in order to allure its viewers into click-
ing them and thus leading them to dubi-
ous content. Such venal schemes thrive
on exploiting the curiosity of naive social
media users, directing traffic to web pages
that won’t be visited otherwise. In this pa-
per, we propose a novel, semi-supervised
classification based approach, that em-
ploys attentions sampled from a Gumbel-
Softmax distribution to distill contexts that
are fairly important in clickbait detec-
tion. An additional loss over the atten-
tion weights is used to encode prior knowl-
edge. Furthermore, we propose a confi-
dence network that enables learning over
weak labels and improves robustness to
noisy labels. We show that with merely
30% of strongly labeled samples we can
achieve over 97% of the accuracy, of cur-
rent state of the art methods in clickbait
detection.

1 Introduction

With the number of social media users increasing
by the day, one of the prime objectives of online
news media agencies is to lead social media users
onto bogus pages through the display of luscious
text/images (Loewenstein, 1994). In most cases
the content on the landing page is disparate to the
headline the user clicked on. Source verification
is no longer warranted as news agencies aren’t
held accountable for the content they post online.
As (M. Potthast and Hagen, 2016) suggests, at
least 15 of the most prominent content creators use
clickbaits in some form or the other to honey-trap
users. Impetus for such schemes can range from

directing traffic to web sites that force users to pur-
chase a product, to shaping popular opinion espe-
cially during elections. Some clickbaits claim to
accomplish inconceivable tasks while others rely
on a viewer’s inducement to grapevines.

• “You will never believe what this celebrity
did at the awards ceremony.”

• “10 things that will get you fairer in 5 days.”

• “Millionaires want to conceal this scheme. It
can make you rich in a week.”

Earlier approaches on tackling clickbaits mainly
focused on cheap and easy to implement solu-
tions. Blacklisting URLs has been, to some ex-
tent, effective in regulating an average user’s expo-
sure to clickbaits. (Gianotto, 2014) assumed that
most clickbaits are based on a few key phrases,
and a naive way yet effective strategy would be
to simply look for such phrases. Such an as-
sumption holds no ground today. As the problem
grew to be more pervasive, social media compa-
nies modeled the probability for a content to be
a clickbait based on factors like click-to-share ra-
tio, time spent by user on the target page, and
other such quantifiers. Recent research focuses on
salvaging sentence structures, n-grams & embed-
dings among other features, in classifiers like Ran-
dom Forests (RF), Gradient Boosted Trees (GBT),
Support Vector Machines (SVM) or the vanilla
Logistic Regression (LR). With the advent of on-
line news agencies, there exists a plethora of such
sources, but labeling each of the headlines from
them would be a staggering task. This vindicates
the need for an unsupervised / semi-supervised ap-
proach.

Contributions of this paper include: 1. A novel
loss component on the attention weights that en-
codes prior information from a weak source of la-156



bels, which eventually improves the generalizabil-
ity of the deep learning model that has been trained
on a small representative dataset. 2. A joint archi-
tecture that incorporates into the clickbait classifi-
cation framework a confidence network that tack-
les label noise. 3. Using Gumbel-Softmax for
gated attentions, thus enforcing peaky attentions
over word contexts. 4. Empirically proving the
performance of the proposed approach on popu-
lar clickbait datasets with only a small portion of
labeled samples.

2 Related Work

The problem of clickbait detection has been pri-
marily studied in two forms. One of them in-
volves a pair of post and target phrases, in which,
the objective is to identify whether the post text
(visible to the user), is in someway related to the
target content (text/images on the landing page).
Using this formulation, (P. Biyani and Blackmer,
2016) suggested that the features involved in click-
bait detection can be broadly classified into: con-
tent features (quotes, capitalization), similarity be-
tween the source and target representations, in-
formality, forward reference, URLs etc. A gra-
dient boosted tree was trained using these fea-
tures. (Chakraborty et al., 2016) highlighted the
use of features based on linguistic and structural
differences between the clickbait & non-clickbait
headlines. Using the n-grams and word patterns,
they successfully trained a SVM classifier with a
Radial Basis Function (RBF) kernel, that outper-
formed the baseline rule based method in (Gian-
otto, 2014).

The other form comprises of making decisions
purely based on the headline content (Zhou, 2017),
(P. Biyani and Blackmer, 2016). Our work is based
on this paradigm, and performs on par with meth-
ods that follow the former approach. According
to (Schuster and Paliwal, 1997), Recurrent Neu-
ral Network (RNN) based sentence embeddings
of the headlines, are expressive enough to learn
neural network based classifiers that separate the
two classes. (Teng et al., 2017) explored con-
volutional networks that can convolve our word
embeddings to learn n-grams, sub-words and to-
ken patterns that are consistent with clickbaits.
(M. Potthast and Stein, 2017) worked on the twit-
ter dataset and treated clickbait detection as a re-
gression problem instead of binary classification.
Hence, they proposed a model that outputs scores

indicative of how clickbaity a tweet is. (A. Anand
and Park, 2017) used a bi-directional LSTM to im-
prove upon the results published by (Chakraborty
et al., 2016), on the Headlines Dataset (Section
3.1).

(Wang et al., 2016) employed attention based
mechanisms (Bahdanau et al., 2014) for text clas-
sification. Our work reuses the self-attentive struc-
tured sentence embeddings introduced by (Z. Lin
and Bengio, 2017), with some additional com-
ponents that supplant text classification in semi-
supervised environments, with weakly labeled
data.

Some of the most recent approaches that have
been successful in modelling curiosity are based
on the ”novelty” and ”surprise” components of a
headline. (Venneti and Alam, 2018) used topic
modelling to identify the topic distributions for
each headline in the corpus. Distance metrics in
the space of propability distributions like KL di-
vergence and Hellinger distance were used as fea-
tures to express novelty while surprise was pri-
marily modeled using bi-gram frequency counts.
Based on these features, an SVM/LR classifier
was trained on a small section of the training data.

3 Proposed Methodology

3.1 Dataset

The first dataset used in the paper is the Headlines
Dataset curated by (Chakraborty et al., 2016) 1

and used by (A. Anand and Park, 2017), (Rony
et al., 2017) et al. It holds labels for 32,000 head-
lines which featured in articles from BuzzFeed,
New York Times, Scoopwhoop, Upworthy, The
Guardian, ViralNova, The Hindu, ViralStories,
Thatscoop and WikiNews. In all, there are 15,999
clickbait and 16,001 non-clickbait samples. We
perform an ablation study using a varying propor-
tion of the dataset as our strongly labeled set. Fur-
thermore, we compare our results against strong
baselines established on this dataset, in the ab-
sence of labeled data. All experiments have been
performed using a 5-fold cross validation scheme,
in order to reconcile with the existing baselines.

The second dataset was picked from the
Clickbait-Challenge 2017 (Zhou, 2017)2. The
challenge posed clickbait detection as a regres-
sion problem, assigning each entry a set of scores
from five different annotators. Each score ∈

1https://github.com/bhargaviparanjape/clickbait/
2https://www.clickbait-challenge.org/157



{0, 13 , 23 , 1}3. Therefore, each sample was anno-
tated with score summary statistics: truthMean,
truthJudgements, truthMode, and truthMedian.
For the sake of consistency we reformulated this
as a classification problem using the following de-
cision:

Ci =

{
clickbait if truthMeani ≥ 0.5
non− clickbait otherwise

(1)
Although the dataset consists of “targetText” and
“image” (landing page) data apart from “post-
Text” (headline), we were able to attain convinc-
ing results by using features derived purely from
“postText”. This assumption was based on the
behaviour of an average annotator, as in most
cases the annotator judgments are purely hinged
on the headline. Based on similar assumptions,
(A. Anand and Park, 2017), (Zhou, 2017) and
(Rony et al., 2017), used n-grams, simple word
filters or latent text representations (LSTMs) that
were solely based on headline content. Following
3 splits were provided in the Clickbait-Challenge
(C: Clickbaits, NC: Non-clickbaits).

Label Headlines C NC
A 19,538 4,761 14,777
B 2,495 762 1,697
C 80,012 - -

We evaluated F1-score and accuracy on the test
set B while using portions of the set A as our la-
beled dataset (with the remaining as unlabeled),
bootstrapped with the unlabeled set C.

3.2 Random Forest
In order to identify words of high importance (in-
formation gain), we trained a Random Forest Clas-
sifier on the strongly labeled section of the dataset.
By using entropy (Eq. 2) as a measure of informa-
tion gain, while splitting samples at each node of a
tree, we posited that words with low entropy (sum-
marized in Table 1) were strong signals for iden-
tifying clickbaits. Before fitting the random for-
est, the headlines were pre-processed; all numeric
content was mapped to <n-token>, URLs were
mapped to <u-token>. Along with these, entity
detectors were useful in identifying references to
dates/years, locations. The Wordnet Lemmatizer
was used to obviate trivial variances in word repre-
sentations. The analyses presented in Table 1 was
done on the Headlines Dataset. In this section, we

3https://www.clickbait-challenge.org/#data

Word Importance Naive
Inclination

<n-token> 5.120 clickbait
like 3.112 clickbait
dies 3.042 non-clickbait
people 2.351 clickbait
know 2.336 clickbait
life 2.155 clickbait
need 2.062 clickbait
president 1.799 non-clickbait
wins 1.664 non-clickbait
kill 1.623 non-clickbait
iraq 1.244 non-clickbait
hilarious 1.058 clickbait
favorite 1.039 clickbait
laugh 0.965 clickbait
really 0.963 clickbait
court 0.941 non-clickbait
china 0.940 non-clickbait
dead 0.891 non-clickbait
photos 0.869 clickbait
most 0.851 clickbait
leader 0.702 clickbait
pictures 0.698 clickbait
obama 0.592 non-clickbait
questions 0.524 clickbait

Table 1: Some of the tokens with high word-
importance factor (Inverse Entropy).

propose the use of Random Forest as a source of
weak labels, with the Random Forest being trained
on the human labeled samples.

Es =
Nl

N
El +

Nr

N
Er

El = −
∑

i∈C
pil log pil

Er = −
∑

i∈C
pir log pir

(2)

pil : proportion of samples of the left split
that ∈ class Ci

pir : proportion of samples of the right split
that ∈ class Ci

Nl: number of samples in left split
Nr: number of samples in right split
N : total number of samples158



Salvaging the tokens with the lowest entropy,
we built simple rules to detect clickbaits. Tree
paths that included decisions based on these low
entropy tokens were used to construct rules in Dis-
junctive Normal Forms (DNFs) (Table 2). The un-
labeled dataset was then run through these rules
to determine weak labels for classification. This
aided the training of the attention network, as cor-
roborated by our experiments (Section 4).

3.3 Problem Definition

We are given two sets of data, namely:
Ds = {(X1, y1), (X2, y2), .., (Xn, yn)}, that is
strongly labeled through manual annotations and
Dw = {(X1, ŷ1), (X2, ŷ2), .., (Xn, ŷn)}, which is
weakly labeled and is composed of samples from
the unlabeled set. The weak labels in Dw are gen-
erated by the Random Forest Classifier (RF) (Sec-
tion 3.2). In addition to this, we assimilate D̂s,
that is composed of RF predictions on Ds (Eq. 4).

ŷi = RF (Xi)

∀(Xi, ŷi) ∈ Dw
(3)

D̂s = {(Xi, yi, RF (Xi))}
∀(Xi, yi) ∈ Ds

(4)

The goal would be to train a classification net-
work on the set obtained by concatenating Ds &
Dw. It is assumed that Ds is comprised of a rep-
resentative set of samples and that Ds and Dw

contain i.i.d. samples from the true data distribu-
tion. Since Dw consists of weak labels from the
Random Forest and |Dw| > |Ds|, we propose the
use of a confidence network (Section 3.7) that pre-
dicts the accuracy of a weak label. These accuracy
scores would re-weigh the gradient updates when
the loss is calculated using samples fromDw, thus
attenuating the effect of noisy labels.

3.4 Deep Attention Network

Self-attentive structured attention mechanisms for
efficient semantic latent sentence representations
was proposed by (Z. Yang and Hovy, 2016) and
(Z. Lin and Bengio, 2017). (Zhou, 2017) fur-
ther ascertained the effectiveness of the atten-
tion mechanism in clickbait detection. The in-
tuition behind a self attention mechanism is that
the network learns the importance of each to-
ken’s context, for the task in hand (clickbait de-
tection), along with a hidden state representation
of the word context itself. While (Zhou, 2017),

(Z. Yang and Hovy, 2016) used this in a fully su-
pervised setting, we researched its resilience un-
der the semi-supervised tone. In the following sec-
tions, we show that, the presence of an external at-
tention enforcer is pivotal in training the network.
Merely training a deep network on a meagre set of
a few thousand samples leads to overfitting (Good-
fellow et al., 2016), and as expected, this claim
was substantiated, when we noted a higher vali-
dation/test loss, upon direct application of the ar-
chitecture proposed by (Zhou, 2017), (Z. Lin and
Bengio, 2017).

We propose vital and consequential modifica-
tions to the base network which accommodates
the semi-supervised learning problem. Attention
mechanisms have traditionally been utilized to fo-
cus attention on features that are most influential
in performing a specific task, like image caption-
ing or semantic segmentation, in the image do-
main (Xu et al., 2015). Drawing a parallel, we
propose an attention based loss that forces the at-
tentions for a specific set of words to be higher
than the rest. When a large number of samples are
available, the attention module is self-sufficient in
determining such tokens. In this case however, we
use as a surrogate, the word importance measures
from the Random Forest classifier to identify them
(Section 3.6).

3.5 Architecture
Figure 1 demonstrates the two networks employed
during training. The classification/self-attention
network determines the sentence embedding post
a dot-product operation on the LSTM hidden state
representations using the attention weights. Given
a headline with N tokens, we map each token wi,
where i ∈ {1, . . . , N}, to its corresponding glove
embedding4 (trained on the twitter corpus), de-
noted by xi. A bi-directional LSTM network, en-
codes the word context (from both directions), for
the word wi, in the time step ti (Eqs. 5).

hlefti = LSTMleft(xi)

hrighti = LSTMright(xi)

hi = hlefti ||hrighti
xi ∈ Re

hlefti, hlefti ∈ Ru

hi ∈ R2u

(5)

Given the word context embeddings, the at-
4https://nlp.stanford.edu/projects/glove/159



Figure 1: Network Architecture

tention network maps them to intermediate token
level activations, using a Multi-Layered Percep-
tron (MLP) network with non-linear (tanh) activa-
tions. WithH ∈ RN×2u as the context embedding
matrix, the network outputs B ∈ RN , as the inter-
mediate activation vector (Eq. 6).

B = σ((tanh(H ·Wa1
T )) ·Wa2)

H ∈ RN×2u, Wa1 ∈ Rm×2u, Wa2 ∈ Rm×1 (6)

The original structured self-attentive network
(Z. Lin and Bengio, 2017) proposed a softmax ac-
tivation in the final layer. This was befitting in the
case of sentiment classification, where in the sen-
timent of each sentence was pivoted on a few key
tokens and such tokens existed in all sentences,
irrespective of the class. On the contrary, in the
case of clickbait detection, it is mostly the neg-
ative class (clickbaits), that contains such tokens
of importance. As depicted in Table 1, the words
identified by the Random Forest for the clickbait
class are independent of the news item/news sub-
ject (“<n-token>”, “know”, “need”, “favorite”,

“most”). Same can’t be said for the positive class
(“obama”, “iraq”, “china”, “president”). Hence
we introduced a sigmoid layer to better suit the
case of clickbait detection.

The intermediate activations B ∈ RN , obtained
post the sigmoid layer were treated as parame-
ters of a binary distribution. Treating each bi as
P (ai = 1), we could sample from the binary
distribution. To propagate losses during back-
propagation, we instead sampled values from the
Gumbel-Softmax distribution (Jang et al., 2016),
to obtain D ∈ RN (Eq. 7). This encapsulates
the “gated” portion of the network where in acti-
vations for word contexts are sampled from a dis-
crete distribution whose parameters are learned.
The central idea is to support a case where in the
sentence may not have significant impact words
(fairly common with the positive class), and with
this formulation the sampled values can represent
such a case trivially with a zero vector. In the orig-
inal work done by (Z. Lin and Bengio, 2017), such
activations were inconceivable.160



di =
exp ((log(bi) + gi1)/τ)

exp ((log(bi) + gi1)/τ) + exp ((log(1− bi) + gi0)/τ)

(7)

gi1 ∼ Gumbel(0, 1)
gi0 ∼ Gumbel(0, 1)
τ : the temperature parameter that determines the

extent to which di would be close to 0 or 1

Adding the Gumbel-Softmax enables the pos-
sibility of peaky activations. Lower values of τ
would lead to di lying on either end of the spec-
trum, i.e 0 or 1, thus resembling a sample from a
binomial distribution.

In cases of very low volumes of labeled data
we observed that the attention weights of tokens
neighboring the words of importance were very
close to 0, and thus their context representations
wasn’t contributing towards the final sentence rep-
resentation. To avoid this, we used a Gaussian
filter over the samples from the Gumbel-Softmax
distribution, which acts as a 1D convolution. The
weights of the Gaussian filter are not learned.
They are fixed and normalized so as to ensure that
the final attention weights 0.0 ≤ ai ≤ 1.0. The ac-
tivation vector A ∈ RN , and LSTM hidden states
H produce the final sentence embedding S (Eq.
8).

A = GaussianFilter(B)

S = H> ·A
H ∈ RN×2u, A ∈ RN , S ∈ R2u

(8)

3.6 Attention Loss
One way to identify key words/features is to use a
weak labeler like Random Forest. It identifies a set
of words crucial in decision making (Table 1). The
loss penalizing a deviation from such important
words, is the standard binary cross entropy loss
where it considers the attentions sampled from the
Gumbel-Softmax distribution. The true attention
is inferred from the word importance or entropy
scores generated by the Random Forest. A true at-
tention of 1.0 is assigned to words with importance
over a particular threshold.

The set of positive activations in the corpus is
much lower than its counterpart. This class imbal-
ance was tackled by simply using the class weights
to re-weigh the attention loss (Alejo et al., 2017).
The proportion of activations of class i is inversely
proportional to wi (Eq. 9). The parameters of the
classification network in Figure 1 are optimized

over a combination of the attention and classifi-
cation losses (Eq. 10).

La(X, y) = −W>[Q� log(A) + Q̄� log(Ā)]

A = {a1, . . . , aN}>, Ā = 1−A
Q = {q1, . . . , qN}>, Q̄ = 1−Q

W = {w1, . . . , wN}>
(9)

A: network activations for tokens
Q: true activations for tokens
W : sample weights
N : number of tokens
�: Hadamard product
X, y: samples ∼ Ds, Dw

Lca(X, y) = Lc(X, y) + λ · La(X, y) (10)

X, y: samples ∼ Ds, Dw

Lca: Classification + Attention Loss
Lc: Classification Loss
La: Attention Loss
λ: Contribution of the attention loss to the

total loss

3.7 Optimization Algorithm
Amalgamation of strong and weak supervision has
been used to solve constraints like data paucity,
noisy labels and a few others (Schapire, 1990).
Weak learners are sources of noisy labels. (De-
hghani et al., 2017b) proposed the use of a con-
fidence network to estimate the accuracy of a
noisy label. Similar to (Dehghani et al., 2017a)
and (Arachie and Huang, 2018), we used an op-
timization method that is a variant of the stan-
dard Stochastic Gradient Descent (SGD). The lat-
ter uses a constant learning rate on all samples
in an iteration. Such an approach can lead to
noisy gradients, especially when the proportion of
strongly labeled samples in a batch is low (Good-
fellow et al., 2016).

In order to mitigate this, a confidence network,
trained on D̂s, formulates the confidence in a weak
label as a function of the weak label (Random
Classifier output) and the encoded input represen-
tation. As shown in Figure 1, the architecture
is split into the classification and confidence net-
works. Batches of i.i.d samples are drawn itera-
tively from D̂s and Dw. A batch of the former
type is used train the classification network, the
weights for which are updated using SGD. Since161



the samples from D̂s also consist of RF predic-
tions on strongly labeled samples, they are used to
train the confidence network (fconf ) as well.

score = fconf (E(X), ŷ)

∀(X, y, ŷ) ∈ D̂s,

E(X) : latent representation forX

(11)

For a sample (X, y, ŷ) ∼ D̂s, a forward prop-
agation on the classification network would gen-
erate the sentence representation S (denoted as
E(X) in Eq. 11). S is concatenated with ŷ,
and passed to a batch-normalization layer. Since
the embeddings and binary signals lie on sepa-
rate manifolds, the batch-normalization is quint-
essential before the concatenated input is passed to
a neural network. Figure 1 enunciates the output
of the network as a 2-dimensional vector [c0, c1].
The score in Eq. 11 is given by c1. The confi-
dence network is trained using a cross-entropy loss
(Lconf in Eq. 12). The true confidence is given by
the indicator 1y=ŷ.

In the subsequent iteration when samples are
drawn from Dw confidence scores are inferred on
each sample in this set through a forward propaga-
tion on the confidence network. These scores are
passed to the optimization algorithm for the clas-
sification network in order for it to re-weigh its
gradient updates. Equation 13 defines the gradi-
ent update rule for parameters in the classification
network.

Lconf (X, y, ŷ) = −1y 6=ŷ log c0 − 1y=ŷ log c1
(12)

(X, y, ŷ) ∼ D̂s

c : [c0, c1], output of the confidence network
Lconf : Loss on sample (X, y, ŷ)
1y=ŷ : True confidence value

∇w
∧

=
1

B

B∑

i=1

fconf (Xi, ŷi) · ∇wLca(Xi, ŷi)

wt+1 = wt − ηt∇w
∧

(13)

ηt: learning rate
B: Batch size of samples drawn from D̂s

Lca: Loss on sample (Xi, ŷi) (Section 3.6)
fconf : Confidence network

Rule Class
believe ∧ <n-token> C
president ∧ iraq ∧ war NC
hilarious ∧ photos ∧ <n-token> C

Table 2: Rules drawn from the tress in RF.

4 Experiments

4.1 Experimental Setting

The following discussion on hyper-parameters is
with respect to the Headlines Dataset. Although
nearly the same set of values were applicable to
the Clickbait-Challenge Dataset.

The hyper-parameters of the random forest
were fine tuned using Bayesian optimization tech-
niques. We used 50 estimators, with a maximum
depth of 3 and a minimum split size of 5 along
with the entropy criterion for splitting. Rules in
DNF form were constructed by traversing paths
that consisted only of tokens with high informa-
tion gain. The threshold for minimum word im-
portance was found to be optimal at 0.42. Table 2
lists some of the rules (mentioning only the words
whose presence triggers the corresponding rule).

The dimensionality of the parameters en-
trenched in the classification and confidence net-
works have been encapsulated in Table 3. Glove
embeddings (Pennington et al., 2014) trained on
the twitter corpus, were used as base word em-
beddings, which were fed to the LSTM cells.
Dropouts (Srivastava et al., 2014) have been com-
monly used in recurrent neural networks as a form
of regularizer, especially after they were proven to
be a form of Bayesian inference in deep Gaussian
Processes (Gal and Ghahramani, 2016). We used
a dropout parameter of 0.5 within the LSTM, and
0.4 for the inputs to the fully connected layer with
weightsWa2. For the Gumbel-Softmax layer, tem-
perature parameter of τ = 0.7 was found to be op-
timal. Lower values of τ would have led to higher
attention weights for the words of importance, but
it would have also driven the weights for the rest
of the tokens to zero. For the batch-normalization
layer present within the confidence network, a
momentum of 0.05 resulted in a slightly better
validation accuracy as compared to the standard
value of 0.1 (Ioffe and Szegedy, 2015). This can
be attributed to the variance in label confidence
across alternate mini-batches that were sampled
randomly from the labeled and unlabeled sets. The162



Parameter Dimensionality
x (Word Embedding) 300

h (LSTM hidden state) 200

Wa1 32× 400

Wa2 32× 1

Wc1 64× 400

Wc2
5 65× 2

Table 3: Dimensionality of the parameters in the
classification and confidence networks.

standard mini-batch SGD optimizer with a learn-
ing rate of 0.0001 (Li et al., 2014) and a batch size
of 64 samples was employed. The parameter λ,
involved in the combination of attention and clas-
sification losses was fixed at 0.3. We used an early
stopping criteria, to stunt training. In most cases,
5 epochs were sufficient to fit the training data, a
result, which seems to corroborate with the size of
the dataset involved.

4.2 Results
In accordance with the disparity of the datasets
mentioned in section 3.1, we summarize the pro-
posed model performance on the two of them inde-
pendently. In both cases, we benchmark the model
performance against baselines, that claim to have
achieved state of the art results on the dataset in
question.

(A. Anand and Park, 2017) claimed a high clas-
sification accuracy of 0.982 after having exper-
imented with multiple RNN based architectures
to embed the clickbait embeddings in a multi-
dimensional space. Our model’s performance em-
ulates the former on the fully labeled dataset. On
the partially labeled set we achieve a high accu-
racy of 0.980, even with only 30% of labeled sam-
ples (Table 4). This is an increment of 4.03% in
the accuracy on the validation set, when compared
to the BiLSTM based network.

We further study model performances across the
various model architectures supplanted in an in-
cremental fashion (Table 5). When data paucity is
high (30% labeled), we see significant differences
in accuracy, precision and recall while adding in-
dividual components to the network. Increments
have been noticed when a large number of labeled
samples (80%) are available, albeit the rate of im-
provement is negligible. The gaussian filter over
attention weights sampled from Gumbel-Softmax

5This includes the bias terms as well.

is more effective in the former case where scatter-
ing attention onto the neighborhood of high im-
portance words prevents the sentence representa-
tion from collapsing to an average of word vectors
in the inchoate stages of training. The precision
and recall metrics also show similar trends, with
increments of 3.92% and 3.91% respectively, in
case of 30% labeled samples.

In case of the Clickbait-Challenge dataset (sec-
tion 3.1), we train our model on the labeled split
(A), concatenated with the unlabeled samples in
(C) and observe model performance on the test set
(B), consistent with (Zhou, 2017). We further per-
formed experiments to study our model’s ability
to learn meaningful sentence representations when
only a portion of the set A was labeled. Table 6
puts into perspective the observed Mean Squared
Error (MSE), precision and accuracy on the test
set, in comparison to the current best performing
model (Zhou, 2017) on the dataset in question.
The existing baseline involves sentence classifica-
tion solely using the self-attention network intro-
duced by (Z. Lin and Bengio, 2017). The baseline
results are convincing when all labels are available
and on par with our model’s performance. On the
other hand, when only 30% of the set A is used as
the labeled set we observed a jump of 23.55% &
25.61% with regards to the accuracy & F1-score
respectively.

Conclusion and Future Work

In this paper, we proposed a novel architecture to
tackle clickbait detection when only a few labeled
samples are present. We successfully showed that
use of a weak labeler like Random Forest can gen-
erate priors over an attention mechanism and thus
improve generalizability. Empirically, we have
also shown that training a confidence network to
rescale gradients, helps tackle the inherent noise
attributed to the presence of a weak labeler.

We haven’t considered λ as a function of time,
and annealing λ over time may improve perfor-
mance. Future work may also involve confidence
networks with, momentum and adaptive learning
rate based gradient update methods like Adam or
RMSprop (Kingma and Ba, 2014). The glove em-
beddings capture the word contexts. Modelling
curiosity (Venneti and Alam, 2018) in conjunction
with such features may help capture user intent as
well. Nevertheless, this requires a different set of
experiments and benchmarks to thoroughly under-163



Model Accuracy Precision Recall ROC-AUC
Baseline (BiLSTMs) 0.982 0.984 0.980 0.998
Self-Attentive Network (SAN) 0.982 0.983 0.981 0.997
SAN + Gumbel Softmax (GS) 0.981 0.982 0.981 0.996
SAN + GS + Gaussian Filter (GF) 0.983 0.984 0.982 0.997

Table 4: Performance metrics against the existing baseline (A. Anand and Park, 2017), with the fully
labeled Headlines Dataset. [Averaged over a 5-fold cross validation scheme]

Model
Accuracy Precision Recall

80% 50% 30% 80% 50% 30% 80% 50% 30%
Baseline (BiLSTMs) 0.980 0.966 0.942 0.979 0.967 0.943 0.981 0.966 0.944
SAN 0.979 0.966 0.944 0.978 0.965 0.945 0.980 0.967 0.942
SAN + RF 0.980 0.976 0.959 0.980 0.974 0.958 0.981 0.976 0.960
SAN + RF + GS 0.980 0.978 0.970 0.981 0.978 0.971 0.982 0.979 0.972
SAN + RF + GS + GF 0.981 0.977 0.975 0.982 0.978 0.976 0.981 0.977 0.977
SAN + RF + GS + GF +
Confidence N/w

0.983 0.982 0.980 0.984 0.983 0.980 0.982 0.982 0.981

Table 5: Ablation study with variations in the proportions (80%, 50%, & 30%) of labeled data (Headlines
Dataset). [Averaged over a 5-fold cross validation scheme]

Model
MSE F1-Score Accuracy

100% 50% 30% 100% 50% 30% 100% 50% 30%
Baseline 0.033 0.047 0.055 0.683 0.557 0.521 0.856 0.713 0.671
Proposed Model 0.034 0.038 0.042 0.679 0.668 0.662 0.856 0.835 0.829

Table 6: MSE, F1-Score and Accuracy metrics for the existing baseline (Zhou, 2017) & our solution on
the test set, while using different proportions of set A (100%, 50% & 30%) as our labeled data.

stand the intricacies involved in such a mixture.
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