
Toward leveraging Gherkin Controlled Natural Language and Ma-

chine Translation for Global Product Information Development

Morgan O’Brien

McAfee, Building 2000 Citygate, Mahon, Cork

mobrien@mcafee.com

Abstract

Machine Translation (MT) already plays

an important part in software develop-

ment process at McAfee where the tech-

nology can be leveraged to provide early

builds for localization and internationali-

zation testing teams.

Behavior Driven Development (BDD)

has been growing in usage as a develop-

ment methodology in McAfee. Within

BDD, the Gherkin Controlled Natural

Language (CNL) is a syntax and com-

mon terminology set that is used to de-

scribe the software or business process in

a User Story.

Given there exists this control on the

language to describe User Stories for

software features using Gherkin, we seek

to use Machine Translation to Globalize

it at high accuracy and without Post-

Editing and reuse it as Product Infor-

mation. This enables global product in-

formation development to happen as part

of the Software Development Life Cycle

(SDLC) and at low cost.

 © 2018 Morgan O’Brien, McAfee LLC.

1 Credits

This document is based on the understanding that

commercial Machine Translation systems per-

form well when used in conjunctions with Con-

trolled Language rules (Roturier, 2004). It uses

Gherkin CNL as written by developers and test-

ers of McAfee products. The Machine Transla-

tion system used are from the Microsoft Transla-

tor Hub. The paper takes input from Information

Development teams in McAfee based on the

style and standards that they have in place.

2 Introduction

BDD is fast becoming a standard in software

development, especially where the User Interface

is primarily web based. It aims to satisfy needs of

customers in software design by representing the

behavior of the user as part of the plan. Using the

Gherkin CNL, which is designed to work with

BDD frameworks, a business manager who is not

a developer can quickly describe how the

software should function using examples.

Example based learning has advantages for

understanding and retention of information. It

enhances the effectiveness of User Stories in

Agile software development by reducing

ambiguity and enabling non-technical personnel

to be involved. It also enhances the ability for a

person to retain the information better by the

application of a cognitive load to the user as they

read. Gherkin could possibly be used as a

superior learning asset to traditional information

development for complex software processes by

virtue that the reader employs more mental effort

as they read which helps them retain the

information better.

In McAfee, software design is managed through

JIRA, a tool for planning, tracking and managing

Agile software development. Gherkin

descriptions are not currently part of that system

and are rarely shared outside of the software

Development and Testing teams. By accessing

the test code, we get access to the Gherkin which

in turn can facilitate the future possibilities such

as Information Development. In turn, the ability

to quickly leverage this content for international

markets at low cost is an attractive possibility for

the business.

In this paper, we explore how Gherkin can be

organized and stored in JIRA. We test a baseline

on how effective Gherkin is with Product Based

Machine Translation engines. We then optimize

the Gherkin as a better information asset, and in

Pérez-Ortiz, Sánchez-Mart́ınez, Esplà-Gomis, Popović, Rico, Martins, Van den Bogaert, Forcada (eds.)
Proceedings of the 21st Annual Conference of the European Association for Machine Translation, p. 293–296
Alacant, Spain, May 2018.

turn optimize the MT to ensure accuracy of mes-

sage by training glossaries of product and Gher-

kin terminology.

3 Process

Here we will explain a little about Gherkin and

how it will be stored for access. Then we process

it through our Product MT engines which are

trained on the latest User Interface (UI) transla-

tions before running two types of tests on the

outputs. We then modify the Gherkin source and

re-run the process to test for improvement.

3.1 Gherkin

Gherkin is a ubiquitous language designed to be

simple and effective at explaining behaviors car-

ried out on software. Behaviors refer to things

the user will do in the Graphical User Interface

(GUI). The Gherkin CNL is based on the follow-

ing concepts:

• A Feature

• A Scenario

• A Background

• A Scenario outline

• The Steps (Given, When, Then, And)

• Examples

There is a specific set of steps to be used for a

Gherkin feature or scenario using the “Given”,

“When”, “Then” declarations:

• Given I experience a specific state

• And I experience another starting state

• When I do something

• And I do something else

• Then I will experience an outcome

To reuse the descriptions in Gherkin more effec-

tively, the use of Data Tables is popular. Data

Tables allow the test case to be run with a set of

variables in the input. The Data Tables we used

in our testing are indicative of typical software

development content:

• User Interface text

• Usernames and Passwords

• Server Names and Descriptions

• Currency, Numbers and Amounts

Gherkin authoring standards don’t exist in a

structured way within the company to date, but a

minimal approach is taken; adhering to the syn-

tax and GUI accuracy. There are 2 types of

Gherkin that can be used for different purposes;

Imperative and Declarative. Imperative is a de-

tailed description of the behavior expected which

has enough specifics to allow test automation

code to be written for it, while Declarative is a

less detailed higher-level description of the busi-

ness goals of the software design without thought

about the specifics or test code.

Consistency and reusability is of great im-

portance in Gherkin authoring and management

to reduce the amount of scenario writing needed.

3.2 JIRA and XRAY

JIRA is a software development tool used by Ag-

ile teams. It is designed to streamline the process

of Issue and Feature creation and allow global

teams to collaborate in their software release

process. XRAY is a plugin for JIRA that focuses

on the test process by managing the test cases

and reporting on their validation in an easy to use

dashboard. XRAY allows for the support of

Gherkin language in JIRA in multiple ways.

1. Gherkin language is highlighted for known

keyword declarations and Data Tables.

2. Gherkin is managed and exportable via a man-

ual or API process in an XML format.

3. The automation code that is bound to the

Gherkin test cases can report back on validation

again via an API or an importable XML file.

Fig 1. Gherkin scenario in XRAY for JIRA

The exportable XML format is key as this of-

fers the opportunity to manage the Gherkin sce-

nario and process it within a localization work-

flow.

3.3 Translation Quality Tests

To evaluate the success of Machine Translation

applied to Gherkin we envisaged tests that are in

line with how we currently rate non-Post-Editing

translation jobs using MT. The languages we

have chosen for this test are Italian, French and

Brazilian Portuguese due to the availability of

resources to help with the testing. There are 5

complete Gherkin scenarios used in each of the

tests, making it 10 scenarios used in all (before

and after). It is important to have different

294

scenarios for the before (baseline) and after

(future) as familiarity with the process can affect

the ability to understand the content during the

second set of tests. We chose these tests as they

are not exhaustive and provide a quick and useful

baseline before pursuing further testing with

larger datasets and project participants.

Usability Feedback - from a linguist familiar

with products and terminology. The task is to

rate the usability and fluency of the sentence in

terms of how it can be understood. Usability

Feedback is rated from 1 to 5 where 5 is highest

quality and 1 is lowest (unusable) quality. We

will test this on the source language (English) as

well as Brazilian Portuguese, Italian and French.

The number generated per language is then the

total score divided by the number of strings

reviewed (92 Strings were used in the tests).

Cognitive Usage - from an Engineer unfamiliar

with the specific product usage but competent in

general enterprise software usage. The Cognitive

Usability study tests the participant’s ability to

complete a task with no prior knowledge of the

software and is measured on how long it takes to

complete the task in minutes. It is measured

against the time needed to perform the task using

English source. For example, if the task takes 5

minutes in English and 5 minutes in the target

language, then the ratio is 1:1 (Same time

needed).

Term Type Example Content

Gherkin When

Mfe Term TIE Server

Action receives a new

Mfe Term MWG report

none for the file with

Mfe Term "Known malicious"

Mfe Term MWG reputation

none in

Object/UI TIE Reputations
Table 1. Term identification - Gherkin segment

3.4 Gherkin Information MT Optimization

Initially our baseline MT systems are not

optimized for Gherkin and ultimately the goal is

to create an optimized engine. While fluency is

sometimes important to understanding, the main

goal of Gherkin is quick “In-Process”

information development which is cheap to

globalize. We focus then on the Keywords and

lesser so on the fluency.

The main Action Keywords observed during this

test are: Login, Go, Search, Click, See, Set,

Accept, Wait, Open, Request, Have, Run,

Receive, Request, Reject, Discard.

Gherkin as an information asset must speak in

the imperative to direct the user actions. The

Gherkin Keywords must be removed to make

this possible. This can be done through simple

regular expressions (RegEx) on the patterns. This

then transforms Gherkin from a User Story de-

scription into an instructional asset:

Gherkin as

User Story

Gherkin as

Instruction

When I override the

file reputation to

"Known Malicious"

Override the file

reputation to

"Known Malicious"

And I go to "Over-

rides" tab in the

"TIE Reputations"

section in ePO

Go to "Overrides"

tab in the "TIE

Reputations" sec-

tion in ePO

And I search for the

file in the table

Search for the file

in the table

And I click on the

file in the table

Click on the file in

the table

Table 2. Transform Gherkin to an instruction

The process then to move Gherkin from a test

asset to an information asset for Machine Trans-

lation is like this:

1. Train MT engine with Product Terms

2. Export Gherkin in XML

3. RegEx replaces to the Imperative

4. Machine Translate

5. Publish

3.5 Test Results (before and after)

3.4.1 Usability Study

The Usability Study showed improvements on

the understanding and language accuracy for

most languages. However, there was a slight

drop in accuracy on Italian after optimization

was completed.

295

Fig 2. Usability Study averages before/after.

3.4.2 Cognitive Usability

Fig 3. Time to complete tasks baseline.

Fig 4. Time to complete after improvements

The Cognitive Study showed improvements

across all languages when compared against the

source (English) baseline. Before optimization it

took between 1.37 to 1.5 times as long to per-

form the task when compared to following the

English source. After optimization this was re-

duced to 1 to 1.17 times the times, showing that

optimization has improved the ability for the user

to perform the task in the target languages.

4 Discussion and conclusions

We proposed a method to further leverage an

asset currently in use for software development

by leveraging Machine Translation and NLP

tools such as Regular Expressions. This was

done by pre-processing content and optimizing

MT engines quickly with one optimization train-

ing specifically focused on compliance to termi-

nology. The result is promising showing im-

provements in many areas based on the analysis

of the MT output, and in some cases, is fit for

purpose for publishing directly to a customer. In

cases where we see drops in usability, the issues

stem from the quality of the MT and train-

ing/tuning sets. In Italian the UI did not translate

well even though the same bitext training content

was used in training of all languages. We are

confident that training more iterations of the en-

gine to address some of the issues directly would

prove useful as issues were predominantly termi-

nology based and may require more weight in the

training corpora and or an adjustment of the tun-

ing set.

5 Next Steps

We plan now to expand this test to other lan-

guages and improve the current trained MT en-

gines further. In addition, we aim to work with

the software development teams to apply more

uniform standards to the authoring of Gherkin

scenarios and how it is managed as an asset.

Acknowledgements

Acknowledgement is made to the assistance given

from Mariana Rolin, Maddalena Benedetto, Sandro

Castelletti, Rouslan Placella and Hernan Rey Corva-

lan from McAfee LLC.

References

Adzic, G. 2009. Bridging the Communication Gap:

Specification by Example and Agile Acceptance

Testing. Neuri, London.

Beck, K. 2002. Test Driven Development: By Exam-

ple. Addison-Wesley, Boston.

Chelimsky, D., Astels, D., Dennis, Z., Hellesoy, A.,

Helmkamp, B., North, D. 2010. The RSpec Book:

Behaviour Driven Development with RSpec, Cu-

cumber, and Friends. Pragmatic Programmer, New

York.

Roturier, J. 2015. Assessing a set of Controlled Lan-

guage rules: Can they improve the performance of

commercial Machine Translation systems? Centre

for Translation and Textual Studies, Dublin City

University.

Sern, L., Salleh, K., Sulaiman, N., Mohamad, M.,

Yunos, JBM. 2015. Comparison of Example-based

Learning and Problem-based Learning in Engi-

neering Domain, Universiti Tun Hussein Onn Ma-

laysia, Johor, Malaysia.

SpecFlow. 2010. Pragmatic BDD for .NET

http://specflow.org.

Yagel, R., Sarig, O. 2011. Can executable specifica-

tions close the gap between software requirements

and implementation? Proceedings of SKY 2011 In-

ternational Workshop on Software Engineering,

SciTePress, France.

296

