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Abstract

With the resurgence of chat-based dialog
systems in consumer and enterprise appli-
cations, there has been much success in de-
veloping data-driven and rule-based natu-
ral language models to understand human
intent. Since these models require large
amounts of data and in-domain knowledge,
expanding an equivalent service into new
markets is disrupted by language barriers
that inhibit dialog automation.

This paper presents a user study to evaluate
the utility of out-of-the-box machine trans-
lation technology to (1) rapidly bootstrap
multilingual spoken dialog systems and (2)
enable existing human analysts to under-
stand foreign language utterances. We ad-
ditionally evaluate the utility of machine
translation in human assisted environ-
ments, where a portion of the traffic is pro-
cessed by analysts. In English—Spanish
experiments, we observe a high potential
for dialog automation, as well as the poten-
tial for human analysts to process foreign
language utterances with high accuracy.

1 Introduction

With the present advances in natural language
understanding and speech recognition technolo-
gies, unprecedented opportunities have been cre-
ated for realizing natural and sophisticated human-
machine conversations to accomplish routine
tasks. There has been a resurgence of speech/text-
based conversation systems spanning multiple
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platforms, such as interactive voice recordings,
chat, and SMS, owing to the availability of com-
munication platforms that make it convenient to
configure human-machine conversations. The po-
tential opportunities of speech/text driven human-
machine systems, or virtual agents, can only be re-
alized if the user’s requests are understood by the
virtual agent and acted upon appropriately.

For practical applications, such conversational
agents and speech/text analytics systems, the
meaning of a sentence may be approximated as one
or more actionable labels, or intents, associated
with the input utterance. In such cases, the natu-
ral language understanding (NLU) task is modeled
as an intent classification problem. Although am-
biguity is present in natural language, data-driven
NLU systems have been successful in modeling
user intents in many application domains.

Many commercial and enterprise applications
service customers from different geographic loca-
tions and varying language proficiencies, requiring
multilingual NLU for human-machine interaction.
In order to deploy an intent classification system
for a new language a new set of labeled training
data is conventionally required. This data is often
unavailable before a solution is deployed, instead
requiring a human-driven dialog system depend-
ing on intent analysts or live agents. In time, a
sufficient amount of production data may be col-
lected to build a data-driven intent model; however
this approach is expensive to operate and ignores
valuable knowledge present in other languages that
could be used to build an initial model.

In this paper, we evaluate the use of machine
translation (MT) as a tool to bridge the knowledge
present in one or more intent models for the cre-
ation of an intent classifier in a target language.
Given MT’s capability to translate the content of
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utterances in a source language to a target lan-
guage, our goal is to minimize the number of lan-
guage proficient intent analysts needed to support a
production-scale multilingual dialog system in the
absence of target language data.

The remainder of the paper is organized as fol-
lows: in Section 2 we discuss the details of the
intent classification system and present the NLU
model, including our two MT architectures in a
multilingual spoken dialog system. In Section 3
we outline our experiment and describe our ASR,
MT, and NLU models. In Sections 4-7, we eval-
uate the ASR, MT, and NLU model performance.
In Section 8 we evaluate human agents’ ability to
label the intents of translated user utterances and
summarize our findings in Section 10.

2 NLU for Customer Care

A single utterance is tagged with three types of la-
bels: intents, entities, and conversational handlers.
Intents are domain-specific labels such as SALES,
TECH ASSISTANCE, and BILLING. Entity labels
represent the names of products or services men-
tioned by the user. These include specific mod-
els of smart phones or subscription services. Con-
versational handlers are labels which are similar to
speech acts to guide the conversation. For exam-
ple, LIVE AGENT, CONFUSED, or FOREIGN LAN-
GUAGE. In our experiments, intents and entities
are labeled as “session variables” (SV), while con-
versation handles are partitioned into “task names”
(TN) and “event names” (EN). Examples of each
in our experiments are shown in Table 1.

A joint SVM classifier is trained by concatenat-
ing the TN, EN, and SV labels into a unique la-
bel. The model comprises a set of binary SVM
classifiers, with each classifier predicting if the in-
put is assigned or not assigned to a particular label
type. For a given input utterance x, the joint label
is computed as:

argmax Fy(z,y). (D)
yE(tn,sv,en)

Y=

The feature set F may comprise application con-
text, conversation context, and the utterance. We
use n-gram word-level features in this experiment.

2.1 Confidence Measures

We boost the accuracy of our intent models by
using human analysts’ predictions on unconfident
decisions made by the classifier. We obtain predic-
tion probabilities from the classifier by computing
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Task Names (TN) | Session Variables (SV) | Event Names (EN)
COMPLAINT ACCOUNT action ANGRY
ENGLISH ACTIVATE product DON’T KNOW
FOREIGN ADD service GARBLED
NONE APPOINTMENT type LIVE AGENT
QUESTION BILLING AUTO PAY NOISE
BILLING DETAILS NO MATCH
PAY BILL service NONE
CHANGE ADDRESS THANK YOU
DISCONNECT service | ...
10 707 18

Table 1: Examples and counts of Spanish intent labels by
category and language for the “How may I help you?” dia-
log state. Concatenating the labels yields 833 distinct intent

annotations.
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Figure 1: Online Spanish—English bootstrap architecture.
Spanish audio is translated into English and processed by an
English intent classifier. If ASR or MT scores are not confi-

dent, a Spanish intent analyst (IA) labels the segment. If the
English intent model is not confident, an English IA labels it.

the sigmoid on the scores output for each label by
the SVM classifier, computed as:

B 1
)= 1+ exp(Fy(z,y*))
The confidence measure is obtained by computing

the ratio of the probabilities of the first and second
best labels assigned by the classifier:

Py")
P(y1)
The rejection threshold is empirically determined

to maximize the accuracy of the human-assisted
solution while minimizing human labeling costs.

*

P(y 2

cf(y*) = 3)

2.2 Multilingual Bridging via Machine
Translation

In the context of dialog systems, MT can be used
in one of two ways: (1) translating real-time target



Data set #utts  # words  # unique labels
English training 6.5M 40.6M 623
Spanish training 0.8M 4.6M 623
Spanish test (ASR) 1007 4696 178
Spanish test (human) 1007 5153 178

Table 2: Utterance, word, and distinct label counts for the
training and test data used in our experiments.

language data into the source language and pre-
dicting the intent with a source language intent
classification model (cf. Fig. 1); or (2) translat-
ing source language data offline into the target lan-
guage and training a target language intent clas-
sification model. In the first scenario, utterances
with high translation quality may be processed by
an analyst that only speaks the source language, if
the NLU confidence score is too low.

3 Experimental setup

We evaluate the efficacy of bootstrapping a Span-
ish intent classifier using the data and underlying
models from an English spoken language dialog
system. The data set consists of customer voice
responses to the message “How may I help you?”
in the customer’s native language at the beginning
of a phone call to an Interactive Voice Response
(IVR) system. We assume that no Spanish intent
data is available during training time and evalu-
ate the performance of our bootstrapped Spanish
models against an intent model trained with a stan-
dard training set. Table 2 lists the data used in
our experiment, The training data consists of 5-
best ASR hypotheses on audio segments for En-
glish and Spanish. We assume that the intent la-
bels covered by the target Spanish model are the
same as the English model. Although most of the
intent labels overlap one another there is a sub-
set of (tn, sv,en) intent triples that do not over-
lap. We discard the non-training examples with
non-overlapping triples from each data set, reduc-
ing the number of unique labels in both data sets to
623 (cf. Table 1). As aresult, 2.94% of the English
training examples and 1.95% of the Spanish train-
ing examples are discarded, respectively. Model
performance is evaluated on a test set of 1007
Spanish audio segments randomly extracted from
production logs and labeled by Spanish-speaking
intent analysts (IAs) and verified by a supervisor.

3.1 Automatic Speech Recognition

Our Spanish ASR system consists of an n-gram
language model and hybrid DNN acoustic model

305

trained with the cross-entropy criterion followed
by the state-level Minimum Bayes Risk (sMBR)
objective. We use sequence-training with smooth-
ing and speed-perturb the training data. The acous-
tic model has general-phone and head-body-tail
based digit-specific triphones. The training data
consists of 500K training utterances (around 1000
hours of audio) without speech perturbations and
about 40K unique vocabulary words.

3.2 Machine Translation

We use a conventional neural machine translation
(NMT) sequence-to-sequence encoder-decoder
with attention architecture (Bahdanau et al., 2015;
Luong and Manning, 2015; Sennrich et al., 2016)
commonly used by MT practitioners. The NMT
models were trained with parallel English-Spanish
data from Europarl v7, CommonCrawl, and WMT
News Commentary v8 from the WMT 2013
evaluation campaign (Bojar et al., 2013), as well
as the TED talks from IWSLT 2014 (Cettolo et al.,
2014). The training data has a shared vocabulary
size of 89,500 words after byte-pair encoding
(Sennrich et al., 2016). The model is trained
for 20 epochs with two bidirectional LSTM
encoding and decoding layers with 512 units. In
this experiment we assume to have no in-domain
parallel data.

For the offline English—Spanish model, we
translate the English intent model’s training data
(6.5 million utterances) into Spanish using our
baseline NMT system. The number of words in
the translated data set remains roughly the same.
The translated outputs are used to train a boot-
strapped Spanish intent classifier, using the same
training parameters as the native English model.
The ASR outputs from the test set are processed by
the bootstrapped Spanish intent classifier. For the
real-time Spanish—English model, insert punctu-
ation and apply truecasing to the ASR outputs
from the test set and translate the outputs with our
Spanish—English baseline NMT system. We strip
the punctuation and lowercase the machine trans-
lated output and pass it through the native English
intent classifier.

3.3 Intent classification

Our intent classifiers are trained using an imple-
mentation of SVMs in SCIKIT-LEARN!, using the
approach described in Section 2. We evaluate the

"http://scikit-learn.org



Translation BLEUT TER] Length
ASR outputs 42.5 51.2 94.1
ASR outputs (+PE) 48.0 44.6 96.3
Human transcripts 51.8 41.3 111.4

Table 3: Machine translation quality measured in BLEU,
TER, and utterance length, evaluated against post-edited
translations of human transcripts.

performance of an intent classification model by
plotting an error-rejection curve, which measures
the error rate of the intent classifier as the number
of utterances that are processed by the intent ana-
lysts increases. For example, a 10% rejection rate
corresponds means that only 90% of the test set is
evaluated by the model.

We compare the results of each bootstrapped
NLU approach with a native Spanish intent model
trained on the held-out Spanish training data. We
additionally repeat the experiment with the human
transcripts to measure the difference in intent clas-
sification error that may be explained by ASR.
Error-rejection curves for each intent model are
shown in Fig. 2 and the scores at 0%, 10%, and
20% rejection are shown in Table 4.

4 ASR performance

We use SCLITE from the NIST Speech Recog-
nition Scoring Toolkit?> to compute the word er-
ror rate (WER) and utterance error rate. After
further clean-up and adjudication, we observe a
33.2% WER, with 60.0% of the utterances con-
taining errors (32% substitutions, 22% deletions,
28% insertions). A majority of the substitution
errors were confusions between singular and plu-
ral (e.g. problemas—problema) and articles (e.g.
del—de). Other errors included phonetic confu-
sions (e.g. cuenta—fuenta), named entity mis-
recognitions (e.g. HBO—Yyo), and a high fre-
quency of dropped articles (e.g. de, la, a) caused
by speaker under-articulation. Of these types
of errors, the most detrimental are substitutions
of named entities, verbs, and nouns that are not
lemmatization errors. Another issue driving up the
WER score caused by the IVR system truncating
audio longer than four seconds to reduce latency.

5 Machine Translation quality

In order to assess the translation quality, we post-
edit the translations of the human-transcribed ut-
terances and report the case-insensitive BLEU

Zhttps://www.nist.gov/itl/iad/mig/tools

Intent classification performance
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Figure 2: Error-rejection curves for bootstrapped intent clas-
sification performance on Spanish ASR outputs, versus a na-
tive Spanish model. Results are reported for intent classifier
predictions on ASR outputs. Spa—Eng**: performance on
post-edited MT outputs.

and TER scores in Table 3. ASR errors in-
crease the required translation edits by 10%,
from 41.3% edits to 51.2%. The primary
sources of errors are incomplete sentences,
lack of punctuation; lexical mistranslations of
key words: (e.g. equipo (equipment)—team;
direccion (address)—direction; reclamo (com-
plaint)— claim); ambiguous translations (e.g. fac-
tura—bill/invoice); and duplicated words during
translation (e.g. payment arrangements— payment
payment). Many of these issues are due to lack
of in-domain MT training data and low tolerance
of ASR errors. Highly repetitive errors indicate
that an automatic post-editing system could sub-
stantially improve the translation system’s qual-
ity. Table 3 also shows that post-edited translations
of ASR outputs are substantially worse than those
of the human transcripts (41.3% TER difference),
showing that ASR errors are exacerbated through
translation.

6 Native NLU performance

Our reference native Spanish intent classification
model is trained on ASR outputs since an insuffi-
cient amount of human-transcribed intent model-
ing data is available. From Table 4, we see that
at 0% rejection, the native model yields a 19.2%
classification error, while the human intent ana-
lysts (IAs) yielded a 11.0% error while listening
directly to the audio. At the same time, if the IAs
are presented with the ASR outputs, they produce
an error rate of 24.4%. This demonstrates the in-
tent model’s ability to tolerate a certain degree of
ASR errors by being trained on ASR errors.

306



Reject
Configuration 0% 10% 20%
Native Spanish (ASR) 192 135 103
Native Spanish (human) 19.1 123 7.4
Boot Eng—Spa (ASR) 353 307 258
Boot Eng—Spa (human) 316 263 214
Boot Spa—Eng* (ASR) 31.8 265 214
Boot Spa—Eng* (human) 334 267 202
Boot Spa—Eng* (ASR+PE) | 283 23.6 183
Spanish IA (audio) 11.0  10.6 9.5
Spanish IA (human) 149 13.1 109
Spanish IA (ASR) 244 216 17.6
English IA (ASR+MT) 339 30.6 26.1
English IA (ASR+MT+PE) 259 228 183

Table 4: Intent classification performance by machine learn-
ing models and human intent analysts (IAs) at 0%, 10%, and
20% rejection.

Of the 1007 test utterances, 152 utterances have
both ASR errors and were classified incorrectly, al-
though they were labeled properly by IAs, com-
prising 15.1% of the 19.2% intent classification er-
rors. Of the utterances with ASR errors that cause
an intent classification error, six were cases where
ASR failed to produce a hypothesis, 26 were cases
of audio truncation, and 39 utterances containing
only ASR substitution errors. The latter cases of-
ten caused underspecification during intent classi-
fication (e.g. LOWER MY BILL—BILLING PROB-
LEM; MAKE A PAYMENT—BILLING). In isolation,
insertion and deletion ASR errors did not have a
significant impact on NLU.

Evaluating NLU performance on human tran-
scripts, we observe improvements that rival human
labeling performance at 10% rejection and above.
At 20% rejection, the model significantly outper-
forms human labeling.

7 Bootstrapped NLU performance

While the native Spanish model has a 13.5% er-
ror rate at 10% rejection when processing ASR
hypotheses, the bootstrapped models have dou-
ble the error rate due to the use of out-of-domain
machine translation. On ASR hypotheses, the
English—Spanish model yields an error rate of
30.7%, while the Spanish—English model yields
26.5% at 10% rejection.

To better understand how machine trans-
lation further corrupts the bootstrapped
Spanish—English performance, we compare
the errors it makes to the Native Spanish model. In
Table 5, we group the NLU errors by whether they
are present in the Native Spanish model, the boot-
strapped model, or both. 14.2% of the test set are

Native  Spa—Eng ASR  ASR+PE
+ + 66.6% 69.6%
+ - 14.2% 11.2%
- + 1.5% 2.0%
- - 17.7% 17.2%

Table 5: Comparison of Native Spanish intent model to boot-
strapped Spanish—English models on ASR outputs. +/- in-
dicate that whether the corresponding model’s prediction was
correct.

examples where the Native Spanish model makes
a correct prediction, but the Spanish—English
model yields errors. By comparing to post-edited
ASR+MT data, only 3% of those errors are
directly attributed to ASR errors. The 11%
of Spanish—English model-specific errors are
mostly attributed to intent underspecification. For
example, 60% of the ACCOUNT errors are NULL
misclassifications. For billing issues, two-thirds
of the errors are semantically similar misclassifi-
cations, such as PAYMENT, LOWER MY BILL, and
BILL DETAILS.

8 Analyst performance on translated text

Finally, we measure IA labeling performance on
translated utterances. In our conventional scenario,
intent analysts listen to audio segments in their na-
tive language and provide an intent label. Instead,
we replace the original audio with machine trans-
lated or translation post-edits of ASR hypotheses.
Fig. 3 provides error-rejection curves for IAs, with
error rates at 0%, 10% and 20% rejection reported
in Table 4.

We first assess the labeling loss when humans
annotate ASR outputs in the absence of audio. Al-
though their error rate increases from 11.0% to
24.49% when annotating ASR transcripts, their per-
formance on human transcripts is within 5% of lis-
tening directly to the audio at 0% rejection. As
the rejection rate increases, the difference becomes
negligible. As we introduce Spanish—English ma-
chine translation, we observe that the labeling er-
ror increases from 24.4% to 33.9% on ASR, which
is incidentally worse than the Spanish—English
intent classification model’s accuracy (31.8%)!
However, the IA labeling error rate drops to 25.9%
on post-edited MT outputs — only a 1.5% increase
in NLU errors caused by translation. These re-
sults suggest that with proper ASR and MT adapta-
tion through in-domain data, we could obtain sim-
ilar English-speaking IA performance on machine
translation outputs as the Spanish-speaking IAs on
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Figure 3: Error-rejection curves for the intent analyst (IA)
labeling accuracy on Spanish audio, Spanish ASR and human
transcripts, and their machine translations into English (MT).
Rejection is computed from the English model’s confidence
scores on MT outputs. “+PE”: performance on post-edited
MT outputs.

their native language utterances.

9 Related Work

The use of MT to translate texts in other languages
into English for sentiment analysis was proposed
in Denecke (2008). Bautin et al. (2008) show that
sometimes MT performs inadequate translations
on essential parts of a text, affecting sentiment
analysis performance. Our results confirm this
phenomena due to a lack of in-domain MT training
data. Schwenk and Douze (2017) explore learn-
ing multilingual sentence embeddings with neural
MT, which can aid in multilingual search. Prior to
that, multilingual approaches leveraged lexical re-
sources such as MultiWordNet (Pianta et al., 2002)
to bridge concepts from one language to another.

10 Conclusions

We have executed an experiment to measure ma-
chine translation’s ability to rapidly bootstrap in-
tent classification models for new languages. In
our English—Spanish experiments, we observe
that although the initial results appear to be sub-
stantially worse than a Native Spanish intent clas-
sification model, we show that MT can provide a
degree of automation that supports human-assisted
multilingual dialog systems that can be deployed
to production on day one, reducing the need for
human agent support over a fully manual solu-
tion. There is further promise that model improve-
ments can be obtained by improving the ASR and
machine translation models to include in-domain
data. Finally, we observe it is better to use the on-
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line Spanish—English bootstrap in our production
system rather than an offline English—Spanish in-
tent model.
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