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Abstract

Given a word, what is the most frequent
sense in which it occurs in a given cor-
pus? Most Frequent Sense (MFS) is
a strong baseline for unsupervised word
sense disambiguation. If we have large
amounts of sense-annotated corpora, MFS
can be trivially created. However, sense-
annotated corpora are a rarity. In this
paper, we propose a method which can
compute MFS from raw corpora. Our
approach iteratively exploits the semantic
congruity among related words in corpus.
Our method performs better compared to
another similar work.

1 Introduction

Word Sense Disambiguation (WSD) remains to be
one of the relatively hard problems in the field
of Natural Language Processing. Machine Learn-
ing approaches to WSD can be broadly classi-
fied into two categories: supervised and unsuper-
vised. Supervised techniques rely on learning pat-
terns from sense-annotated training data. How-
ever, such data are hard to come by. SemCor,
one of the most common sense-annotated corpus
in English language, contains around 700k tokens,
200k of which have been sense-annotated. It is
really small as compared to raw corpora such as
ukWAC, where the number of tokens is close to
2 billion. On the other hand, unsupervised tech-
niques do not require sense-annotated corpora.

A strong baseline for unsupervised WSD is the
Most Frequent Sense (MFS) baseline. While per-
forming sense disambiguation, the baseline com-
pletely ignores the context, and simply assigns the
most frequent sense to the target word.

Inspite of ignoring context, which is one of
the main source of information for performing
sense disambiguation, the MFS baseline gives re-

ally strong results. This is because of the inherent
skew in the sense distribution of the data.

Computing MFS baseline is trivial, if one has
access to large amounts of sense-annotated cor-
pora. However, that is not the case as explained
earlier. Thus there is a need for uncovering MFS
from raw data itself.

Word embeddings collectively refers to the set
of language modelling and feature learning tech-
niques, which maps words to real valued vectors
(Bengio et al., 2003; Mnih and Hinton, 2007; Col-
lobert and Weston, 2008; Mikolov et al., 2010;
Huang et al., 2012; Mikolov et al., 2013a; Mikolov
et al., 2013b; Pennington et al., 2014). Do note
that most word embedding models only output one
embedding per word, instead of the ideal case of
outputting one embedding per sense of a word.
Though, some models do exist, which provide one
embedding per sense of a word by inferring num-
ber of senses either through context clustering ap-
proaches (Neelakantan et al., 2015), or by using
sense inventory (Chen et al., 2014) . For the rest
of this paper, we mean one embedding per word
models, when we use the phrase word embed-
dings.

The field of Natural Language Processing is in-
creasingly seeing the use of word embeddings for
various problems, and MFS is no exception. Bhin-
gardive et al. (2015) showed that pretrained word
embeddings can be used to compute most frequent
sense.

In this paper, we propose an iterative approach
for extracting most frequent sense of words in a
raw corpus. The approach uses word embeddings
as an input. Thereby, in order to obtain MFS from
some raw corpus, one need to apply the following
two steps:

1. Train word embeddings on the raw corpus.

2. Apply our approach on the trained word em-
beddings.



The key points of this paper are:

• Our work further strengthens the claim by
(Bhingardive et al., 2015) that word embed-
dings indeed capture most frequent sense.

• Our approach outperforms others at the task
of MFS extraction.

The rest of the paper is organized as follows:
Section 2 describes the related work. Section 3
explains our approach. Section 4.1 details our ex-
perimental setup and results. Section 5 provides
some error analysis, followed by conclusion and
future work.

2 Related Work

Buitelaar and Sacaleanu (2001) present an ap-
proach for domain specific sense assignment.
They rank GermaNet synsets based on the co-
occurrence in domain corpora. Lapata and Brew
(2004) acquire predominant sense of verbs. They
use Levin’s classes as their sense inventory. Mc-
Carthy et al. (2007) use a thesaurus automati-
cally constructed from raw textual corpora and
the WordNet similarity package to find predom-
inant noun senses automatically. Bhingardive et
al. (2015) exploit word embeddings trained on
untagged corpora to compute the most frequent
sense. Our work is most similar to Bhingardive et
al. (2015) owing to our reliance on word embed-
dings. We therefore evaluate our approach against
theirs.

3 Approach

Our approach relies on the semantic congruity
of raw text. Consider the following example:
Consider the word cricket having two senses
sport and insect, and the word bat having two
senses sport instrument and reptile. Then, if
in our corpus, we already know that bat is in
sport instrument sense for most cases, then in or-
der for the corpus to be semantically congruent,
the most frequent sense of cricket has to be sport.

So, in order to find most frequent sense of all
words in the vocabulary of the corpus, we start
with the word whose sense is already known. So,
the approach begins with monosemous words, for
which MFS is trivial. Next, it moves on to bise-
mous words, and uses the monosemous words
sense information to detect most frequent sense.
Then it moves on to trisemous words, and use

the hitherto resolved words for detecting most fre-
quent sense, and so on. Thus the approach iterates
over the degree of polysemy, and uses the com-
puted MFS of words with degree of polysemy 1 to
n − 1 to compute the MFS of words with degree
of polysemy n.

At any point of time, we call the words whose
MFS is already established as tagged words. For
a given word whose MFS is to be computed, we
enumerate all senses, and then compute the vote
for each senses by the top k nearest neighbors who
are already tagged. The vote is a product of two
measures: the cosine similarity (wi) between the
embedding of the current tagged word and the tar-
get word, and the wordnet similarity (si) between
the MFS of current tagged word (which would
have been established in the previous iteration),
and the sense for which the vote is being com-
puted. The votes are summed over, and the sense
with the highest sum is considered to be the Most
Frequent Sense of the target word. The basic flow
is illustrated in figure 1.

Figure 1: Illustration of our approach

The major parameters in our approach are:

1. K: The number of nearest neighbors who will
vote. Through experimentation, we found
K=50 to be a reasonable value.

2. WordNet Similarity measure (si): We tried
all combinations of the six available similar-
ity measures in Princeton WordNet, namely
Path similarity, Leacock Chodorow Similar-
ity, Wu Palmer Similarity, Resnik Similarity,
Jiang Conrath Similarity, and Lin Similarity.



Our experiments found the average of nor-
malized Wu Palmer and Lin similarity per-
forms slightly better than other combinations.

3. Vector space similarity measure (wi): We
tried both dot and cosine similarity. Dot per-
formed slightly better. In future, we would
try other similarity measures such as Tani-
moto coefficient.

4 Experiments and Results

4.1 Datasets
We have used the following datasets for our eval-
uation:

1. SemCor: Sense-annotated corpus, annotated
with Princeton WordNet 3.0 senses using
WordNet 1.7 to WordNet3.0 mapping by
Rada Mihalcea

2. Senseval 2: Sense-annotated corpus, anno-
tated with Princeton WordNet 3.0 senses as
above

3. Senseval 3: Sense-annotated corpus, anno-
tated with Princeton WordNet 3.0 senses as
above

4.2 Evaluating MFS as solution for WSD
Given that MFS is a strong baseline for unsuper-
vised WSD, a good MFS will give good perfor-
mance on unsupervised WSD. This is what this
experiment evaluates. While in theory, our ap-
proach can also use embeddings trained on test
corpora directly, we use pretrained word2vec em-
beddings, as they are crucial to Bhingardive et al.
(2015) with whom we are comparing. Table 1
shows the results of using MFS for WSD on Sen-
seval 2 and Senseval 3 only for nouns. We re-
port this noun specific result for comparison with
(Bhingardive et al., 2015), who have reported re-
sults only for nouns. Here, Bhingardive(reported)
and SemCor(reported) are the results as reported
in the paper. However, their exact experiment set-
tings are not clear from their paper. Thus we used
also computed their results in our setting, which
are reported as Bhingardive and SemCor respec-
tively.

In addition to this, we also report the perfor-
mance on all parts of speech, in table 2. Here,
Bhingardive(reported) is the result with the param-
eter configuration for their approach as reported

Method Senseval2 Senseval3
Bhingardive(reported) 52.34 43.28
SemCor(reported) 59.88 65.72
Bhingardive 48.27 36.67
Iterative 63.2 56.72
SemCor 67.61 71.06

Table 1: Accuracy of WSD using MFS (Nouns)

in their paper. We also tried out different pa-
rameter settings for their algorithm, and Bhingar-
dive(optimal) is the best result obtained with opti-
mal parameter setting. It is clear that our approach
outperforms both their reported approach and the
one with empirically obtained optimal parameters.

Method Senseval2 Senseval3
Bhingardive(reported) 37.79 26.79
Bhingardive(optimal) 43.51 33.78
Iterative 48.1 40.4
SemCor 60.03 60.98

Table 2: Accuracy of WSD using MFS (All Parts
of Speech)

4.3 Evaluating MFS as classification task

Another way to evaluate our approach was to learn
MFS from pretrained word embeddings which
were trained on large corpora, and compare it
with WordNet First Sense (WFS). Table 3 shows
how our approach fares against Bhingardive et al.
(2015)’s when both the approaches are applied
on pretrained word2vec embeddings (trained on
Google News Dataset with billions of tokens and
released by them).

A similar evaluation can also be done by us-
ing true MFS obtained from frequencies in sense-
annotated corpora. Tables 4 show the results for
the same.

5 Discussion

Even though our approach performs better than
Bhingardive et al. (2015), we are not able to cross
SemCor and WFS results. The following are the
reasons for the same:

• There are words for which WFS doesn’t give
proper dominant sense. Consider the follow-
ing examples:

– tiger - an audacious person



Method Nouns Adjectives Adverbs Verbs Total
Bhingardive 43.93 81.79 46.55 37.84 58.75
Iterative 48.27 80.77 46.55 44.32 61.07

Table 3: Percentage match between predicted MFS and WFS

Nouns
(49.20)

Verbs
(26.44)

Adjectives
(19.22)

Adverbs
(5.14) Total

Bhingardive 29.18 25.57 26.00 33.50 27.83
Iterative 35.46 31.90 30.43 47.78 34.19

Table 4: Percentage match between predicted MFS and true SemCor MFS. Note that numbers in column
headers indicate what percent of total words belong to that part of speech

– life - characteristic state or mode of liv-
ing (social life, city life, real life)

– option - right to buy or sell property at
an agreed price

– flavor - general atmosphere of place or
situation

– season - period of year marked by spe-
cial events

• In some cases, the tagged words actually rank
very low in order for them to make a sig-
nificant impact. For instance, while detect-
ing MFS for a bisemous word, it may happen
that the first monosemous neighbour actually
ranks 1101, i.e. a 1000 polysemous words are
closer than this monosemous word. Thus in
such cases, the monosemous word may not
be the one who can influence the MFS.

6 Conclusion

In this paper, we proposed an iterative approach
for unsupervised most frequent sense detection
in raw corpus. The approach uses word embed-
dings. Our results bears similar trends to those of
Bhingardive et al. (2015), thereby strengthening
the claim that word embeddings do indeed cap-
ture most frequent sense. Through 2 different cat-
egories of experiments, we established that our
method is better than theirs. Since there are no
language specific restrictions, we believe that our
approach should be easily applicable to other lan-
guages. In the future, we would like to experimen-
tally validate this claim.
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